Formalization of the Data Encryption Standard ${ }^{1}$

Hiroyuki Okazaki
Shinshu University
Nagano, Japan
Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article we formalize DES (the Data Encryption Standard), that was the most widely used symmetric cryptosystem in the world. DES is a block cipher which was selected by the National Bureau of Standards as an official Federal Information Processing Standard for the United States in 1976 [15].

MML identifier: DESCIP_1, version: 7.12.02 4.181.1147

The papers [14], [5], [12], [1], [16], [4], [6], [18], [11], [7], [8], [17], [20], [2], [3], [9], [21], [22], [13], [19], and [10] provide the terminology and notation for this paper.

1. Preliminaries

Let n be a natural number and let f be an n-element finite sequence. Note that $\operatorname{Rev}(f)$ is n-element.

Let D be a non empty set, let n be a natural number, and let f be an element of D^{n}. Then $\operatorname{Rev}(f)$ is an element of D^{n}.

Let n be a natural number and let f be a finite sequence. We introduce Op-Left (f, n) as a synonym of $f\lceil n$. We introduce $\operatorname{Op-Right}(f, n)$ as a synonym of $f_{\downharpoonright n}$.

Let D be a non empty set, let n be a natural number, and let f be a finite sequence of elements of D. Then $\operatorname{Op-Left}(f, n)$ is a finite sequence of elements of D. Then $\operatorname{Op-Right}(f, n)$ is a finite sequence of elements of D.

[^0](C) 2012 University of Białystok

Let D be a non empty set, let n be a natural number, and let s be an element of $D^{2 \cdot n}$. We introduce SP-Left s as a synonym of Op-Left (s, n). We introduce SP-Right s as a synonym of Op-Right (s, n).

Let D be a non empty set, let n be a natural number, and let s be an element of $D^{2 \cdot n}$. Then SP-Left s is an element of D^{n}.

One can prove the following propositions:
(1) For all non empty elements m, n of \mathbb{N} and for every element s of D^{n} such that $m \leq n$ holds Op-Left (s, m) is an element of D^{m}.
(2) Let m, n, l be non empty elements of \mathbb{N} and s be an element of D^{n}. If $m \leq n$ and $l=n-m$, then $\operatorname{Op}-\operatorname{Right}(s, m)$ is an element of D^{l}.
Let D be a non empty set, let n be a non empty element of \mathbb{N}, and let s be an element of $D^{2 \cdot n}$. Then SP-Right s is an element of D^{n}.

Next we state the proposition
(3) For every non empty element n of \mathbb{N} and for every element s of $D^{2 \cdot n}$ holds (SP-Left s) ${ }^{\wedge}$ SP-Right $s=s$.
Let s be a finite sequence. The functor Op-LeftShift s yielding a finite sequence is defined by:
(Def. 1) Op-LeftShift $s=\left(s_{\mid 1}\right)^{\wedge}\langle s(1)\rangle$.
Next we state three propositions:
(4) For every finite sequence s such that $1 \leq \operatorname{len} s$ holds len Op-LeftShift $s=$ len s.
(5) If $1 \leq \operatorname{len} s$, then Op-LeftShift s is a finite sequence of elements of D and len Op-LeftShift $s=\operatorname{len} s$.
(6) For every non empty element n of \mathbb{N} and for every element s of D^{n} holds Op-LeftShift s is an element of D^{n}.
Let s be a finite sequence. The functor Op-RightShift s yields a finite sequence and is defined by:
(Def. 2) Op-RightShift $s=(\langle s(\operatorname{len} s)\rangle \wedge s) \upharpoonright$ len s.
One can prove the following three propositions:
(7) For every finite sequence s holds len Op-RightShift $s=$ len s.
(8) If $1 \leq \operatorname{len} s$, then Op-RightShift s is a finite sequence of elements of D and len Op-RightShift $s=\operatorname{len} s$.
(9) For every non empty element n of \mathbb{N} and for every element s of D^{n} holds Op-RightShift s is an element of D^{n}.
Let D be a non empty set, let s be a finite sequence of elements of D, and let n be an integer. Let us assume that $1 \leq \operatorname{len} s$. The functor $\operatorname{Op-Shift}(s, n)$ yields a finite sequence of elements of D and is defined by:
(Def. 3) len Op-Shift $(s, n)=\operatorname{len} s$ and for every natural number i such that $i \in$ Seg len s holds $(\operatorname{Op-Shift}(s, n))(i)=s((((i-1)+n) \bmod \operatorname{len} s)+1)$.

The following propositions are true:
(10) For all integers n, m such that $1 \leq \operatorname{len} s$ holds Op-Shift $(\operatorname{Op-Shift}(s, n), m)=$ Op-Shift $(s, n+m)$.
(11) If $1 \leq \operatorname{len} s$, then $\operatorname{Op-Shift}(s, 0)=s$.
(12) If $1 \leq \operatorname{len} s$, then $\operatorname{Op-Shift}(s, \operatorname{len} s)=s$.
(13) If $1 \leq \operatorname{len} s$, then $\operatorname{Op-Shift}(s,-\operatorname{len} s)=s$.
(14) Let n be a non empty element of \mathbb{N}, m be an integer, and s be an element of D^{n}. Then Op-Shift (s, m) is an element of D^{n}.
(15) If $1 \leq \operatorname{len} s$, then $\operatorname{Op-Shift~}(s,-1)=O p-\operatorname{RightShift} s$.
(16) If $1 \leq \operatorname{len} s$, then $\operatorname{Op-Shift}(s, 1)=\operatorname{Op-LeftShift~} s$.

