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1. THE PRINCIPLE OF CONTRACTING MAPPING ON NORMED LINEAR SPACE

We use the following convention: n denotes a non empty element of N and
a, b, r, t denote real numbers.
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Let f be a function. We say that f has unique fixpoint if and only if:

(Def. 1) There exists a set  such that x is a fixpoint of f and for every set y
such that y is a fixpoint of f holds x = y.
Next we state two propositions:
(1) Every set z is a fixpoint of {{z, z)}.
(2) For all sets x, y, z such that x is a fixpoint of {{y, z)} holds = = y.
Let x be a set. Observe that {(x, x)} has unique fixpoint.
Next we state three propositions:

(3) Let X be a real normed space and x be a point of X. If for every real
number e such that e > 0 holds ||z|| < e, then z = 0x.

(4) Let X be a real normed space and z, y be points of X. If for every real
number e such that e > 0 holds ||z — y|| < e, then z = y.

(5) For all real numbers K, L, e such that 0 < K < 1 and 0 < e there exists
a natural number n such that |L- K"| <e.

Let X be a real normed space. Note that every function from X into X
which is constant is also contraction.

Let X be a real Banach space. One can verify that every function from X
into X which is contraction also has unique fixpoint.

One can prove the following three propositions:

(6) Let X be a real Banach space and f be a function from X into X.
Suppose f is contraction. Then there exists a point xy of X such that
f(x1) = 1 and for every point z of X such that f(x) = = holds z; = x.

(7) Let X be a real Banach space and f be a function from X into X such
that there exists a natural number ng such that f™0 is contraction. Then
f has unique fixpoint.

(8) Let X be a real Banach space and f be a function from X into X.
Given an element ng of N such that f™° is contraction. Then there exists

a point z1 of X such that f(x1) = x1 and for every point = of X such that
f(z) =z holds =1 = =.

2. THE REAL BANACH SPACE C([A,B],X)

We now state the proposition

(9) Let X be a non empty closed interval subset of R, Y be a real normed
space, and f be a continuous partial function from R to Y. If dom f = X,
then f is a bounded function from X into Y.

Let X be a non empty closed interval subset of R and let Y be a real normed

space. The continuous functions of X and Y yields a subset of the set of bounded
real sequences from X into Y and is defined by the condition (Def. 2).
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(Def. 2) Let = be a set. Then = € the continuous functions of X and Y if and
only if there exists a continuous partial function f from R to Y such that
x = f and dom f = X.
Let X be a non empty closed interval subset of R and let Y be a real normed
space. Note that the continuous functions of X and Y is non empty.
Let X be a non empty closed interval subset of R and let Y be a real normed
space. Observe that the continuous functions of X and Y is linearly closed.
Let X be a non empty closed interval subset of R and let Y be a real normed
space. The R-vector space of continuous functions of X and Y yielding a strict
real linear space is defined by the condition (Def. 3).

(Def. 3) The R-vector space of continuous functions of X and Y = (the conti-
nuous functions of X and Y, Zero(the continuous functions of X and Y,
the set of bounded real sequences from X into Y'), Add(the continuous
functions of X and Y, the set of bounded real sequences from X into
Y'), Mult(the continuous functions of X and Y, the set of bounded real
sequences from X into Y)).

Let X be a non empty closed interval subset of R and let Y be a real
normed space. Observe that the R-vector space of continuous functions of X
and Y is Abelian, add-associative, right zeroed, right complementable, vector
distributive, scalar distributive, scalar associative, and scalar unital.

One can prove the following three propositions:

(10) Let X be a non empty closed interval subset of R, Y be a real normed
space, f, g, h be vectors of the R-vector space of continuous functions of
X and Y, and fg, g9, hg be continuous partial functions from R to Y.
Suppose fog = f and g9 = g and hg = h and dom fg = X and dom gg = X
and dom hg = X. Then h = f + g if and only if for every element x of X
holds (h9)x = (fQ):B + (gg)a:

(11) Let X be a non empty closed interval subset of R, Y be a real normed
space, f, h be vectors of the R-vector space of continuous functions of X
and Y, and fg, hg be continuous partial functions from R to Y. Suppose
fo = f and hg = h and dom fg = X and domhg = X. Then h = a - f if
and only if for every element x of X holds (hg), = a - (f9),.

