Introduction to Rational Functions

Christoph Schwarzweller
Institute of Computer Science
University of Gdańsk
Wita Stwosza 57, 80-952 Gdańsk, Poland

Abstract

Summary. In this article we formalize rational functions as pairs of polynomials and define some basic notions including the degree and evaluation of rational functions [8]. The main goal of the article is to provide properties of rational functions necessary to prove a theorem on the stability of networks.

MML identifier: RATFUNC1, version: $\underline{7.12 .024 .181 .1147}$

The notation and terminology used in this paper are introduced in the following articles: [14], [3], [4], [5], [18], [20], [16], [17], [1], [15], [2], [6], [12], [10], [11], [22], [19], [21], [9], [13], [23], and [7].

1. Preliminaries

One can prove the following three propositions:
(1) Let L be an add-associative right zeroed right complementable right distributive non empty double loop structure, a be an element of L, and p, q be finite sequences of elements of L. Suppose len $p=\operatorname{len} q$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} p$ holds $q_{i}=a \cdot p_{i}$. Then $\sum q=a \cdot \sum p$.
(2) Let L be an add-associative right zeroed right complementable right distributive non empty double loop structure, f be a finite sequence of elements of L, and i, j be elements of \mathbb{N}. If $i \in \operatorname{dom} f$ and $j=i-1$, then $\operatorname{Ins}\left(f_{\mid i}, j, f_{i}\right)=f$.
(3) Let L be an add-associative right zeroed right complementable associative unital right distributive commutative non empty double loop structure, f be a finite sequence of elements of L, and i be an element of \mathbb{N}. If $i \in \operatorname{dom} f$, then $\Pi f=f_{i} \cdot \Pi\left(f_{\mid i}\right)$.

Let L be an add-associative right zeroed right complementable well unital associative left distributive commutative almost left invertible integral domainlike non trivial double loop structure and let x, y be non zero elements of L. Note that $\frac{x}{y}$ is non zero.

Let us note that every add-associative right zeroed right complementable right distributive non empty double loop structure which is integral domain-like is also almost left cancelable and every add-associative right zeroed right complementable left distributive non empty double loop structure which is integral domain-like is also almost right cancelable.

Let x, y be integers. Note that $\max (x, y)$ is integer and $\min (x, y)$ is integer. One can prove the following proposition
(4) For all integers x, y, z holds $\max (x+y, x+z)=x+\max (y, z)$.

2. More on Polynomials

Let L be a non empty zero structure and let p be a polynomial of L. We say that p is zero if and only if:
(Def. 1) $p=\mathbf{0} . L$.
We say that p is constant if and only if:
(Def. 2) $\operatorname{deg} p \leq 0$.
Let L be a non trivial zero structure. One can verify that there exists a polynomial of L which is non zero.

Let L be a non empty zero structure. One can verify that $\mathbf{0} . L$ is zero and constant.

Let L be a non degenerated multiplicative loop with zero structure. Note that $1 . L$ is non zero.

Let L be a non empty multiplicative loop with zero structure. Note that 1. L is constant.

Let L be a non empty zero structure. One can verify that every polynomial of L which is zero is also constant. Note that every polynomial of L which is non constant is also non zero.

Let L be a non trivial zero structure. One can verify that there exists a polynomial of L which is non constant.

Let L be a well unital non degenerated non empty double loop structure, let z be an element of L, and let k be an element of \mathbb{N}. Observe that $\operatorname{rpoly}(k, z)$ is non zero.

Let L be an add-associative right zeroed right complementable distributive non degenerated double loop structure. One can check that Polynom-Ring L is non degenerated.

Let L be an integral domain-like add-associative right zeroed right complementable distributive non trivial double loop structure. Observe that Polynom-Ring L is integral domain-like.

Next we state two propositions:
(5) Let L be an add-associative right zeroed right complementable right distributive associative non empty double loop structure, p, q be polynomials of L, and a be an element of L. Then $(a \cdot p) * q=a \cdot(p * q)$.
(6) Let L be an add-associative right zeroed right complementable right distributive commutative associative non empty double loop structure, p, q be polynomials of L, and a be an element of L. Then $p *(a \cdot q)=a \cdot(p * q)$.

Let L be an add-associative right zeroed right complementable well unital commutative associative distributive almost left invertible non trivial double loop structure, let p be a non zero polynomial of L, and let a be a non zero element of L. Note that $a \cdot p$ is non zero.

Let L be an integral domain-like add-associative right zeroed right complementable distributive non trivial double loop structure and let p_{1}, p_{2} be non zero polynomials of L. Observe that $p_{1} * p_{2}$ is non zero.