Let x, y be elements of Boolean ${ }^{28}$. Then $x^{\wedge} y$ is an element of Boolean ${ }^{56}$.
Let n be a non empty element of \mathbb{N}, let s be an element of Boolean ${ }^{n}$, and let i be a natural number. Then $s(i)$ is an element of Boolean.

Let n be a non empty element of \mathbb{N}, let s be an element of \mathbb{N}^{n}, and let i be a natural number. Then $s(i)$ is an element of \mathbb{N}.

Let n be a natural number. Observe that every element of Boolean ${ }^{n}$ is boolean-valued.

Let n be an element of \mathbb{N} and let s, t be elements of Boolean ${ }^{n}$. We introduce $\operatorname{Op-XOR}(s, t)$ as a synonym of $s \oplus t$.

Let n be a non empty element of \mathbb{N} and let s, t be elements of Boolean ${ }^{n}$. Then $\operatorname{Op-XOR}(s, t)$ is an element of Boolean ${ }^{n}$ and it can be characterized by the condition:
(Def.4) For every natural number i such that $i \in \operatorname{Seg} n$ holds $(\operatorname{Op-XOR}(s, t))(i)=s(i) \oplus t(i)$.
Let us notice that the functor $\operatorname{Op}-\operatorname{XOR}(s, t)$ is commutative.
Let n, k be non empty elements of \mathbb{N}, let R_{1} be an element of $\left(\text { Boolean }^{n}\right)^{k}$, and let i be an element of $\operatorname{Seg} k$. Then $R_{1}(i)$ is an element of Boolean ${ }^{n}$.

We now state the proposition
(17) For every non empty element n of \mathbb{N} and for all elements s, t of Boolean ${ }^{n}$ holds $\operatorname{Op-XOR}(\operatorname{Op-XOR}(s, t), t)=s$.
Let m be a non empty element of \mathbb{N}, let D be a non empty set, let L be a sequence of D^{m}, and let i be a natural number. Then $L(i)$ is an element of D^{m}.

Let f be a function from 64 into 16 and let i be a set. Then $f(i)$ is an element of 16 .

Next we state the proposition
(18) For all natural numbers n, m such that $n+m \leq \operatorname{len} s$ holds $\left(s\lceil n)^{\wedge}\right.$ $\left(s_{\lfloor n}\lceil m)=s \upharpoonright(n+m)\right.$.
The scheme QuadChoiceRec deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$, an element \mathcal{E} of \mathcal{A}, an element \mathcal{F} of \mathcal{B}, an element \mathcal{G} of \mathcal{C}, an element \mathcal{H} of \mathcal{D}, and a 9 -ary predicate \mathcal{P}, and states that:

There exists a function f from \mathbb{N} into \mathcal{A} and there exists a function g from \mathbb{N} into \mathcal{B} and there exists a function h from \mathbb{N} into \mathcal{C} and there exists a function i from \mathbb{N} into \mathcal{D} such that $f(0)=\mathcal{E}$ and $g(0)=\mathcal{F}$ and $h(0)=\mathcal{G}$ and $i(0)=\mathcal{H}$ and for every element n of \mathbb{N} holds $\mathcal{P}[n, f(n), g(n), h(n), i(n), f(n+1), g(n+1), h(n+1), i(n+1)]$
provided the following condition is satisfied:

- Let n be an element of \mathbb{N}, x be an element of \mathcal{A}, y be an element of \mathcal{B}, z be an element of \mathcal{C}, and w be an element of \mathcal{D}. Then there exists an element x_{1} of \mathcal{A} and there exists an element y_{1} of \mathcal{B} and there exists an element z_{1} of \mathcal{C} and there exists an element w_{1} of \mathcal{D} such that $\mathcal{P}\left[n, x, y, z, w, x_{1}, y_{1}, z_{1}, w_{1}\right]$.
Next we state a number of propositions:
(19) Let x be a set. Suppose $x \in \operatorname{Seg} 16$. Then $x=1$ or $x=2$ or $x=3$ or $x=4$ or $x=5$ or $x=6$ or $x=7$ or $x=8$ or $x=9$ or $x=10$ or $x=11$ or $x=12$ or $x=13$ or $x=14$ or $x=15$ or $x=16$.
(20) Let x be a set. Suppose $x \in \operatorname{Seg} 32$. Then $x=1$ or $x=2$ or $x=3$ or $x=4$ or $x=5$ or $x=6$ or $x=7$ or $x=8$ or $x=9$ or $x=10$ or $x=11$ or $x=12$ or $x=13$ or $x=14$ or $x=15$ or $x=16$ or $x=17$ or $x=18$ or $x=19$ or $x=20$ or $x=21$ or $x=22$ or $x=23$ or $x=24$ or $x=25$ or $x=26$ or $x=27$ or $x=28$ or $x=29$ or $x=30$ or $x=31$ or $x=32$.
(21) Let x be a set. Suppose $x \in \operatorname{Seg} 48$. Then $x=1$ or $x=2$ or $x=3$ or $x=4$ or $x=5$ or $x=6$ or $x=7$ or $x=8$ or $x=9$ or $x=10$ or $x=11$ or $x=12$ or $x=13$ or $x=14$ or $x=15$ or $x=16$ or $x=17$ or $x=18$ or $x=19$ or $x=20$ or $x=21$ or $x=22$ or $x=23$ or $x=24$ or $x=25$ or $x=26$ or $x=27$ or $x=28$ or $x=29$ or $x=30$ or $x=31$ or $x=32$ or $x=33$ or $x=34$ or $x=35$ or $x=36$ or $x=37$ or $x=38$ or $x=39$ or $x=40$ or $x=41$ or $x=42$ or $x=43$ or $x=44$ or $x=45$ or $x=46$ or $x=47$ or $x=48$.
(22) Let x be a set. Suppose $x \in \operatorname{Seg} 56$. Then $x=1$ or $x=2$ or $x=3$ or $x=4$ or $x=5$ or $x=6$ or $x=7$ or $x=8$ or $x=9$ or $x=10$ or $x=11$ or $x=12$ or $x=13$ or $x=14$ or $x=15$ or $x=16$ or $x=17$ or $x=18$ or $x=19$ or $x=20$ or $x=21$ or $x=22$ or $x=23$ or $x=24$ or $x=25$ or $x=26$ or $x=27$ or $x=28$ or $x=29$ or $x=30$ or $x=31$ or $x=32$ or $x=33$ or $x=34$ or $x=35$ or $x=36$ or $x=37$ or $x=38$ or $x=39$ or $x=40$ or $x=41$ or $x=42$ or $x=43$ or $x=44$ or $x=45$ or $x=46$ or $x=47$ or $x=48$ or $x=49$ or $x=50$ or $x=51$ or $x=52$ or $x=53$ or $x=54$ or $x=55$ or $x=56$.
(23) Let x be a set. Suppose $x \in \operatorname{Seg} 64$. Then $x=1$ or $x=2$ or $x=3$ or $x=4$ or $x=5$ or $x=6$ or $x=7$ or $x=8$ or $x=9$ or $x=10$ or $x=11$ or $x=12$ or $x=13$ or $x=14$ or $x=15$ or $x=16$ or $x=17$ or $x=18$ or $x=19$ or $x=20$ or $x=21$ or $x=22$ or $x=23$ or $x=24$ or $x=25$ or
$x=26$ or $x=27$ or $x=28$ or $x=29$ or $x=30$ or $x=31$ or $x=32$ or
$x=33$ or $x=34$ or $x=35$ or $x=36$ or $x=37$ or $x=38$ or $x=39$ or
$x=40$ or $x=41$ or $x=42$ or $x=43$ or $x=44$ or $x=45$ or $x=46$ or
$x=47$ or $x=48$ or $x=49$ or $x=50$ or $x=51$ or $x=52$ or $x=53$ or
$x=54$ or $x=55$ or $x=56$ or $x=57$ or $x=58$ or $x=59$ or $x=60$ or $x=61$ or $x=62$ or $x=63$ or $x=64$.
(24) For every non empty natural number n holds $n=\{0\} \cup(\operatorname{Seg} n \backslash\{n\})$.
(25) For every non empty natural number n and for every set x such that $x \in n$ holds $x=0$ or $x \in \operatorname{Seg} n$ and $x \neq n$.
(26) Let x be a set. Suppose $x \in 16$. Then $x=0$ or $x=1$ or $x=2$ or $x=3$ or $x=4$ or $x=5$ or $x=6$ or $x=7$ or $x=8$ or $x=9$ or $x=10$ or $x=11$ or $x=12$ or $x=13$ or $x=14$ or $x=15$.
