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Summary. In this article we formalize some number theoretical algori-
thms, Euclidean Algorithm and Extended Euclidean Algorithm [9]. Besides the
a gcd b, Extended Euclidean Algorithm can calculate a pair of two integers (x, y)
that holds ax + by = a gcd b. In addition, we formalize an algorithm that can
compute a solution of the Chinese remainder theorem by using Extended Eucli-
dean Algorithm. Our aim is to support the implementation of number theoretic
tools. Our formalization of those algorithms is based on the source code of the
NZMATH, a number theory oriented calculation system developed by Tokyo
Metropolitan University [8].
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The terminology and notation used in this paper have been introduced in the
following papers: [3], [4], [5], [12], [10], [11], [1], [2], [7], [13], and [6].

1. Euclidean Algorithm

One can prove the following proposition

(1) For all integers x, p holds x mod p mod p = x mod p.

Let a, b be elements of Z. The functor ALGOGCD(a, b) yielding an element
of N is defined by the condition (Def. 1).

(Def. 1) There exist sequences A, B of N such that
(i) A(0) = |a|,
(ii) B(0) = |b|,
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(iii) for every element i of N holds A(i+1) = B(i) and B(i+1) = A(i) mod
B(i), and

(iv) ALGOGCD(a, b) = A(min∗{i ∈ N: B(i) = 0}).
Next we state the proposition

(2) For all elements a, b of Z holds ALGOGCD(a, b) = a gcd b.

2. Extended Euclidean Algorithm

The schemeQuadChoiceRec deals with non empty setsA, B, C,D, an element
E of A, an element F of B, an element G of C, an element H of D, and a 9-ary
predicate P, and states that:

There exists a function f from N intoA and there exists a function
g from N into B and there exists a function h from N into C and
there exists a function i from N into D such that f(0) = E and
g(0) = F and h(0) = G and i(0) = H and for every element n of N
holds P[n, f(n), g(n), h(n), i(n), f(n+1), g(n+1), h(n+1), i(n+1)]

provided the parameters satisfy the following condition:
• Let n be an element of N, x be an element of A, y be an element

of B, z be an element of C, and w be an element of D. Then there
exists an element x1 of A and there exists an element y1 of B and
there exists an element z1 of C and there exists an element w1 of
D such that P[n, x, y, z, w, x1, y1, z1, w1].

Let x, y be elements of Z. The functor ALGOEXGCD(x, y) yielding an element
of Z× Z× Z is defined by the condition (Def. 2).

(Def. 2) There exist sequences g, w, q, t of Z and there exist sequences a, b, v, u
of Z and there exists an element i1 of N such that
a(0) = 1 and b(0) = 0 and g(0) = x and q(0) = 0 and u(0) = 0 and
v(0) = 1 and w(0) = y and t(0) = 0 and for every element i of N holds
q(i+1) = g(i) divw(i) and t(i+1) = g(i) mod w(i) and a(i+1) = u(i) and
b(i+ 1) = v(i) and g(i+ 1) = w(i) and u(i+ 1) = a(i)− q(i+ 1) · u(i) and
v(i+ 1) = b(i)− q(i+ 1) ·v(i) and w(i+ 1) = t(i+ 1) and i1 = min∗{i ∈ N:
w(i) = 0} and if 0 ≤ g(i1), then ALGOEXGCD(x, y) = 〈〈a(i1), b(i1), g(i1)〉〉
and if g(i1) < 0, then ALGOEXGCD(x, y) = 〈〈−a(i1), −b(i1), −g(i1)〉〉.

One can prove the following propositions:

(3) For all integers i3, i2 such that i3 ≤ 0 holds i2 mod i3 ≤ 0.

(4) For all integers i3, i2 such that i3 < 0 holds −(i2 mod i3) < −i3.
(5) For all elements x, y of Z such that |y| 6= 0 holds |x mod y| < |y|.
(6) For all elements x, y of Z holds (ALGOEXGCD(x, y))3,3 = x gcd y and

(ALGOEXGCD(x, y))1,3 · x+ (ALGOEXGCD(x, y))2,3 · y = x gcd y.
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Let x, p be elements of Z. The functor ALGOINVERSE(x, p) yielding an ele-
ment of Z is defined by the condition (Def. 3).

