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Summary. In this article, we described the contracting mapping on nor-
med linear space. Furthermore, we applied that mapping to ordinary differential
equations on real normed space. Our method is based on the one presented by
Schwarz [29].
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Let f be a function. We say that f has unique fixpoint if and only if:

(Def. 1) There exists a set x such that x is a fixpoint of f and for every set y
such that y is a fixpoint of f holds x = y.

Next we state two propositions:

(1) Every set x is a fixpoint of {〈〈x, x〉〉}.
(2) For all sets x, y, z such that x is a fixpoint of {〈〈y, z〉〉} holds x = y.

Let x be a set. Observe that {〈〈x, x〉〉} has unique fixpoint.
Next we state three propositions:

(3) Let X be a real normed space and x be a point of X. If for every real
number e such that e > 0 holds ‖x‖ < e, then x = 0X .

(4) Let X be a real normed space and x, y be points of X. If for every real
number e such that e > 0 holds ‖x− y‖ < e, then x = y.

(5) For all real numbers K, L, e such that 0 < K < 1 and 0 < e there exists
a natural number n such that |L ·Kn| < e.

Let X be a real normed space. Note that every function from X into X

which is constant is also contraction.
Let X be a real Banach space. One can verify that every function from X

into X which is contraction also has unique fixpoint.
One can prove the following three propositions:

(6) Let X be a real Banach space and f be a function from X into X.
Suppose f is contraction. Then there exists a point x1 of X such that
f(x1) = x1 and for every point x of X such that f(x) = x holds x1 = x.

(7) Let X be a real Banach space and f be a function from X into X such
that there exists a natural number n0 such that fn0 is contraction. Then
f has unique fixpoint.

(8) Let X be a real Banach space and f be a function from X into X.
Given an element n0 of N such that fn0 is contraction. Then there exists
a point x1 of X such that f(x1) = x1 and for every point x of X such that
f(x) = x holds x1 = x.

2. The Real Banach Space C([a,b],X)

We now state the proposition

(9) Let X be a non empty closed interval subset of R, Y be a real normed
space, and f be a continuous partial function from R to Y . If dom f = X,

then f is a bounded function from X into Y .

Let X be a non empty closed interval subset of R and let Y be a real normed
space. The continuous functions of X and Y yields a subset of the set of bounded
real sequences from X into Y and is defined by the condition (Def. 2).
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(Def. 2) Let x be a set. Then x ∈ the continuous functions of X and Y if and
only if there exists a continuous partial function f from R to Y such that
x = f and dom f = X.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. Note that the continuous functions of X and Y is non empty.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. Observe that the continuous functions of X and Y is linearly closed.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. The R-vector space of continuous functions of X and Y yielding a strict
real linear space is defined by the condition (Def. 3).

(Def. 3) The R-vector space of continuous functions of X and Y = 〈the conti-
nuous functions of X and Y , Zero(the continuous functions of X and Y ,
the set of bounded real sequences from X into Y ),Add(the continuous
functions of X and Y , the set of bounded real sequences from X into
Y ),Mult(the continuous functions of X and Y , the set of bounded real
sequences from X into Y )〉.

Let X be a non empty closed interval subset of R and let Y be a real
normed space. Observe that the R-vector space of continuous functions of X
and Y is Abelian, add-associative, right zeroed, right complementable, vector
distributive, scalar distributive, scalar associative, and scalar unital.

One can prove the following three propositions:

(10) Let X be a non empty closed interval subset of R, Y be a real normed
space, f , g, h be vectors of the R-vector space of continuous functions of
X and Y , and f9, g9, h9 be continuous partial functions from R to Y .
Suppose f9 = f and g9 = g and h9 = h and dom f9 = X and dom g9 = X

and domh9 = X. Then h = f + g if and only if for every element x of X
holds (h9)x = (f9)x + (g9)x.

(11) Let X be a non empty closed interval subset of R, Y be a real normed
space, f , h be vectors of the R-vector space of continuous functions of X
and Y , and f9, h9 be continuous partial functions from R to Y . Suppose
f9 = f and h9 = h and dom f9 = X and domh9 = X. Then h = a · f if
and only if for every element x of X holds (h9)x = a · (f9)x.

(12) Let X be a non empty closed interval subset of R and Y be a real normed
space. Then 0the R-vector space of continuous functions of X and Y = X 7−→ 0Y .