(27) Let x be a set. Suppose $x \in 64$. Then $x=0$ or $x=1$ or $x=2$ or $x=3$ or $x=4$ or $x=5$ or $x=6$ or $x=7$ or $x=8$ or $x=9$ or $x=10$ or $x=11$ or $x=12$ or $x=13$ or $x=14$ or $x=15$ or $x=16$ or $x=17$ or $x=18$ or $x=19$ or $x=20$ or $x=21$ or $x=22$ or $x=23$ or $x=24$ or $x=25$ or $x=26$ or $x=27$ or $x=28$ or $x=29$ or $x=30$ or $x=31$ or $x=32$ or $x=33$ or $x=34$ or $x=35$ or $x=36$ or $x=37$ or $x=38$ or $x=39$ or $x=40$ or $x=41$ or $x=42$ or $x=43$ or $x=44$ or $x=45$ or $x=46$ or $x=47$ or $x=48$ or $x=49$ or $x=50$ or $x=51$ or $x=52$ or $x=53$ or $x=54$ or $x=55$ or $x=56$ or $x=57$ or $x=58$ or $x=59$ or $x=60$ or $x=61$ or $x=62$ or $x=63$.
(28) Let S be a non empty set and $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}$ be elements of S. Then there exists a finite sequence s of elements of S such that s is 8 -element and $s(1)=x_{1}$ and $s(2)=x_{2}$ and $s(3)=x_{3}$ and $s(4)=x_{4}$ and $s(5)=x_{5}$ and $s(6)=x_{6}$ and $s(7)=x_{7}$ and $s(8)=x_{8}$.
(29) Let S be a non empty set and $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}$, $x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ be elements of S. Then there exists a finite sequence s of elements of S such that
s is 16 -element and $s(1)=x_{1}$ and $s(2)=x_{2}$ and $s(3)=x_{3}$ and $s(4)=x_{4}$ and $s(5)=x_{5}$ and $s(6)=x_{6}$ and $s(7)=x_{7}$ and $s(8)=x_{8}$ and $s(9)=x_{9}$ and $s(10)=x_{10}$ and $s(11)=x_{11}$ and $s(12)=x_{12}$ and $s(13)=x_{13}$ and $s(14)=x_{14}$ and $s(15)=x_{15}$ and $s(16)=x_{16}$.
(30) Let S be a non empty set and $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}$, $x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}, x_{19}, x_{20}, x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}, x_{27}$, $x_{28}, x_{29}, x_{30}, x_{31}, x_{32}$ be elements of S. Then there exists a finite sequence s of elements of S such that
s is 32-element and $s(1)=x_{1}$ and $s(2)=x_{2}$ and $s(3)=x_{3}$ and $s(4)=x_{4}$ and $s(5)=x_{5}$ and $s(6)=x_{6}$ and $s(7)=x_{7}$ and $s(8)=x_{8}$ and $s(9)=x_{9}$ and $s(10)=x_{10}$ and $s(11)=x_{11}$ and $s(12)=x_{12}$ and $s(13)=x_{13}$ and $s(14)=x_{14}$ and $s(15)=x_{15}$ and $s(16)=x_{16}$ and $s(17)=x_{17}$
and $s(18)=x_{18}$ and $s(19)=x_{19}$ and $s(20)=x_{20}$ and $s(21)=x_{21}$ and $s(22)=x_{22}$ and $s(23)=x_{23}$ and $s(24)=x_{24}$ and $s(25)=x_{25}$ and $s(26)=x_{26}$ and $s(27)=x_{27}$ and $s(28)=x_{28}$ and $s(29)=x_{29}$ and $s(30)=x_{30}$ and $s(31)=x_{31}$ and $s(32)=x_{32}$.
(31) Let S be a non empty set and $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}$, $x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}, x_{19}, x_{20}, x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}, x_{27}$, $x_{28}, x_{29}, x_{30}, x_{31}, x_{32}, x_{33}, x_{34}, x_{35}, x_{36}, x_{37}, x_{38}, x_{39}, x_{40}, x_{41}, x_{42}, x_{43}$, $x_{44}, x_{45}, x_{46}, x_{47}, x_{48}$ be elements of S. Then there exists a finite sequence s of elements of S such that
s is 48-element and $s(1)=x_{1}$ and $s(2)=x_{2}$ and $s(3)=x_{3}$ and $s(4)=x_{4}$ and $s(5)=x_{5}$ and $s(6)=x_{6}$ and $s(7)=x_{7}$ and $s(8)=x_{8}$ and $s(9)=x_{9}$ and $s(10)=x_{10}$ and $s(11)=x_{11}$ and $s(12)=x_{12}$ and $s(13)=x_{13}$ and $s(14)=x_{14}$ and $s(15)=x_{15}$ and $s(16)=x_{16}$ and $s(17)=x_{17}$ and $s(18)=x_{18}$ and $s(19)=x_{19}$ and $s(20)=x_{20}$ and $s(21)=x_{21}$ and $s(22)=x_{22}$ and $s(23)=x_{23}$ and $s(24)=x_{24}$ and $s(25)=x_{25}$ and $s(26)=x_{26}$ and $s(27)=x_{27}$ and $s(28)=x_{28}$ and $s(29)=x_{29}$ and $s(30)=x_{30}$ and $s(31)=x_{31}$ and $s(32)=x_{32}$ and $s(33)=x_{33}$ and $s(34)=x_{34}$ and $s(35)=x_{35}$ and $s(36)=x_{36}$ and $s(37)=x_{37}$ and $s(38)=x_{38}$ and $s(39)=x_{39}$ and $s(40)=x_{40}$ and $s(41)=x_{41}$ and $s(42)=x_{42}$ and $s(43)=x_{43}$ and $s(44)=x_{44}$ and $s(45)=x_{45}$ and $s(46)=x_{46}$ and $s(47)=x_{47}$ and $s(48)=x_{48}$.