(Def. 3) Let y be an element of Z such that y = x mod p. Then
(i) if (ALGOEXGCD(p, y))3,3 = 1, then if (ALGOEXGCD(p, y))2,3 < 0, then

there exists an element z of Z such that z = (ALGOEXGCD(p, y))2,3 and
ALGOINVERSE(x, p) = p + z and if 0 ≤ (ALGOEXGCD(p, y))2,3, then
ALGOINVERSE(x, p) = (ALGOEXGCD(p, y))2,3, and

(ii) if (ALGOEXGCD(p, y))3,3 6= 1, then ALGOINVERSE(x, p) = ∅.
Next we state the proposition

(7) For all elements x, p, y of Z such that y = x mod p and
(ALGOEXGCD(p, y))3,3 = 1 holds ALGOINVERSE(x, p)·xmod p = 1 mod p.

3. CRT Algorithm

Let n1 be a non empty finite sequence of elements of Z × Z. The functor
ALGOCRT n1 yielding an element of Z is defined by the conditions (Def. 4).

(Def. 4)(i) If lenn1 = 1, then ALGOCRT n1 = n1(1)1, and
(ii) if lenn1 6= 1, then there exist finite sequences m, n, p1, p2 of elements

of Z and there exist elements M0, M of Z such that lenm = lenn1 and
lenn = lenn1 and len p1 = lenn1− 1 and len p2 = lenn1− 1 and m(1) = 1
and for every natural number i such that 1 ≤ i ≤ lenm − 1 there exist
elements d, x, y of Z such that x = n1(i)2 and m(i + 1) = m(i) · x
and y = m(i + 1) and d = n1(i+ 1)2 and p2(i) = ALGOINVERSE(y, d)
and p1(i) = y and M0 = n1(lenm)2 and M = p1(lenm − 1) · M0 and
n(1) = n1(1)1 and for every natural number i such that 1 ≤ i ≤ lenm− 1
there exist elements u, u0, u1 of Z such that u0 = n1(i+ 1)1 and u1 =
n1(i+ 1)2 and u = (u0−n(i)) ·p2(i) mod u1 and n(i+ 1) = n(i) +u ·p1(i)
and ALGOCRT n1 = n(lenm) mod M.

One can prove the following propositions:

(8) For all elements a, b of Z such that b 6= 0 holds a mod b ≡ a (mod b).

(9) For all elements a, b of Z such that b 6= 0 holds a mod b gcd b = a gcd b.

(10) Let a, b, c be elements of Z. Suppose c 6= 0 and a = b mod c and b and
c are relative prime. Then a and c are relative prime.

(11) Let n1 be a non empty finite sequence of elements of Z× Z and a, b be
finite sequences of elements of Z. Suppose that

(i) len a = len b,
(ii) len a = lenn1,

(iii) for every natural number i such that i ∈ Seg lenn1 holds b(i) 6= 0,
(iv) for every natural number i such that i ∈ Seg lenn1 holds n1(i)1 = a(i)

and n1(i)2 = b(i), and
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(v) for all natural numbers i, j such that i, j ∈ Seg lenn1 and i 6= j holds
b(i) and b(j) are relative prime.
Let i be a natural number. If i ∈ Seg lenn1, then ALGOCRT n1 mod b(i) =
a(i) mod b(i).

(12) Let x, y be elements of Z and b, m be non empty finite sequences of
elements of Z. Suppose that

(i) 2 ≤ len b,
(ii) for all natural numbers i, j such that i, j ∈ Seg len b and i 6= j holds

b(i) and b(j) are relative prime,
(iii) for every natural number i such that i ∈ Seg len b holds x mod b(i) =

y mod b(i), and
(iv) m(1) = 1.

Let k be an element of N. Suppose 1 ≤ k ≤ len b and for every natural
number i such that 1 ≤ i ≤ k holds m(i + 1) = m(i) · b(i). Then x mod
m(k + 1) = y mod m(k + 1).

(13) For every finite sequence b of elements of Z such that len b = 1 holds∏
b = b(1).

(14) Let b be a finite sequence of elements of Z. Then there exists a non
empty finite sequence m of elements of Z such that lenm = len b+ 1 and
m(1) = 1 and for every natural number i such that 1 ≤ i ≤ len b holds
m(i+ 1) = m(i) · b(i) and

∏
b = m(len b+ 1).

(15) Let n1 be a non empty finite sequence of elements of Z × Z, a, b be
non empty finite sequences of elements of Z, and x, y be elements of
Z. Suppose that len a = len b and len a = lenn1 and for every natural
number i such that i ∈ Seg lenn1 holds b(i) 6= 0 and for every natural
number i such that i ∈ Seg lenn1 holds n1(i)1 = a(i) and n1(i)2 = b(i)
and for all natural numbers i, j such that i, j ∈ Seg lenn1 and i 6= j

holds b(i) and b(j) are relative prime and for every natural number i such
that i ∈ Seg lenn1 holds x mod b(i) = a(i) mod b(i) and y =

∏
b. Then

ALGOCRT n1 mod y = x mod y.
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