Let X be a non empty closed interval subset of R and let Y be a real normed
space. The continuous functions norm of X and Y yields a function from the
continuous functions of X and Y into R and is defined as follows:

(Def. 4) The continuous functions norm of X and Y = BdFuncsNorm(X,Y )�the
continuous functions of X and Y .

Let X be a non empty closed interval subset of R, let Y be a real normed
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space, and let f be a set. Let us assume that f ∈ the continuous functions of X
and Y . The functor modetrans(f,X, Y ) yielding a continuous partial function
from R to Y is defined by:

(Def. 5) modetrans(f,X, Y ) = f and dom modetrans(f,X, Y ) = X.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. The R-norm space of continuous functions of X and Y yields a strict non
empty normed structure and is defined by the condition (Def. 6).

(Def. 6) The R-norm space of continuous functions of X and Y = 〈the continuous
functions of X and Y , Zero(the continuous functions of X and Y , the set
of bounded real sequences from X into Y ),Add(the continuous functions
of X and Y , the set of bounded real sequences from X into Y ),Mult(the
continuous functions of X and Y , the set of bounded real sequences from
X into Y ), the continuous functions norm of X and Y 〉.

We now state several propositions:

(13) Let X be a non empty closed interval subset of R, Y be a real normed
space, and f be a continuous partial function from R to Y . If dom f = X,

then modetrans(f,X, Y ) = f.

(14) Let X be a non empty closed interval subset of R and Y be a real normed
space. Then X 7−→ 0Y = 0the R-norm space of continuous functions of X and Y .

(15) Let X be a non empty closed interval subset of R, Y be a real normed
space, f , g, h be points of the R-norm space of continuous functions of
X and Y , and f9, g9, h9 be continuous partial functions from R to Y .
Suppose f9 = f and g9 = g and h9 = h and dom f9 = X and dom g9 = X

and domh9 = X. Then h = f + g if and only if for every element x of X
holds (h9)x = (f9)x + (g9)x.

(16) Let X be a non empty closed interval subset of R, Y be a real normed
space, f , h be points of the R-norm space of continuous functions of X
and Y , and f9, h9 be continuous partial functions from R to Y . Suppose
f9 = f and h9 = h and dom f9 = X and domh9 = X. Then h = a · f if
and only if for every element x of X holds (h9)x = a · (f9)x.

(17) Let X be a non empty closed interval subset of R, Y be a real normed
space, f be a point of the R-norm space of continuous functions of X and
Y , and g be a point of the real normed space of bounded functions from
X into Y . If f = g, then ‖f‖ = ‖g‖.

(18) Let X be a non empty closed interval subset of R, Y be a real normed
space, f , g be points of the R-norm space of continuous functions of X
and Y , and f1, g1 be points of the real normed space of bounded functions
from X into Y . If f1 = f and g1 = g, then f + g = f1 + g1.

(19) Let X be a non empty closed interval subset of R, Y be a real normed
space, f be a point of the R-norm space of continuous functions of X and
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Y , and f1 be a point of the real normed space of bounded functions from
X into Y . If f1 = f, then a · f = a · f1.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. Observe that the R-norm space of continuous functions of X and Y is
reflexive, discernible, real normed space-like, vector distributive, scalar distri-
butive, scalar associative, scalar unital, Abelian, add-associative, right zeroed,
and right complementable.

One can prove the following propositions:

(20) Let X be a non empty closed interval subset of R, Y be a real normed
space, f , g, h be points of the R-norm space of continuous functions of
X and Y , and f9, g9, h9 be continuous partial functions from R to Y .
Suppose f9 = f and g9 = g and h9 = h and dom f9 = X and dom g9 = X

and domh9 = X. Then h = f − g if and only if for every element x of X
holds (h9)x = (f9)x − (g9)x.

(21) Let X be a non empty closed interval subset of R, Y be a real normed
space, f , g be points of the R-norm space of continuous functions of X
and Y , and f1, g1 be points of the real normed space of bounded functions
from X into Y . If f1 = f and g1 = g, then f − g = f1 − g1.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. Note that there exists a subset of the real normed space of bounded
functions from X into Y which is closed.

The following two propositions are true:

(22) Let X be a non empty closed interval subset of R and Y be a real normed
space. Then the continuous functions of X and Y is a closed subset of the
real normed space of bounded functions from X into Y .

(23) Let X be a non empty closed interval subset of R, Y be a real normed
space, and s1 be a sequence of the R-norm space of continuous functions
of X and Y . Suppose Y is complete and s1 is Cauchy sequence by norm.
Then s1 is convergent.