(32) Let S be a non empty set and $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}$, $x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}, x_{19}, x_{20}, x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}, x_{27}$, $x_{28}, x_{29}, x_{30}, x_{31}, x_{32}, x_{33}, x_{34}, x_{35}, x_{36}, x_{37}, x_{38}, x_{39}, x_{40}, x_{41}, x_{42}, x_{43}$, $x_{44}, x_{45}, x_{46}, x_{47}, x_{48}, x_{49}, x_{50}, x_{51}, x_{52}, x_{53}, x_{54}, x_{55}, x_{56}$ be elements of S. Then there exists a finite sequence s of elements of S such that s is 56-element and $s(1)=x_{1}$ and $s(2)=x_{2}$ and $s(3)=x_{3}$ and $s(4)=x_{4}$ and $s(5)=x_{5}$ and $s(6)=x_{6}$ and $s(7)=x_{7}$ and $s(8)=x_{8}$ and $s(9)=x_{9}$ and $s(10)=x_{10}$ and $s(11)=x_{11}$ and $s(12)=x_{12}$ and $s(13)=x_{13}$ and $s(14)=x_{14}$ and $s(15)=x_{15}$ and $s(16)=x_{16}$ and $s(17)=x_{17}$ and $s(18)=x_{18}$ and $s(19)=x_{19}$ and $s(20)=x_{20}$ and $s(21)=x_{21}$ and $s(22)=x_{22}$ and $s(23)=x_{23}$ and $s(24)=x_{24}$ and $s(25)=x_{25}$ and $s(26)=x_{26}$ and $s(27)=x_{27}$ and $s(28)=x_{28}$ and $s(29)=x_{29}$ and $s(30)=x_{30}$ and $s(31)=x_{31}$ and $s(32)=x_{32}$ and $s(33)=x_{33}$ and $s(34)=x_{34}$ and $s(35)=x_{35}$ and $s(36)=x_{36}$ and $s(37)=x_{37}$ and $s(38)=x_{38}$ and $s(39)=x_{39}$ and $s(40)=x_{40}$ and $s(41)=x_{41}$ and $s(42)=x_{42}$ and $s(43)=x_{43}$ and $s(44)=x_{44}$ and $s(45)=x_{45}$ and $s(46)=x_{46}$ and $s(47)=x_{47}$ and $s(48)=x_{48}$ and $s(49)=x_{49}$ and $s(50)=x_{50}$ and $s(51)=x_{51}$ and $s(52)=x_{52}$ and $s(53)=x_{53}$ and $s(54)=x_{54}$ and $s(55)=x_{55}$ and $s(56)=x_{56}$.
(33) Let S be a non empty set and $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}$,
$x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}, x_{19}, x_{20}, x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}, x_{27}$, $x_{28}, x_{29}, x_{30}, x_{31}, x_{32}, x_{33}, x_{34}, x_{35}, x_{36}, x_{37}, x_{38}, x_{39}, x_{40}, x_{41}, x_{42}, x_{43}$, $x_{44}, x_{45}, x_{46}, x_{47}, x_{48}, x_{49}, x_{50}, x_{51}, x_{52}, x_{53}, x_{54}, x_{55}, x_{56}, x_{57}, x_{58}, x_{59}$, $x_{60}, x_{61}, x_{62}, x_{63}, x_{64}$ be elements of S. Then there exists a finite sequence s of elements of S such that
s is 64-element and $s(1)=x_{1}$ and $s(2)=x_{2}$ and $s(3)=x_{3}$ and $s(4)=x_{4}$ and $s(5)=x_{5}$ and $s(6)=x_{6}$ and $s(7)=x_{7}$ and $s(8)=x_{8}$ and $s(9)=x_{9}$ and $s(10)=x_{10}$ and $s(11)=x_{11}$ and $s(12)=x_{12}$ and $s(13)=x_{13}$ and $s(14)=x_{14}$ and $s(15)=x_{15}$ and $s(16)=x_{16}$ and $s(17)=x_{17}$ and $s(18)=x_{18}$ and $s(19)=x_{19}$ and $s(20)=x_{20}$ and $s(21)=x_{21}$ and $s(22)=x_{22}$ and $s(23)=x_{23}$ and $s(24)=x_{24}$ and $s(25)=x_{25}$ and $s(26)=x_{26}$ and $s(27)=x_{27}$ and $s(28)=x_{28}$ and $s(29)=x_{29}$ and $s(30)=x_{30}$ and $s(31)=x_{31}$ and $s(32)=x_{32}$ and $s(33)=x_{33}$ and $s(34)=x_{34}$ and $s(35)=x_{35}$ and $s(36)=x_{36}$ and $s(37)=x_{37}$ and $s(38)=x_{38}$ and $s(39)=x_{39}$ and $s(40)=x_{40}$ and $s(41)=x_{41}$ and $s(42)=x_{42}$ and $s(43)=x_{43}$ and $s(44)=x_{44}$ and $s(45)=x_{45}$ and $s(46)=x_{46}$ and $s(47)=x_{47}$ and $s(48)=x_{48}$ and $s(49)=x_{49}$ and $s(50)=x_{50}$ and $s(51)=x_{51}$ and $s(52)=x_{52}$ and $s(53)=x_{53}$ and $s(54)=x_{54}$ and $s(55)=x_{55}$ and $s(56)=x_{56}$ and $s(57)=x_{57}$ and $s(58)=x_{58}$ and $s(59)=x_{59}$ and $s(60)=x_{60}$ and $s(61)=x_{61}$ and $s(62)=x_{62}$ and $s(63)=x_{63}$ and $s(64)=x_{64}$.
Let n be a non empty natural number and let i be an element of n. We introduce ntoSeg i as a synonym of succ i.