One can prove the following proposition
(7) Let L be an add-associative right zeroed right complementable distributive Abelian integral domain-like non trivial double loop structure, p_{1}, p_{2} be polynomials of L, and p_{3} be a non zero polynomial of L. If $p_{1} * p_{3}=p_{2} * p_{3}$, then $p_{1}=p_{2}$.
Let L be a non trivial zero structure and let p be a non zero polynomial of L. One can check that degree (p) is natural.

Next we state several propositions:
(8) Let L be an add-associative right zeroed right complementable unital right distributive non empty double loop structure and p be a polynomial of L. If $\operatorname{deg} p=0$, then for every element x of L holds eval $(p, x) \neq 0_{L}$.
(9) Let L be an Abelian add-associative right zeroed right complementable well unital associative commutative distributive almost left invertible non degenerated double loop structure, p be a polynomial of L, and x be an element of L. Then $\operatorname{eval}(p, x)=0_{L}$ if and only if $\operatorname{rpoly}(1, x) \mid p$.
(10) Let L be an Abelian add-associative right zeroed right complementable well unital associative commutative distributive almost left invertible integral domain-like non degenerated double loop structure, p, q be polynomials of L, and x be an element of L. If $\operatorname{rpoly}(1, x) \mid p * q$, then $\operatorname{rpoly}(1, x) \mid p$ or $\operatorname{rpoly}(1, x) \mid q$.
(11) Let L be an Abelian add-associative right zeroed right complementable well unital associative commutative distributive almost left invertible non degenerated double loop structure and f be a finite sequence of elements
of Polynom-Ring L. Suppose that for every natural number i such that $i \in \operatorname{dom} f$ there exists an element z of L such that $f(i)=\operatorname{rpoly}(1, z)$. Let p be a polynomial of L. If $p=\Pi f$, then $p \neq 0 . L$.
(12) Let L be an Abelian add-associative right zeroed right complementable well unital associative commutative distributive almost left invertible integral domain-like non degenerated double loop structure and f be a finite sequence of elements of Polynom-Ring L. Suppose that for every natural number i such that $i \in \operatorname{dom} f$ there exists an element z of L such that $f(i)=\operatorname{rpoly}(1, z)$. Let p be a polynomial of L. Suppose $p=\Pi f$. Let x be an element of L. Then $\operatorname{eval}(p, x)=0_{L}$ if and only if there exists a natural number i such that $i \in \operatorname{dom} f$ and $f(i)=\operatorname{rpoly}(1, x)$.

3. Common Roots of Polynomials

Let L be a unital non empty double loop structure, let p_{1}, p_{2} be polynomials of L, and let x be an element of L. We say that x is a common root of p_{1} and p_{2} if and only if:
(Def. 3) $\quad x$ is a root of p_{1} and x is a root of p_{2}.
Let L be a unital non empty double loop structure and let p_{1}, p_{2} be polynomials of L. We say that p_{1} and p_{2} have a common root if and only if:
(Def. 4) There exists an element of L which is a common root of p_{1} and p_{2}.
Let L be a unital non empty double loop structure and let p_{1}, p_{2} be polynomials of L. We introduce p_{1} and p_{2} have common roots as a synonym of p_{1} and p_{2} have a common root. We introduce p_{1} and p_{2} have no common roots as an antonym of p_{1} and p_{2} have a common root.

Next we state several propositions:
(13) Let L be an Abelian add-associative right zeroed right complementable unital distributive non empty double loop structure, p be a polynomial of L, and x be an element of L. If x is a root of p, then x is a root of $-p$.
(14) Let L be an Abelian add-associative right zeroed right complementable unital left distributive non empty double loop structure, p_{1}, p_{2} be polynomials of L, and x be an element of L. If x is a common root of p_{1} and p_{2}, then x is a root of $p_{1}+p_{2}$.
(15) Let L be an Abelian add-associative right zeroed right complementable unital distributive non empty double loop structure, p_{1}, p_{2} be polynomials of L, and x be an element of L. If x is a common root of p_{1} and p_{2}, then x is a root of $-\left(p_{1}+p_{2}\right)$.
(16) Let L be an Abelian add-associative right zeroed right complementable unital distributive non empty double loop structure, p, q be polynomials
of L, and x be an element of L. If x is a common root of p and q, then x is a root of $p+q$.
(17) Let L be an Abelian add-associative right zeroed right complementable well unital associative commutative distributive almost left invertible non trivial double loop structure and p_{1}, p_{2} be polynomials of L. If $p_{1} \mid p_{2}$ and p_{1} has roots, then p_{1} and p_{2} have common roots.
Let L be a unital non empty double loop structure and let p, q be polynomials of L. The common roots of p and q yields a subset of L and is defined by:
(Def. 5) The common roots of p and $q=\{x \in L: x$ is a common root of p and $q\}$.