Let X be a non empty closed interval subset of R and let Y be a real Banach
space. One can check that the R-norm space of continuous functions of X and
Y is complete.

We now state four propositions:

(24) Let X be a non empty closed interval subset of R, Y be a real normed
space, v be a point of the R-norm space of continuous functions of X and
Y , and g be a partial function from R to Y . If g = v, then for every real
number t such that t ∈ X holds ‖gt‖ ≤ ‖v‖.

(25) Let X be a non empty closed interval subset of R, Y be a real normed
space, K be a real number, v be a point of the R-norm space of continuous
functions of X and Y , and g be a partial function from R to Y . Suppose
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g = v and for every real number t such that t ∈ X holds ‖gt‖ ≤ K. Then
‖v‖ ≤ K.

(26) Let X be a non empty closed interval subset of R, Y be a real normed
space, v1, v2 be points of the R-norm space of continuous functions of X
and Y , and g1, g2 be partial functions from R to Y . Suppose g1 = v1 and
g2 = v2. Let t be a real number. If t ∈ X, then ‖(g1)t− (g2)t‖ ≤ ‖v1− v2‖.

(27) Let X be a non empty closed interval subset of R, Y be a real normed
space, K be a real number, v1, v2 be points of the R-norm space of conti-
nuous functions of X and Y , and g1, g2 be partial functions from R to Y .
Suppose g1 = v1 and g2 = v2 and for every real number t such that t ∈ X
holds ‖(g1)t − (g2)t‖ ≤ K. Then ‖v1 − v2‖ ≤ K.

3. Differential Equations

The following propositions are true:

(28) Let n, i be natural numbers, f be a partial function from R to Rn, and
A be a subset of R. Then proj(i, n) · (f�A) = (proj(i, n) · f)�A.

(29) For every continuous partial function g from R to Rn such that dom g =
[a, b] holds g�[a, b] is bounded.

(30) For every continuous partial function g from R to Rn such that dom g =
[a, b] holds g is integrable on [a, b].

(31) Let f , F be partial functions from R to Rn. Suppose a ≤ b and dom f =
[a, b] and domF = [a, b] and f is continuous and for every real number

t such that t ∈ [a, b] holds F (t) =
t∫
a

f(x)dx. Let x be a real number. If

x ∈ [a, b], then F is continuous in x.

(32) For every continuous partial function f from R to 〈En, ‖ · ‖〉 such that
dom f = [a, b] holds f�[a, b] is bounded.

(33) For every continuous partial function f from R to 〈En, ‖ · ‖〉 such that
dom f = [a, b] holds f is integrable on [a, b].

(34) Let f be a continuous partial function from R to 〈En, ‖ · ‖〉 and F be a
partial function from R to 〈En, ‖ · ‖〉. Suppose a ≤ b and dom f = [a, b]
and domF = [a, b] and for every real number t such that t ∈ [a, b] holds

F (t) =
t∫
a

f(x)dx. Let x be a real number. If x ∈ [a, b], then F is continuous

in x.

(35) Let R be a partial function from R to R. Suppose R is total. Then R is
rest-like if and only if for every real number r such that r > 0 there exists
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a real number d such that d > 0 and for every real number z such that
z 6= 0 and |z| < d holds |z|−1 · |Rz| < r.

In the sequel Z denotes an open subset of R, y0 denotes a vector of 〈En, ‖·‖〉,
and G denotes a function from 〈En, ‖ · ‖〉 into 〈En, ‖ · ‖〉.

One can prove the following propositions:

(36) Let f be a continuous partial function from R to 〈En, ‖ · ‖〉 and g be a
partial function from R to 〈En, ‖ · ‖〉. Suppose a ≤ b and dom f = [a, b]
and dom g = [a, b] and Z = ]a, b[ and for every real number t such that

t ∈ [a, b] holds g(t) = y0 +
t∫
a

f(x)dx. Then g is continuous and ga = y0

and g is differentiable on Z and for every real number t such that t ∈ Z
holds g′(t) = ft.

(37) For every natural number i and for all points y1, y2 of 〈En, ‖ · ‖〉 holds
(proj(i, n))(y1 + y2) = (proj(i, n))(y1) + (proj(i, n))(y2).

(38) For every natural number i and for every point y1 of 〈En, ‖ · ‖〉 and for
every real number r holds (proj(i, n))(r · y1) = r · (proj(i, n))(y1).