Let n be a non empty natural number and let i be an element of n. Then ntoSeg i is an element of $\operatorname{Seg} n$.

Let n be a non empty natural number and let f be a function from n into Seg n. We say that f is NtoSeg if and only if:

(Def. 5) For every element i of n holds $f(i)=$ ntoSeg i.

Let n be a non empty natural number. One can check that there exists a function from n into $\operatorname{Seg} n$ which is NtoSeg.

Let n be a non empty natural number. Observe that every function from n into $\operatorname{Seg} n$ is bijective and NtoSeg.

We now state two propositions:
(34) Let n be a non empty natural number, f be an NtoSeg function from n into $\operatorname{Seg} n$, and i be a natural number. If $i<n$, then $f(i)=i+1$ and $i \in \operatorname{dom} f$.
(35) Let S be a non empty set and $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}$, $x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}, x_{19}, x_{20}, x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}, x_{27}$, $x_{28}, x_{29}, x_{30}, x_{31}, x_{32}, x_{33}, x_{34}, x_{35}, x_{36}, x_{37}, x_{38}, x_{39}, x_{40}, x_{41}, x_{42}, x_{43}$, $x_{44}, x_{45}, x_{46}, x_{47}, x_{48}, x_{49}, x_{50}, x_{51}, x_{52}, x_{53}, x_{54}, x_{55}, x_{56}, x_{57}, x_{58}, x_{59}$, $x_{60}, x_{61}, x_{62}, x_{63}, x_{64}$ be elements of S. Then there exists a function f
from 64 into S such that
$f(0)=x_{1}$ and $f(1)=x_{2}$ and $f(2)=x_{3}$ and $f(3)=x_{4}$ and $f(4)=x_{5}$ and $f(5)=x_{6}$ and $f(6)=x_{7}$ and $f(7)=x_{8}$ and $f(8)=x_{9}$ and $f(9)=x_{10}$ and $f(10)=x_{11}$ and $f(11)=x_{12}$ and $f(12)=x_{13}$ and $f(13)=x_{14}$ and $f(14)=x_{15}$ and $f(15)=x_{16}$ and $f(16)=x_{17}$ and $f(17)=x_{18}$ and $f(18)=x_{19}$ and $f(19)=x_{20}$ and $f(20)=x_{21}$ and $f(21)=x_{22}$ and $f(22)=x_{23}$ and $f(23)=x_{24}$ and $f(24)=x_{25}$ and $f(25)=x_{26}$ and $f(26)=x_{27}$ and $f(27)=x_{28}$ and $f(28)=x_{29}$ and $f(29)=x_{30}$ and $f(30)=x_{31}$ and $f(31)=x_{32}$ and $f(32)=x_{33}$ and $f(33)=x_{34}$ and $f(34)=x_{35}$ and $f(35)=x_{36}$ and $f(36)=x_{37}$ and $f(37)=x_{38}$ and $f(38)=x_{39}$ and $f(39)=x_{40}$ and $f(40)=x_{41}$ and $f(41)=x_{42}$ and $f(42)=x_{43}$ and $f(43)=x_{44}$ and $f(44)=x_{45}$ and $f(45)=x_{46}$ and $f(46)=x_{47}$ and $f(47)=x_{48}$ and $f(48)=x_{49}$ and $f(49)=x_{50}$ and $f(50)=x_{51}$ and $f(51)=x_{52}$ and $f(52)=x_{53}$ and $f(53)=x_{54}$ and $f(54)=x_{55}$ and $f(55)=x_{56}$ and $f(56)=x_{57}$ and $f(57)=x_{58}$ and $f(58)=x_{59}$ and $f(59)=x_{60}$ and $f(60)=x_{61}$ and $f(61)=x_{62}$ and $f(62)=x_{63}$ and $f(63)=x_{64}$.