4. Normalized Polynomials

Let L be a non empty zero structure and let p be a polynomial of L. The leading coefficient of p yields an element of L and is defined by:
(Def. 6) The leading coefficient of $p=p\left(\operatorname{len} p-^{\prime} 1\right)$.
We introduce LC p as a synonym of the leading coefficient of p.
Let L be a non trivial double loop structure and let p be a non zero polynomial of L. One can check that $\mathrm{LC} p$ is non zero.

One can prove the following proposition
(18) Let L be an add-associative right zeroed right complementable well unital commutative associative distributive almost left invertible non empty double loop structure, p be a polynomial of L, and a be an element of L. Then $\mathrm{LC}(a \cdot p)=a \cdot \mathrm{LC} p$.
Let L be a non empty double loop structure and let p be a polynomial of L. We say that p is normalized if and only if:
(Def. 7) LC $p=1_{L}$.
Let L be an add-associative right zeroed right complementable well unital commutative associative distributive almost left invertible non trivial double loop structure and let p be a non zero polynomial of L. One can check that $\frac{1_{L}}{\mathrm{LC} p} \cdot p$ is normalized.

Let L be a field and let p be a non zero polynomial of L. One can verify that NormPolynomial p is normalized.

5. Rational Functions

Let L be a non trivial multiplicative loop with zero structure. Rational function of L is defined by:
(Def. 8) There exists a polynomial p_{1} of L and there exists a non zero polynomial p_{2} of L such that it $=\left\langle p_{1}, p_{2}\right\rangle$.

Let L be a non trivial multiplicative loop with zero structure, let p_{1} be a polynomial of L, and let p_{2} be a non zero polynomial of L. Then $\left\langle p_{1}, p_{2}\right\rangle$ is a rational function of L.

Let L be a non trivial multiplicative loop with zero structure and let z be a rational function of L. Then z_{1} is a polynomial of L. Then z_{2} is a non zero polynomial of L.

Let L be a non trivial multiplicative loop with zero structure and let z be a rational function of L. We say that z is zero if and only if:
(Def. 9) $z_{\mathbf{1}}=\mathbf{0} . L$.
Let L be a non trivial multiplicative loop with zero structure. One can check that there exists a rational function of L which is non zero.

Next we state the proposition
(19) Let L be a non trivial multiplicative loop with zero structure and z be a rational function of L. Then $z=\left\langle z_{1}, z_{2}\right\rangle$.
Let L be an add-associative right zeroed right complementable distributive unital non trivial double loop structure and let z be a rational function of L. We say that z is irreducible if and only if:
(Def. 10) z_{1} and z_{2} have no common roots.
Let L be an add-associative right zeroed right complementable distributive unital non trivial double loop structure and let z be a rational function of L. We introduce z is reducible as an antonym of z is irreducible.

Let L be an add-associative right zeroed right complementable distributive unital non trivial double loop structure and let z be a rational function of L. We say that z is normalized if and only if:
(Def. 11) z is irreducible and z_{2} is normalized.
Let L be an add-associative right zeroed right complementable distributive unital non trivial double loop structure. Observe that every rational function of L which is normalized is also irreducible.

Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and let z be a rational function of L. Note that $\mathrm{LC}\left(z_{\mathbf{2}}\right)$ is non zero.

Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and let z be a rational function of L. The norm rational function of z yields a rational function of L and is defined by:
(Def. 12) The norm rational function of $z=\left\langle\frac{1_{L}}{\operatorname{LC}\left(z_{2}\right)} \cdot z_{1}, \frac{1_{L}}{\operatorname{LC}\left(z_{2}\right)} \cdot z_{\mathbf{2}}\right\rangle$.
Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a rational function of L. We introduce NormRatF z as a synonym of the norm rational function of z.

Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and let z be a non zero rational function of L. Observe that the norm rational function of z is non zero.

Let L be a non degenerated multiplicative loop with zero structure. The functor $0 . L$ yields a rational function of L and is defined by:
(Def. 13) 0. $L=\langle\mathbf{0} . L, \mathbf{1} . L\rangle$.
The functor 1. L yields a rational function of L and is defined as follows:
(Def. 14) 1. $L=\langle\mathbf{1} . L, 1 . L\rangle$.
Let L be an add-associative right zeroed right complementable distributive associative well unital non degenerated double loop structure. One can check that $0 . L$ is normalized.