(12) Let X be a non empty closed interval subset of R and Y be a real normed
space. Then Othe R-vector space of continuous functions of X and ¥ — X — Oy.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. The continuous functions norm of X and Y yields a function from the
continuous functions of X and Y into R and is defined as follows:

(Def. 4) The continuous functions norm of X and ¥ = BdFuncsNorm(X,Y')[the
continuous functions of X and Y.

Let X be a non empty closed interval subset of R, let Y be a real normed
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space, and let f be a set. Let us assume that f € the continuous functions of X
and Y. The functor modetrans(f, X,Y") yielding a continuous partial function
from R to Y is defined by:

(Def. 5) modetrans(f, X,Y) = f and dom modetrans(f, X,Y) = X.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. The R-norm space of continuous functions of X and Y yields a strict non
empty normed structure and is defined by the condition (Def. 6).

(Def. 6) The R-norm space of continuous functions of X and Y = (the continuous
functions of X and Y, Zero(the continuous functions of X and Y, the set
of bounded real sequences from X into Y), Add(the continuous functions
of X and Y, the set of bounded real sequences from X into Y'), Mult(the
continuous functions of X and Y, the set of bounded real sequences from
X into Y'), the continuous functions norm of X and Y').

We now state several propositions:

(13) Let X be a non empty closed interval subset of R, Y be a real normed
space, and f be a continuous partial function from R to Y. If dom f = X,
then modetrans(f, X,Y) = f.

(14) Let X be a non empty closed interval subset of R and Y be a real normed
space. Then X +— OY = Othe R-norm space of continuous functions of X and Y-

(15) Let X be a non empty closed interval subset of R, Y be a real normed
space, f, g, h be points of the R-norm space of continuous functions of
X and Y, and fg, g9, hg be continuous partial functions from R to Y.
Suppose fg = f and g9 = g and hg = h and dom fg9 = X and dom gg = X
and dom hg = X. Then h = f + g if and only if for every element x of X
holds (hg)z = (f9)z + (99)x-

(16) Let X be a non empty closed interval subset of R, Y be a real normed
space, f, h be points of the R-norm space of continuous functions of X
and Y, and fg, hg be continuous partial functions from R to Y. Suppose
fo = f and hg = h and dom fg = X and domhg = X. Then h = a - f if
and only if for every element x of X holds (hg), = a - (f9)z.

(17) Let X be a non empty closed interval subset of R, Y be a real normed
space, f be a point of the R-norm space of continuous functions of X and
Y, and g be a point of the real normed space of bounded functions from
X into Y. If f = g, then || f]| = ||g]|-

(18) Let X be a non empty closed interval subset of R, Y be a real normed
space, f, g be points of the R-norm space of continuous functions of X
and Y, and f1, g1 be points of the real normed space of bounded functions
from X into Y. If fi = f and g1 = ¢, then f+ 9= f1 + g1.

(19) Let X be a non empty closed interval subset of R, Y be a real normed
space, f be a point of the R-norm space of continuous functions of X and
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Y, and fi be a point of the real normed space of bounded functions from
XintoY.If fy = f,thena- f=a- f1.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. Observe that the R-norm space of continuous functions of X and Y is
reflexive, discernible, real normed space-like, vector distributive, scalar distri-
butive, scalar associative, scalar unital, Abelian, add-associative, right zeroed,
and right complementable.

One can prove the following propositions:

(20) Let X be a non empty closed interval subset of R, Y be a real normed
space, f, g, h be points of the R-norm space of continuous functions of
X and Y, and f9, g9, hg be continuous partial functions from R to Y.
Suppose fg = f and g9 = g and hg = h and dom fg = X and domgg = X
and dom hg = X. Then h = f — g if and only if for every element x of X
holds (h9)a: = (fQ)r - (99)1-

(21) Let X be a non empty closed interval subset of R, Y be a real normed
space, f, g be points of the R-norm space of continuous functions of X
and Y, and fi1, g1 be points of the real normed space of bounded functions
from X into Y. If f{ = f and g1 = g, then f —g= f1 — g1.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. Note that there exists a subset of the real normed space of bounded
functions from X into Y which is closed.

