The Friendship Theorem ${ }^{1}$

Karol Pąk
Institute of Informatics
University of Białystok
Poland

Summary. In this article we prove the friendship theorem according to the article [1], which states that if a group of people has the property that any pair of persons have exactly one common friend, then there is a universal friend, i.e. a person who is a friend of every other person in the group.

MML identifier: FRIENDS1, version: $\underline{7.15 .014 .184 .1155}$

The papers [3], [2], [6], [7], [11], [8], [9], [15], [14], [4], [13], [5], [17], [18], [12], [16], and [10] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: x, y, z are sets, i, k, n are natural numbers, R is a binary relation, P is a finite binary relation, and p, q are finite sequences.

Let us consider P, x. Observe that $P^{\circ} x$ is finite.
We now state several propositions:
(1) $\overline{\bar{R}}=\overline{\overline{R^{\smile}}}$.
(2) If R is symmetric, then $R^{\circ} x=R^{-1}(x)$.
(3) If $\left(p_{l k}\right)^{\wedge}(p \upharpoonright k)=\left(q_{l n}\right)^{\wedge}(q \upharpoonright n)$ and $k \leq n \leq \operatorname{len} p$, then $p=\left(q_{\left[n-^{\prime} k\right.}\right)^{\wedge}$ $\left(q \upharpoonright\left(n-^{\prime} k\right)\right)$.
(4) If $n \in \operatorname{dom} q$ and $p=\left(q_{\mid n}\right)^{\wedge}(q \upharpoonright n)$, then $q=\left(p_{\text {len } p-^{\prime} n}\right)^{\wedge}\left(p \upharpoonright\left(\operatorname{len} p-^{\prime} n\right)\right)$.

[^0](5) If $\left(p_{\mid k}\right)^{\wedge}(p \upharpoonright k)=\left(q_{\mid n}\right)^{\wedge}(q \upharpoonright n)$, then there exists i such that $p=\left(q_{\mid i}\right)^{\wedge}$ $(q \upharpoonright i)$.
The scheme $S c h$ deals with a non empty set \mathcal{A}, a non zero natural number \mathcal{B}, and a unary predicate \mathcal{P}, and states that: $\frac{\text { There exists a }}{\left\{F \in \mathcal{A}^{\mathcal{B}}: \mathcal{P}[F]\right\}}$ cardinal number C such that $\mathcal{B} \cdot C=$ provided the following requirements are met:

- For all finite sequences p, q of elements of \mathcal{A} such that $p^{\wedge} q$ is \mathcal{B}-element and $\mathcal{P}\left[p^{\wedge} q\right]$ holds $\mathcal{P}\left[q^{\wedge} p\right]$, and
- For every element p of $\mathcal{A}^{\mathcal{B}}$ such that $\mathcal{P}[p]$ and for every natural number i such that $i<\mathcal{B}$ and $p=\left(p_{\mid i}\right)^{\wedge}(p \upharpoonright i)$ holds $i=0$.
One can prove the following propositions:
(6) Let X be a non empty set, A be a non empty finite subset of X, and P be a function from X into 2^{X}. Suppose that for every x such that $x \in X$ holds $\overline{\overline{P(x)}}=n$. Then
$\overline{\left\{F \in X^{k+1}: F(1) \in A \wedge \wedge_{i}(i \in \operatorname{Seg} k \Rightarrow F(i+1) \in P(F(i)))\right\}}=\overline{\bar{A}}$. n^{k}.
(7) If len p is prime and there exists i such that $0<i<\operatorname{len} p$ and $p=$ $\left(p_{\llcorner i}\right)^{\wedge}(p \upharpoonright i)$, then $\operatorname{rng} p \subseteq\{p(1)\}$.

2. The Friendship Graph

Let us consider R and let x be an element of field R. We say that x is universal friend if and only if:
(Def. 1) For every y such that $y \in$ field $R \backslash\{x\}$ holds $\langle x, y\rangle \in R$.
Let R be a binary relation. We say that R has universal friend if and only if:
(Def. 2) There exists an element of field R which is universal friend.
Let R be a binary relation. We introduce R is without universal friend as an antonym of R has universal friend.

Let R be a binary relation. We say that R is friendship graph like if and only if:
(Def. 3) For all x, y such that $x, y \in$ field R and $x \neq y$ there exists z such that $R^{\circ} x \cap \operatorname{Coim}(R, y)=\{z\}$.
Let us observe that there exists a binary relation which is finite, symmetric, irreflexive, and friendship graph like.

A friendship graph is a finite symmetric irreflexive friendship graph like binary relation.

In the sequel F_{1} is a friendship graph.
The following propositions are true:
(8) $2 \mid \overline{\overline{F_{1}{ }^{\circ} x}}$.
(9) If $x, y \in$ field F_{1} and $\langle x, y\rangle \notin F_{1}$, then $\overline{\overline{F_{1}{ }^{\circ} x}}=\overline{\overline{F_{1}{ }^{\circ} y}}$.

(11) If F_{1} is without universal friend and $x, y \in$ field F_{1}, then $\overline{\overline{F_{1}{ }^{\circ}}}=\overline{\overline{F_{1}{ }^{\circ} y}}$.
(12) If F_{1} is without universal friend and $x \in$ field F_{1}, then $\overline{\overline{F_{1}}{ }^{\text {field }} \overline{F_{1}}}=1+$ $\overline{\overline{F_{1}{ }^{\circ} x}} \cdot\left(\overline{\overline{F_{1}{ }^{\circ} x}}-1\right)$.
(13) For all elements x, y of field F_{1} such that x is universal friend and $x \neq y$ there exists z such that $F_{1}{ }^{\circ} y=\{x, z\}$ and $F_{1}{ }^{\circ} z=\{x, y\}$.

3. The Friendship Theorem

Next we state the proposition
(14) If F_{1} is non empty, then F_{1} has universal friend.

References

[1] Michael Albert. Notes on the friendship theorem, http://www.math.auckland.ac.nz/~olympiad/training/2006/friendship.pdf.
[2] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
[3] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[7] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[13] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[14] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[15] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[18] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

[^0]: ${ }^{1}$ This work has been supported by the Polish Ministry of Science and Higher Education project "Managing a Large Repository of Computer-verified Mathematical Knowledge" (N N519 385136).