(39) Let g be a partial function from R to 〈En, ‖ · ‖〉, x0 be a real number,
and i be a natural number. Suppose 1 ≤ i ≤ n and g is differentiable
in x0. Then proj(i, n) · g is differentiable in x0 and (proj(i, n))(g′(x0)) =
(proj(i, n) · g)′(x0).

(40) Let f be a partial function from R to 〈En, ‖ · ‖〉 and X be a set. Suppose
that for every natural number i such that 1 ≤ i ≤ n holds (proj(i, n)·f)�X
is constant. Then f�X is constant.

(41) Let f be a partial function from R to 〈En, ‖ · ‖〉. Suppose ]a, b[ ⊆ dom f

and f is differentiable on ]a, b[ and for every real number x such that
x ∈ ]a, b[ holds f ′(x) = 0〈En,‖·‖〉. Then f�]a, b[ is constant.

(42) Let f be a continuous partial function from R to 〈En, ‖ · ‖〉. Suppose
a < b and [a, b] = dom f and f�]a, b[ is constant. Let x be a real number.
If x ∈ [a, b], then f(x) = f(a).

(43) Let y, G1 be continuous partial functions from R to 〈En, ‖ · ‖〉 and g

be a partial function from R to 〈En, ‖ · ‖〉. Suppose that a < b and Z =
]a, b[ and dom y = [a, b] and dom g = [a, b] and domG1 = [a, b] and y is
differentiable on Z and ya = y0 and for every real number t such that
t ∈ Z holds y′(t) = (G1)t and for every real number t such that t ∈ [a, b]

holds g(t) = y0 +
t∫
a

G1(x)dx. Then y = g.

(44) Let a, b, c, d be real numbers and f be a partial function from R to 〈En, ‖·
‖〉. Suppose that a ≤ b and f is integrable on [a, b] and ‖f‖ is integrable
on [a, b] and f�[a, b] is bounded and [a, b] ⊆ dom f and c, d ∈ [a, b]. Then
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‖f‖ is integrable on [min(c, d),max(c, d)] and ‖f‖�[min(c, d),max(c, d)] is

bounded and ‖
d∫
c

f(x)dx‖ ≤
max(c,d)∫

min(c,d)

‖f‖(x)dx.

(45) Let a, b, c, d, e be real numbers and f be a partial function from R to
〈En, ‖ · ‖〉. Suppose that a ≤ b and c ≤ d and f is integrable on [a, b] and
‖f‖ is integrable on [a, b] and f�[a, b] is bounded and [a, b] ⊆ dom f and c,
d ∈ [a, b] and for every real number x such that x ∈ [c, d] holds ‖fx‖ ≤ e.

Then ‖
d∫
c

f(x)dx‖ ≤ e · (d− c) and ‖
c∫
d

f(x)dx‖ ≤ e · (d− c).

(46) Let n be a natural number and g be a function from R into R. Suppose
that for every real number x holds g(x) = (x− a)n+1. Let x be a real
number. Then g is differentiable in x and g′(x) = (n+ 1) · (x− a)n.

(47) Let n be a natural number and g be a function from R into R. Suppose

that for every real number x holds g(x) = (x−a)n+1

(n+1)! . Let x be a real number.

Then g is differentiable in x and g′(x) = (x−a)n

n! .

(48) Let f , g be partial functions from R to R. Suppose that a ≤ t and
[a, t] ⊆ dom f and f is integrable on [a, t] and f�[a, t] is bounded and
[a, t] ⊆ dom g and g is integrable on [a, t] and g�[a, t] is bounded and
for every real number x such that x ∈ [a, t] holds f(x) ≤ g(x). Then
t∫
a

f(x)dx ≤
t∫
a

g(x)dx.

Let n be a non empty element of N, let y0 be a vector of 〈En, ‖·‖〉, let G be a
function from 〈En, ‖·‖〉 into 〈En, ‖·‖〉, and let a, b be real numbers. Let us assume
that a ≤ b and G is continuous on domG. The functor Fredholm(G, a, b, y0)
yielding a function from the R-norm space of continuous functions of [a, b] and
〈En, ‖ · ‖〉 into the R-norm space of continuous functions of [a, b] and 〈En, ‖ · ‖〉
is defined by the condition (Def. 7).