The following two propositions are true:

(22) Let X be a non empty closed interval subset of R and Y be a real normed
space. Then the continuous functions of X and Y is a closed subset of the
real normed space of bounded functions from X into Y.

(23) Let X be a non empty closed interval subset of R, Y be a real normed
space, and s1 be a sequence of the R-norm space of continuous functions
of X and Y. Suppose Y is complete and s; is Cauchy sequence by norm.
Then s; is convergent.

Let X be a non empty closed interval subset of R and let Y be a real Banach
space. One can check that the R-norm space of continuous functions of X and
Y is complete.

We now state four propositions:

(24) Let X be a non empty closed interval subset of R, Y be a real normed
space, v be a point of the R-norm space of continuous functions of X and
Y, and g be a partial function from R to Y. If g = v, then for every real
number ¢ such that ¢ € X holds ||g:|| < ||v]|.

(25) Let X be a non empty closed interval subset of R, Y be a real normed
space, K be a real number, v be a point of the R-norm space of continuous
functions of X and Y, and g be a partial function from R to Y. Suppose
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g = v and for every real number ¢ such that ¢ € X holds ||g;/| < K. Then
[of| < K.

(26) Let X be a non empty closed interval subset of R, Y be a real normed
space, v1, v be points of the R-norm space of continuous functions of X
and Y, and g1, go be partial functions from R to Y. Suppose g1 = v; and
g2 = v2. Let t be a real number. If t € X, then ||(g1): — (g2)¢]| < ||lv1 —v2]|.

(27) Let X be a non empty closed interval subset of R, Y be a real normed
space, K be a real number, v, vo be points of the R-norm space of conti-
nuous functions of X and Y, and g1, go be partial functions from R to Y.
Suppose g1 = v1 and g3 = vo and for every real number ¢ such that t € X
holds |[(g1): — (92)¢|| < K. Then ||v; — va]| < K.

3. DIFFERENTIAL EQUATIONS

The following propositions are true:

(28) Let n, ¢ be natural numbers, f be a partial function from R to R™, and
A be a subset of R. Then proj(i,n) - (f]A) = (proj(i,n) - f)[A.

(29) For every continuous partial function g from R to R™ such that dom g =
[a, b] holds g[|a, b] is bounded.

(30) For every continuous partial function g from R to R™ such that dom g =
[a, b] holds g is integrable on [a, b].

(31) Let f, F be partial functions from R to R". Suppose a < b and dom f =
[a,b] and dom F' = [a,b] and f is continuous and for every real number

¢
t such that t € [a,b] holds F(t) = /f(a;)dx Let = be a real number. If

x € [a,b], then F is continuous in z.

(32) For every continuous partial function f from R to (£, || - ||) such that
dom f = [a, b] holds f[[a, b] is bounded.

(33) For every continuous partial function f from R to (£",|| - ||) such that
dom f = [a, b] holds f is integrable on [a, b].

(34) Let f be a continuous partial function from R to (£",] - ||) and F be a
partial function from R to (£, || - ||). Suppose a < b and dom f = [a, D]
and dom F' = [a, b] and for every real number ¢ such that ¢ € [a,b] holds

t

F(t) = /f(m)dz Let x be areal number. If x € [a, b], then F' is continuous

in z.
(35) Let R be a partial function from R to R. Suppose R is total. Then R is
rest-like if and only if for every real number r such that » > 0 there exists
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a real number d such that d > 0 and for every real number z such that
z# 0 and |z| < d holds |2|71 - |R,| <.
In the sequel Z denotes an open subset of R, yo denotes a vector of (€™, |||,
and G denotes a function from (", || - ||) into (E™, || - ||)-

One can prove the following propositions:

(36) Let f be a continuous partial function from R to (£",] - ||) and g be a
partial function from R to (£, || - ||). Suppose a < b and dom f = [a, b]
and domg = [a,b] and Z = ]a,b[ and for every real number ¢ such that

t
t € [a,b] holds g(t) = yo + /f(a:)dx Then ¢ is continuous and g, = o

and g is differentiable on Z aand for every real number ¢ such that t € Z
holds ¢'(t) = f;.