Let L be a non degenerated multiplicative loop with zero structure. Note that $1 . L$ is non zero.

Let L be an add-associative right zeroed right complementable distributive associative well unital non degenerated double loop structure. One can verify that $1 . L$ is irreducible.

Let L be an add-associative right zeroed right complementable distributive associative well unital non degenerated double loop structure. Observe that there exists a rational function of L which is irreducible and non zero.

Let L be an add-associative right zeroed right complementable distributive Abelian associative well unital non degenerated double loop structure and let x be an element of L. One can check that $\langle\operatorname{rpoly}(1, x), \operatorname{rpoly}(1, x)\rangle$ is reducible and non zero as a rational function of L.

Let L be an add-associative right zeroed right complementable distributive Abelian associative well unital non degenerated double loop structure. Observe that there exists a rational function of L which is reducible and non zero.

Let L be an add-associative right zeroed right complementable distributive associative well unital non degenerated double loop structure. One can verify that there exists a rational function of L which is normalized.

Let L be a non degenerated multiplicative loop with zero structure. One can verify that $0 . L$ is zero.

Let L be an add-associative right zeroed right complementable distributive associative well unital non degenerated double loop structure. One can check that $1 . L$ is normalized.

Let L be an integral domain-like add-associative right zeroed right complementable distributive non trivial double loop structure and let p, q be rational functions of L. The functor $p+q$ yields a rational function of L and is defined by:
(Def. 15) $p+q=\left\langle p_{1} * q_{2}+p_{2} * q_{1}, p_{2} * q_{2}\right\rangle$.
Let L be an integral domain-like add-associative right zeroed right complementable distributive non trivial double loop structure and let p, q be rational functions of L. The functor $p * q$ yielding a rational function of L is defined by:
(Def. 16) $\quad p * q=\left\langle p_{1} * q_{1}, p_{2} * q_{2}\right\rangle$.
One can prove the following proposition
(20) Let L be an add-associative right zeroed right complementable well unital commutative associative distributive almost left invertible non trivial double loop structure, p be a rational function of L, and a be a non zero element of L. Then $\left\langle a \cdot p_{1}, a \cdot p_{2}\right\rangle$ is irreducible if and only if p is irreducible.

6. Normalized Rational Functions

We now state the proposition
(21) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative integral domain-like non trivial double loop structure and z be a rational function of L. Then there exists a rational function z_{1} of L and there exists a non zero polynomial z_{2} of L such that
(i) $z=\left\langle z_{2} *\left(z_{1}\right)_{\mathbf{1}}, z_{2} *\left(z_{1}\right)_{\mathbf{2}}\right\rangle$,
(ii) z_{1} is irreducible, and
(iii) there exists a finite sequence f of elements of Polynom-Ring L such that $z_{2}=\Pi f$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} f$ there exists an element x of L such that x is a common root of z_{1} and z_{2} and $f(i)=\operatorname{rpoly}(1, x)$.
Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and let z be a rational function of L. The functor NF z yielding a rational function of L is defined by:
(Def. 17)(i) There exists a rational function z_{1} of L and there exists a non zero polynomial z_{2} of L such that $z=\left\langle z_{2} *\left(z_{1}\right)_{\mathbf{1}}, z_{2} *\left(z_{1}\right)_{\mathbf{2}}\right\rangle$ and z_{1} is irreducible and NF $z=$ the norm rational function of z_{1} and there exists a finite sequence f of elements of Polynom-Ring L such that $z_{2}=\Pi f$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} f$ there exists an element x of L such that x is a common root of $z_{\mathbf{1}}$ and $z_{\mathbf{2}}$ and $f(i)=\operatorname{rpoly}(1, x)$ if z is non zero,
(ii) $\mathrm{NF} z=0$. L, otherwise.

Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a rational function of L. Observe that NF z is normalized and irreducible.

Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and let z be a non zero rational function of L. One can verify that $\mathrm{NF} z$ is non zero.

