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Summary. This article is the second in a series of two Mizar articles con-
stituting a formal proof of the Gödel Completeness theorem [15] for uncountably
large languages. We follow the proof given in [16]. The present article contains
the techniques required to expand a theory such that the expanded theory con-
tains witnesses and is negation faithful. Then the completeness theorem follows
immediately.
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1. Formula-Constant Extension

For simplicity, we use the following convention: A1 denotes an alphabet, P1

denotes a consistent subset of CQC-WFFA1, P2 denotes a subset of
CQC-WFFA1, p, q, r, s denote elements of CQC-WFFA1, A denotes a non
empty set, J denotes an interpretation of A1 and A, v denotes an element of the
valuations in A1 and A, n, k denote elements of N, x denotes a bound variable
of A1, and A2 denotes an A1-expanding alphabet.

Let us consider A1 and let P1 be a subset of CQC-WFFA1. We say that P1

is satisfiable if and only if:

(Def. 1) There exist A, J , v such that J |=v P1.

In the sequel J2 is an interpretation of A2 and A and J1 is an interpretation
of A1 and A.

One can prove the following proposition

(1) There exists a set s such that for all p, x holds 〈〈s, 〈〈x, p〉〉〉〉 /∈ SymbA1.

Let us consider A1. A set is called a free symbol of A1 if:

(Def. 2) For all p, x holds 〈〈it, 〈〈x, p〉〉〉〉 /∈ SymbA1.

Let us consider A1. The functor FCExA1 yielding an A1-expanding alphabet
is defined as follows:

(Def. 3) FCExA1 = N× (SymbA1 ∪ {〈〈 the free symbol of A1, 〈〈x, p〉〉〉〉}).
Let us consider A1, p, x. The example of p and x yielding a bound variable

of FCExA1 is defined as follows:

(Def. 4) The example of p and x = 〈〈4, 〈〈 the free symbol of A1, 〈〈x, p〉〉〉〉〉〉.
Let us consider A1, p, x. The example formula of p and x yielding an element

of CQC-WFF FCExA1 is defined by:

(Def. 5) The example formula of p and x = ¬∃FCExA1 -Castx(FCExA1 -Cast p) ∨
(FCExA1 -Cast p)(FCExA1 -Castx, the example of p and x).

Let us consider A1. The example formulae of A1 yields a subset of
CQC-WFF FCExA1 and is defined as follows:

(Def. 6) The example formulae of A1 = {the example formula of p and x}.
One can prove the following proposition

(2) Let k be an element of N. Suppose k > 0. Then there exists a k-element
finite sequence F such that

(i) for every natural number n such that n ≤ k and 1 ≤ n holds F (n) is
an alphabet,

(ii) F (1) = A1, and
(iii) for every natural number n such that n < k and 1 ≤ n there exists an

alphabet A2 such that F (n) = A2 and F (n+ 1) = FCExA2.
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Let us consider A1 and let k be a natural number. A k + 1-element finite
sequence is said to be a FCEx-sequence of A1 and k if it satisfies the conditions
(Def. 7).

(Def. 7)(i) For every natural number n such that n ≤ k + 1 and 1 ≤ n holds
it(n) is an alphabet,

(ii) it(1) = A1, and
(iii) for every natural number n such that n < k+ 1 and 1 ≤ n there exists

an alphabet A2 such that it(n) = A2 and it(n+ 1) = FCExA2.

The following propositions are true:

(3) For every natural number k and for every FCEx-sequence S of A1 and
k holds S(k + 1) is an alphabet.

(4) For every natural number k and for every FCEx-sequence S of A1 and
k holds S(k + 1) is an A1-expanding alphabet.

Let us consider A1 and let k be a natural number. The k-th FCEx of A1

yielding an A1-expanding alphabet is defined as follows:

(Def. 8) The k-th FCEx of A1 = the FCEx-sequence of A1 and k(k + 1).

Let us consider A1, P1. A function is called an EF-sequence of A1 and P1 if
it satisfies the conditions (Def. 9).

(Def. 9)(i) dom it = N,
(ii) it(0) = P1, and
(iii) for every natural number n holds it(n + 1) = it(n) ∪ the example

formulae of the n-th FCEx of A1.

Next we state two propositions:

(5) For every natural number k holds FCEx (the k-th FCEx of A1) = the
(k + 1)-th FCEx of A1.

(6) For all k, n such that n ≤ k holds the n-th FCEx of A1 ⊆ the k-th FCEx
of A1.

Let us consider A1, P1 and let k be a natural number. The k-th EF of A1

and P1 yields a subset of CQC-WFF (the k-th FCEx of A1) and is defined as
follows:

(Def. 10) The k-th EF of A1 and P1 = the EF-sequence of A1 and P1(k).

One can prove the following propositions:

(7) For all r, s, x holds A2 -Cast(r ∨ s) = A2 -Cast r ∨ A2 -Cast s and
A2 -Cast ∃xr = ∃A2 -Castx(A2 -Cast r).

(8) For all p, q, A, J , v holds J |=v p or J |=v q iff J |=v p ∨ q.
(9) P1 ∪ the example formulae of A1 is a consistent subset of

CQC-WFF FCExA1.
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2. The Completeness Theorem

We now state four propositions:

(10) There exists an A1-expanding alphabet A2 and there exists a consistent
subset P2 of CQC-WFFA2 such that P1 ⊆ P2 and P2 has examples.

(11) P1 ∪ {p} is consistent or P1 ∪ {¬p} is consistent.

(12) Let P2 be a consistent subset of CQC-WFFA1. Then there exists a
consistent subset T1 of CQC-WFFA1 such that T1 is negation faithful
and P2 ⊆ T1.

(13) For every consistent subset T1 of CQC-WFFA1 such that P1 ⊆ T1 and
P1 has examples holds T1 has examples.

Let us consider A1. One can check that every subset of CQC-WFFA1 which
is consistent is also satisfiable.

We now state the proposition

(14)2 If P2 |= p, then P2 ` p.
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