2. S-Boxes

The function DES-SBOX1 from 64 into 16 is defined by the conditions (Def. 6).
(Def. 6) $\quad($ DES-SBOX1 $)(0)=14$ and $($ DES-SBOX1 $)(1)=4$ and $($ DES-SBOX1 $)(2)=$ 13 and (DES-SBOX1)(3) = 1 and (DES-SBOX1)(4) $=2$ and $($ DES-SBOX1 $)(5)=15$ and $($ DES-SBOX1)(6) $=11$ and $($ DES-SBOX1 $)(7)=8$ and $($ DES-SBOX1 $)(8)=3$ and $($ DES-SBOX1 $)(9)=$ 10 and (DES-SBOX1)(10) $=6$ and (DES-SBOX1)(11) $=12$ and $(D E S-S B O X 1)(12)=5$ and (DES-SBOX1)(13) $=9$ and $(\operatorname{DES}-S B O X 1)(14)=0$ and $($ DES-SBOX1 $)(15)=7$ and $($ DES-SBOX1 $)(16)=$ 0 and (DES-SBOX1)(17) = 15 and (DES-SBOX1)(18) $=7$ and $($ DES-SBOX1)(19) $=4$ and $(D E S-S B O X 1)(20)=14$ and $($ DES-SBOX1 $)(21)=2$ and $($ DES-SBOX1 $)(22)=13$ and $($ DES-SBOX1 $)(23)=$ 1 and (DES-SBOX1)(24) $=10$ and (DES-SBOX1)(25) $=6$ and (DES-SBOX1)(26) $=12$ and (DES-SBOX1)(27) $=11$ and $($ DES-SBOX1)(28) $=9$ and (DES-SBOX1)(29) $=5$ and $($ DES-SBOX1 $)(30)=3$ and $($ DES-SBOX1 $)(31)=8$ and $($ DES-SBOX1 $)(32)=$ 4 and $(\mathrm{DES}-\mathrm{SBOX} 1)(33)=1$ and (DES-SBOX1)(34) $=14$ and $($ DES-SBOX1 $)(35)=8$ and (DES-SBOX1)(36) $=13$ and $($ DES-SBOX1 $)(37)=6$ and $($ DES-SBOX1 $)(38)=2$ and $($ DES-SBOX1 $)(39)=$ 11 and (DES-SBOX1)(40) $=15$ and (DES-SBOX1)(41) $=12$ and $(D E S-S B O X 1)(42)=9$ and (DES-SBOX1)(43) $=7$ and
$($ DES-SBOX1 $)(44)=3$ and $($ DES-SBOX1 $)(45)=10$ and $($ DES-SBOX1 $)(46)=$ 5 and (DES-SBOX1)(47) $=0$ and (DES-SBOX1)(48) $=15$ and (DES-SBOX1)(49) $=12$ and (DES-SBOX1)(50) $=8$ and $($ DES-SBOX1 $)(51)=2$ and $($ DES-SBOX1 $)(52)=4$ and $(D E S-S B O X 1)(53)=$ 9 and (DES-SBOX1)(54) $=1$ and (DES-SBOX1)(55) $=7$ and $($ DES-SBOX1)(56) $=5$ and (DES-SBOX1)(57) $=11$ and $($ DES-SBOX 1$)(58)=3$ and $($ DES-SBOX1 $)(59)=14$ and $($ DES-SBOX1 $)(60)=$ 10 and (DES-SBOX1)(61) $=0$ and (DES-SBOX1)(62) $=6$ and $($ DES-SBOX1 $)(63)=13$.

The function DES-SBOX2 from 64 into 16 is defined by the conditions (Def. 7).
(Def. 7$) \quad($ DES-SBOX2 $)(0)=15$ and $($ DES-SBOX2 $)(1)=1$ and $($ DES-SBOX2 $)(2)=$ 8 and $(\mathrm{DES}-\mathrm{SBOX} 2)(3)=14$ and $(\mathrm{DES}-\mathrm{SBOX} 2)(4)=6$ and $(D E S-S B O X 2)(5)=11$ and (DES-SBOX2)(6) $=3$ and $($ DES-SBOX2 $)(7)=4$ and $($ DES-SBOX2 $)(8)=9$ and $($ DES-SBOX2 $)(9)=$ 7 and (DES-SBOX2)(10) $=2$ and (DES-SBOX2)(11) $=13$ and $($ DES-SBOX2)(12) $=12$ and (DES-SBOX2)(13) $=0$ and $($ DES-SBOX2 $)(14)=5$ and $($ DES-SBOX2 $)(15)=10$ and $($ DES-SBOX2 $)(16)=$ 3 and (DES-SBOX2)(17) $=13$ and (DES-SBOX2)(18) $=4$ and $($ DES-SBOX2 $)(19)=7$ and $(D E S-S B O X 2)(20)=15$ and $($ DES-SBOX2 $)(21)=2$ and $($ DES-SBOX2 $)(22)=8$ and $($ DES-SBOX2 $)(23)=$ 14 and (DES-SBOX2)(24) $=12$ and (DES-SBOX2)(25) $=0$ and $($ DES-SBOX2)(26) $=1$ and (DES-SBOX2)(27) $=10$ and $($ DES-SBOX2 $)(28)=6$ and $($ DES-SBOX2 $)(29)=9$ and $($ DES-SBOX2 $)(30)=$ 11 and (DES-SBOX2)(31) $=5$ and (DES-SBOX2)(32) $=0$ and $(D E S-S B O X 2)(33)=14$ and (DES-SBOX2)(34) $=7$ and $($ DES-SBOX2) $(35)=11$ and (DES-SBOX2)(36) $=10$ and $($ DES-SBOX 2$)(37)=4$ and $($ DES-SBOX2 $)(38)=13$ and $($ DES-SBOX2 $)(39)=$ 1 and (DES-SBOX2)(40) $=5$ and (DES-SBOX2)(41) $=8$ and (DES-SBOX2)(42) $=12$ and (DES-SBOX2)(43) $=6$ and $($ DES-SBOX2 $)(44)=9$ and $($ DES-SBOX2 $)(45)=3$ and $($ DES-SBOX2 $)(46)=$ 2 and (DES-SBOX2)(47) $=15$ and (DES-SBOX2)(48) $=13$ and $($ DES-SBOX2 $)(49)=8$ and (DES-SBOX2)(50) $=10$ and $($ DES-SBOX2 $)(51)=1$ and $($ DES-SBOX2 $)(52)=3$ and $($ DES-SBOX2 $)(53)=$ 15 and (DES-SBOX2)(54) $=4$ and (DES-SBOX2)(55) $=2$ and $($ DES-SBOX2)(56) $=11$ and (DES-SBOX2)(57) $=6$ and $($ DES-SBOX2 $)(58)=7$ and $($ DES-SBOX2 $)(59)=12$ and $($ DES-SBOX2 $)(60)=$ 0 and $($ DES-SBOX2)(61) $=5$ and (DES-SBOX2)(62) $=14$ and $($ DES-SBOX2 $)(63)=9$.