(Def. 7) Let x be a vector of the R-norm space of continuous functions of [a, b]
and 〈En, ‖ · ‖〉. Then there exist continuous partial functions f , g, G1 from
R to 〈En, ‖ · ‖〉 such that x = f and (Fredholm(G, a, b, y0))(x) = g and
dom f = [a, b] and dom g = [a, b] and G1 = G ·f and for every real number

t such that t ∈ [a, b] holds g(t) = y0 +
t∫
a

G1(x)dx.

We now state several propositions:

(49) Suppose a ≤ b and 0 < r and for all vectors y1, y2 of 〈En, ‖ · ‖〉 holds
‖Gy1 − Gy2‖ ≤ r · ‖y1 − y2‖. Let u, v be vectors of the R-norm space of
continuous functions of [a, b] and 〈En, ‖ · ‖〉 and g, h be continuous partial
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functions from R to 〈En, ‖ · ‖〉. Suppose g = (Fredholm(G, a, b, y0))(u) and
h = (Fredholm(G, a, b, y0))(v). Let t be a real number. If t ∈ [a, b], then
‖gt − ht‖ ≤ r · (t− a) · ‖u− v‖.

(50) Suppose a ≤ b and 0 < r and for all vectors y1, y2 of 〈En, ‖ · ‖〉 holds
‖Gy1 − Gy2‖ ≤ r · ‖y1 − y2‖. Let u, v be vectors of the R-norm space
of continuous functions of [a, b] and 〈En, ‖ · ‖〉, m be an element of N,
and g, h be continuous partial functions from R to 〈En, ‖ · ‖〉. Suppose
g = (Fredholm(G, a, b, y0))m+1(u) and h = (Fredholm(G, a, b, y0))m+1(v).

Let t be a real number. If t ∈ [a, b], then ‖gt − ht‖ ≤ (r·(t−a))m+1

(m+1)! · ‖u− v‖.

(51) Let m be a natural number. Suppose a ≤ b and 0 < r and for all
vectors y1, y2 of 〈En, ‖ · ‖〉 holds ‖Gy1 −Gy2‖ ≤ r · ‖y1 − y2‖. Let u, v be
vectors of the R-norm space of continuous functions of [a, b] and 〈En, ‖ ·‖〉.
Then ‖(Fredholm(G, a, b, y0))m+1(u) − (Fredholm(G, a, b, y0))m+1(v)‖ ≤
(r·(b−a))m+1

(m+1)! · ‖u− v‖.

(52) Suppose a < b and G is Lipschitzian on the carrier of 〈En, ‖ · ‖〉. Then
there exists a natural number m such that (Fredholm(G, a, b, y0))m+1 is
contraction.

(53) If a < b and G is Lipschitzian on the carrier of 〈En, ‖ · ‖〉, then
Fredholm(G, a, b, y0) has unique fixpoint.

(54) Let f , g be continuous partial functions from R to 〈En, ‖ · ‖〉. Suppose
dom f = [a, b] and dom g = [a, b] and Z = ]a, b[ and a < b and G is
Lipschitzian on the carrier of 〈En, ‖ ·‖〉 and g = (Fredholm(G, a, b, y0))(f).
Then ga = y0 and g is differentiable on Z and for every real number t such
that t ∈ Z holds g′(t) = (G · f)t.

(55) Let y be a continuous partial function from R to 〈En, ‖ ·‖〉. Suppose that
a < b and Z = ]a, b[ and G is Lipschitzian on the carrier of 〈En, ‖ · ‖〉
and dom y = [a, b] and y is differentiable on Z and ya = y0 and for every
real number t such that t ∈ Z holds y′(t) = G(yt). Then y is a fixpoint of
Fredholm(G, a, b, y0).

(56) Let y1, y2 be continuous partial functions from R to 〈En, ‖ · ‖〉. Suppose
that a < b and Z = ]a, b[ and G is Lipschitzian on the carrier of 〈En, ‖ · ‖〉
and dom y1 = [a, b] and y1 is differentiable on Z and (y1)a = y0 and
for every real number t such that t ∈ Z holds y1

′(t) = G((y1)t) and
dom y2 = [a, b] and y2 is differentiable on Z and (y2)a = y0 and for every
real number t such that t ∈ Z holds y2

′(t) = G((y2)t). Then y1 = y2.

(57) Suppose a < b and Z = ]a, b[ and G is Lipschitzian on the carrier of
〈En, ‖ · ‖〉. Then there exists a continuous partial function y from R to
〈En, ‖ · ‖〉 such that dom y = [a, b] and y is differentiable on Z and ya = y0

and for every real number t such that t ∈ Z holds y′(t) = G(yt).
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