Free Term Algebras

Open access

Summary

We interoduce a new characterization of algebras of normal forms of term rewriting systems [35] as algerbras of term free in itself (any function from free generators into the algebra generates endomorphism of the algebra). Introduced algebras are free in classes of algebras satisfying some sets of equalities. Their universes are subsets of all terms and the denotations of operation symbols are partially identical with the operations of construction of terms. These algebras are compiler algebras requiring some equalities of terms, e.g., associativity of addition.

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.

[3] Grzegorz Bancerek. K¨onig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[5] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547-552, 1991.

[6] Grzegorz Bancerek. K¨onig’s lemma. Formalized Mathematics, 2(3):397-402, 1991.

[7] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. FormalizedMathematics, 3(2):195-204, 1992.

[8] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.

[9] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469-478, 1996.

[10] Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185-190, 1996.

[11] Grzegorz Bancerek. Terms over many sorted universal algebra. Formalized Mathematics, 5(2):191-198, 1996.

[12] Grzegorz Bancerek. Translations, endomorphisms, and stable equational theories. FormalizedMathematics, 5(4):553-564, 1996.

[13] Grzegorz Bancerek. Algebra of morphisms. Formalized Mathematics, 6(2):303-310, 1997.

[14] Grzegorz Bancerek. Institution of many sorted algebras. Part I: Signature reduct of an algebra. Formalized Mathematics, 6(2):279-287, 1997.

[15] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.[16] Grzegorz Bancerek and Artur Korniłowicz. Yet another construction of free algebra. Formalized Mathematics, 9(4):779-785, 2001.

[17] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91-101, 1993.

[18] Grzegorz Bancerek and Piotr Rudnicki. The set of primitive recursive functions. FormalizedMathematics, 9(4):705-720, 2001.

[19] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. FormalizedMathematics, 5(4):485-492, 1996.

[20] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. FormalizedMathematics, 5(1):47-54, 1996.

[21] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[22] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[23] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[24] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[25] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[26] Artur Korniłowicz. Some basic properties of many sorted sets. Formalized Mathematics, 5(3):395-399, 1996.

[27] Artur Korniłowicz. Equations in many sorted algebras. Formalized Mathematics, 6(3):363-369, 1997.

[28] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61-65, 1996.

[29] Małgorzata Korolkiewicz. Many sorted quotient algebra. Formalized Mathematics, 5(1):79-84, 1996.

[30] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.

[31] Adam Naumowicz. On Segre’s product of partial line spaces. Formalized Mathematics, 9(2):383-390, 2001.

[32] Andrzej Nedzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.

[33] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.

[34] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):67-74, 1996.

[35] D.M. Gabbay S. Abramsky and T.S.E. Maibaum, editors. Handbook of Logic inComputer Science, chapter Term Rewriting Systems, pages 1-116. Oxford University Press, New York, 1992. http://www.informatik.uni-bremen.de/agbkb/lehre/-rbs/texte/Klop-TR.pdf.

[36] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.

[37] Andrzej Trybulec. Many sorted sets. Formalized Mathematics, 4(1):15-22, 1993.

[38] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.

[39] Andrzej Trybulec. A scheme for extensions of homomorphisms of many sorted algebras. Formalized Mathematics, 5(2):205-209, 1996.

[40] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[41] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737, 1990.

[42] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[43] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. FormalizedMathematics, 1(1):85-89, 1990.

Formalized Mathematics

(a computer assisted approach)

Journal Information

SCImago Journal Rank (SJR) 2017: 0.119
Source Normalized Impact per Paper (SNIP) 2017: 0.237



Target Group

researchers in the fields of formal methods and computer-checked mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 98 98 4
PDF Downloads 24 24 0