One can prove the following propositions:
(22) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure, z be a non zero rational function of L, z_{1} be a rational function of L, and z_{2} be a non zero polynomial of L. Suppose that
(i) $z=\left\langle z_{2} *\left(z_{1}\right)_{\mathbf{1}}, z_{2} *\left(z_{1}\right)_{\mathbf{2}}\right\rangle$,
(ii) z_{1} is irreducible, and
(iii) there exists a finite sequence f of elements of Polynom-Ring L such that $z_{2}=\Pi f$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} f$ there exists an element x of L such that x is a common root of z_{1} and z_{2} and $f(i)=\operatorname{rpoly}(1, x)$.
Then NF $z=$ the norm rational function of z_{1}.
(23) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure. Then NF $0 . L=0 . L$.
(24) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure. Then NF $1 . L=1 . L$.
(25) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and z be an irreducible non zero rational function of L. Then $\mathrm{NF} z=$ the norm rational function of z.
(26) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure, z be a rational function of L, and x be an element of L. Then $\operatorname{NF}\left\langle\operatorname{rpoly}(1, x) * z_{1}\right.$, $\left.\operatorname{rpoly}(1, x) * z_{2}\right\rangle=\mathrm{NF} z$.
(27) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and z be a rational function of L. Then NF NF $z=$ NF z.
(28) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible in-
tegral domain-like non degenerated double loop structure and z be a non zero rational function of L. Then z is irreducible if and only if there exists an element a of L such that $a \neq 0_{L}$ and $\left\langle a \cdot z_{1}, a \cdot z_{2}\right\rangle=\mathrm{NF} z$.

7. Degree of Rational Functions

Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and let z be a rational function of L. The functor degree (z) yielding an integer is defined as follows:
(Def. 18) $\operatorname{degree}(z)=\max \left(\operatorname{degree}\left((\mathrm{NF} z)_{\mathbf{1}}\right)\right.$, $\left.\operatorname{degree}\left((\mathrm{NF} z)_{\mathbf{2}}\right)\right)$.
Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and let z be a rational function of L. We introduce $\operatorname{deg} z$ as a synonym of degree (z).

Next we state two propositions:
(29) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and z be a rational function of L. Then degree $(z) \leq \max \left(\right.$ degree $\left(z_{1}\right)$, degree $\left(z_{2}\right)$).
(30) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and z be a non zero rational function of L. Then z is irreducible if and only if $\operatorname{degree}(z)=\max \left(\operatorname{degree}\left(z_{1}\right)\right.$, degree $\left.\left(z_{2}\right)\right)$.

8. Evaluation of Rational Functions

Let L be a field, let z be a rational function of L, and let x be an element of L. The functor eval (z, x) yielding an element of L is defined by:
(Def. 19) $\operatorname{eval}(z, x)=\frac{\operatorname{eval}\left(z_{1}, x\right)}{\operatorname{eval}\left(z_{2}, x\right)}$.
The following propositions are true:
(31) For every field L and for every element x of L holds eval $(0 . L, x)=0_{L}$.
(32) For every field L and for every element x of L holds eval $(1 . L, x)=1_{L}$.
(33) Let L be a field, p, q be rational functions of L, and x be an element of L. If $\operatorname{eval}\left(p_{2}, x\right) \neq 0_{L}$ and $\operatorname{eval}\left(q_{\mathbf{2}}, x\right) \neq 0_{L}$, then $\operatorname{eval}(p+q, x)=\operatorname{eval}(p, x)+$ $\operatorname{eval}(q, x)$.
(34) Let L be a field, p, q be rational functions of L, and x be an element of L. If $\operatorname{eval}\left(p_{\mathbf{2}}, x\right) \neq 0_{L}$ and $\operatorname{eval}\left(q_{\mathbf{2}}, x\right) \neq 0_{L}$, then $\operatorname{eval}(p * q, x)=\operatorname{eval}(p, x)$. $\operatorname{eval}(q, x)$.
(35) Let L be a field, p be a rational function of L, and x be an element of L. If $\operatorname{eval}\left(p_{\mathbf{2}}, x\right) \neq 0_{L}$, then eval(the norm rational function of $\left.p, x\right)=\operatorname{eval}(p, x)$.
(36) Let L be a field, p be a rational function of L, and x be an element of L. If $\operatorname{eval}\left(p_{\mathbf{2}}, x\right) \neq 0_{L}$, then x is a common root of $p_{\mathbf{1}}$ and $p_{\mathbf{2}}$ or eval(NF $\left.p, x\right)=$ $\operatorname{eval}(p, x)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] H. Heuser. Lehrbuch der Analysis. B.G. Teubner Stuttgart, 1990.
[9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[10] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001.
[11] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461470, 2001.
[12] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.
[13] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[14] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
[15] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[16] Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Schur's theorem on the stability of networks. Formalized Mathematics, 14(4):135-142, 2006, doi:10.2478/v10037-006-0017-9.
[17] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[20] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[23] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Received February 8, 2012