(37) For every natural number ¢ and for all points y1, y2 of (€7, | - ||) holds
(proj(i,n))(y1 + y2) = (proj(i, n))(y1) + (proj(é, n))(y2)-

(38) For every natural number i and for every point y; of (£", ] - ||) and for
every real number 7 holds (proj(i,n))(r - y1) = r - (proj(i,n))(y1)-

(39) Let g be a partial function from R to (£, || - ||), xo be a real number,
and ¢ be a natural number. Suppose 1 < ¢ < n and g is differentiable
in xg. Then proj(i,n) - g is differentiable in 2y and (proj(,n))(¢'(x¢)) =
(proj(i, n) - g)' (o).

(40) Let f be a partial function from R to (£, ]| - ||) and X be a set. Suppose
that for every natural number ¢ such that 1 < ¢ < n holds (proj(i,n)- f)[X
is constant. Then f[X is constant.

(41) Let f be a partial function from R to (£",] - ||). Suppose ]a,b] C dom f
and f is differentiable on |a,b[ and for every real number x such that
x € Ja,b[ holds f'(x) = O(gn .|y- Then fl]a,b[ is constant.

(42) Let f be a continuous partial function from R to (", - ||). Suppose
a < b and [a,b] = dom f and f[]a, b is constant. Let = be a real number.
If x € [a,b], then f(x) = f(a).

(43) Let y, G1 be continuous partial functions from R to (€™, - ||) and g
be a partial function from R to (€",| - ||). Suppose that a < b and Z =
Ja,b[ and domy = [a,b] and domg = [a,b] and dom G; = [a,b] and y is
differentiable on Z and y, = yo and for every real number ¢ such that
t € Z holds y/(t) = (G1): and for every real number ¢ such that ¢ € [a, ]

t
holds ¢(t) = yo + /Gl(m)daz. Then y = g.

(44) Let a, b, ¢, d be real numbers and f be a partial function from R to (€™, ||-

||). Suppose that a < b and f is integrable on [a,b] and ||f|| is integrable
on [a,b] and f[[a,b] is bounded and [a,b] C dom f and ¢, d € [a,b]. Then
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|| £l is integrable on [min(c, d), max(c,d)] and || f||[[min(c, d), max(c,d)] is

d max(c,d)
bounded and || / Fla)da| < / 1f || () da.
c min(c,d)

(45) Let a, b, ¢, d, e be real numbers and f be a partial function from R to
(™|l - |I)- Suppose that a < b and ¢ < d and f is integrable on [a, b] and
| £l is integrable on [a, b] and f[[a, b] is bounded and [a, b] C dom f and ¢,
d € [a,b] and for every real number x such that x € [c, d] holds || fz]| < e.

d c
Then H/f(x)dm” <e-(d—c) and H/f(x)dxH <e-(d—c).
c d

(46) Let n be a natural number and g be a function from R into R. Suppose
that for every real number z holds g(z) = (z —a)"". Let x be a real
number. Then g is differentiable in z and ¢'(z) = (n+ 1) - (z — a)".

(47) Let n be a natural number and g be a function from R into R. Suppose

n+1
that for every real number x holds g(z) = % Let = be a real number.

(z=a)"
n!

(48) Let f, g be partial functions from R to R. Suppose that a < ¢ and
[a,t] € dom f and f is integrable on [a,t] and f[[a,t] is bounded and
[a,t] € domg and ¢ is integrable on [a,t] and gl[a,t] is bounded and
for every real number x such that x € [a,t] holds f(z) < g(x). Then

/tf(a:)d:z: < jg(a;)dac.

Then g is differentiable in z and ¢'(z) =

Let n be a non empty element of N, let yy be a vector of (£, ||-]]), let G be a
function from (€™, ||-]|) into (€™, ||-||), and let a, b be real numbers. Let us assume
that @ < b and G is continuous on dom G. The functor Fredholm(G,a,b,yo)
yielding a function from the R-norm space of continuous functions of [a, b] and
(E™, |l - ||) into the R-norm space of continuous functions of [a,b] and (£", ] - ||)
is defined by the condition (Def. 7).

(Def. 7) Let x be a vector of the R-norm space of continuous functions of [a, b]
and (E™,||-]|). Then there exist continuous partial functions f, g, G; from
R to (€™, - ||) such that z = f and (Fredholm(G,a,b,y))(x) = g and
dom f = [a,b] and dom g = [a,b] and G; = G- f and for every real number
t

t such that ¢ € [a, b] holds g(t) = yo + /Gl(x)dac.

We now state several propositions:

(49) Suppose a < b and 0 < r and for all vectors yi, y2 of (£™,|| - ||) holds
|Gy, — Gy, |l < 7+ ||y1 — y2|. Let u, v be vectors of the R-norm space of
continuous functions of [a, b] and (€™, || - [|) and g, h be continuous partial
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functions from R to (€™, || - ||). Suppose g = (Fredholm(G, a, b, y0))(u) and
h = (Fredholm(G, a, b,y0))(v). Let t be a real number. If ¢ € [a,b], then
lge = hell <7 - (¢ —a) - [lu—o].

(50) Suppose a < b and 0 < r and for all vectors y1, y2 of (€™, | - ||) holds
|Gy, — Gy, |l < 7 |lyr — y2||. Let u, v be vectors of the R-norm space
of continuous functions of [a,b] and (", - ||), m be an element of N,
and g, h be continuous partial functions from R to (™, || - ||). Suppose
g = (Fredholm(G, a, b, yo))™ ! (u) and h = (Fredholm(G, a, b, yo))™ ! (v).

Let t be a real number. If ¢ € [a, b], then || g; — he|| < % :

(51) Let m be a natural number. Suppose ¢ < b and 0 < 7 and for all
vectors y1, y2 of (€™, - ||) holds |Gy, — Gy, || <7 - ||ly1 — y2||. Let u, v be
vectors of the R-norm space of continuous functions of [a, b] and (", || -||).

Then ||(Fredholm(G, a,b,30))™ " (u) — (Fredholm(G, a, b, 30))™ 1 (v)|| <
(r:(b—a))™
(m+1)! '

(52) Suppose a < b and G is Lipschitzian on the carrier of (£",] - ||). Then
there exists a natural number m such that (Fredholm(G,a,b,yo))™ ! is
contraction.

(53) If a < b and G is Lipschitzian on the carrier of (€™, - ||), then
Fredholm(G, a, b, yp) has unique fixpoint.

[l = ]|

[ = ol].

(54) Let f, g be continuous partial functions from R to (€™, || - ||). Suppose
dom f = [a,b] and domg = [a,b] and Z = Ja,b] and a < b and G is
Lipschitzian on the carrier of (£",||-||) and g = (Fredholm(G, a, b, yo))(f).
Then g, = yg and g is differentiable on Z and for every real number ¢ such
that t € Z holds ¢/(t) = (G - f):.

(55) Let y be a continuous partial function from R to (£, ||-||). Suppose that
a < band Z = ]a,b[ and G is Lipschitzian on the carrier of (£",] - ||)
and domy = [a,b] and y is differentiable on Z and y, = yo and for every
real number ¢ such that ¢ € Z holds y/(t) = G(y;). Then y is a fixpoint of
Fredholm(G, a, b, yp).

(56) Let yi1, y2 be continuous partial functions from R to (€™, - ||). Suppose
that a < b and Z = Ja,b[ and G is Lipschitzian on the carrier of (€™, ]| - ||)
and domy; = [a,b] and y; is differentiable on Z and (y1), = yo and
for every real number ¢ such that ¢t € Z holds y1'(t) = G((y1)¢) and
domyy = [a, b] and ys is differentiable on Z and (y2), = yo and for every
real number ¢ such that ¢ € Z holds y2'(t) = G((y2)¢). Then y1 = yo.

(57) Suppose a < b and Z = |a,b[ and G is Lipschitzian on the carrier of
(E™ |l - II)- Then there exists a continuous partial function y from R to
(E™, |- Iy such that domy = [a, b] and vy is differentiable on Z and y, = yo
and for every real number ¢ such that ¢ € Z holds y/'(t) = G(y).
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