The function DES-SBOX3 from 64 into 16 is defined by the conditions (Def. 8).
(Def. 8) $\quad($ DES-SBOX 3$)(0)=10$ and $($ DES-SBOX 3$)(1)=0$ and $($ DES-SBOX 3$)(2)=$ 9 and $(\mathrm{DES}-\mathrm{SBOX} 3)(3)=14$ and $(\mathrm{DES}-\mathrm{SBOX} 3)(4)=6$ and $(\mathrm{DES}-\mathrm{SBOX} 3)(5)=3$ and $(\mathrm{DES}-\mathrm{SBOX} 3)(6)=15$ and $(\mathrm{DES}-\mathrm{SBOX} 3)(7)=5$ and $(\mathrm{DES}-\mathrm{SBOX} 3)(8)=1$ and $(\mathrm{DES}-\mathrm{SBOX} 3)(9)=$ 13 and $(\mathrm{DES}-\mathrm{SBOX} 3)(10)=12$ and $(\mathrm{DES}-\mathrm{SBOX} 3)(11)=7$ and $($ DES-SBOX3)(12) $=11$ and (DES-SBOX3)(13) $=4$ and $($ DES-SBOX3 $)(14)=2$ and $($ DES-SBOX3 $)(15)=8$ and $($ DES-SBOX3 $)(16)=$ 13 and $($ DES-SBOX3 $)(17)=7$ and $($ DES-SBOX3 $)(18)=0$ and $($ DES-SBOX3 $)(19)=9$ and (DES-SBOX3)(20) $=3$ and $($ DES-SBOX3 $)(21)=4$ and $($ DES-SBOX3 $)(22)=6$ and $($ DES-SBOX3 $)(23)=$ 10 and (DES-SBOX3)(24) $=2$ and (DES-SBOX3)(25) $=8$ and $($ DES-SBOX3 $)(26)=5$ and (DES-SBOX3)(27) $=14$ and $(\mathrm{DES}-\mathrm{SBOX} 3)(28)=12$ and (DES-SBOX3)(29) $=11$ and $($ DES-SBOX 3$)(30)=15$ and $($ DES-SBOX3 $)(31)=1$ and $($ DES-SBOX3 $)(32)=$ 13 and (DES-SBOX3)(33) $=6$ and (DES-SBOX3)(34) $=4$ and $($ DES-SBOX3 $)(35)=9$ and $($ DES-SBOX3 $)(36)=8$ and $($ DES-SBOX3 $)(37)=15$ and $($ DES-SBOX 3$)(38)=3$ and $($ DES-SBOX 3$)(39)=$ 0 and (DES-SBOX3)(40) = 11 and (DES-SBOX3)(41) $=1$ and $($ DES-SBOX3 $)(42)=2$ and $($ DES-SBOX3 $)(43)=12$ and $($ DES-SBOX 3$)(44)=5$ and $($ DES-SBOX 3$)(45)=10$ and $($ DES-SBOX 3$)(46)=$ 14 and (DES-SBOX3)(47) = 7 and (DES-SBOX3)(48) $=1$ and $(\mathrm{DES}-\mathrm{SBOX} 3)(49)=10$ and (DES-SBOX3)(50) $=13$ and (DES-SBOX3)(51) $=0$ and (DES-SBOX3)(52) $=6$ and $($ DES-SBOX3 $)(53)=9$ and $($ DES-SBOX3 $)(54)=8$ and $($ DES-SBOX 3$)(55)=$ 7 and $(\mathrm{DES}-\mathrm{SBOX} 3)(56)=4$ and (DES-SBOX3)(57) $=15$ and (DES-SBOX3)(58) = 14 and (DES-SBOX3)(59) $=3$ and $($ DES-SBOX 3$)(60)=11$ and $($ DES-SBOX3 $)(61)=5$ and $($ DES-SBOX3 $)(62)=$ 2 and $($ DES-SBOX3 $)(63)=12$.

The function DES-SBOX4 from 64 into 16 is defined by the conditions (Def. 9).
(Def. 9) $\quad($ DES-SBOX4 $)(0)=7$ and $($ DES-SBOX4 $)(1)=13$ and $($ DES-SBOX4 $)(2)=$ 14 and (DES-SBOX4)(3) $=3$ and (DES-SBOX4)(4) $=0$ and $($ DES-SBOX4 $)(5)=6$ and $($ DES-SBOX4 $)(6)=9$ and $($ DES-SBOX4 $)(7)=$ 10 and $(\mathrm{DES}-\mathrm{SBOX} 4)(8)=1$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(9)=2$ and $($ DES-SBOX4 $)(10)=8$ and $($ DES-SBOX4 $)(11)=5$ and $($ DES-SBOX4 $)(12)=11$ and (DES-SBOX4)(13) $=12$ and $($ DES-SBOX4 $)(14)=4$ and $($ DES-SBOX4 $)(15)=15$ and $($ DES-SBOX 4$)(16)=$ 13 and $(\mathrm{DES}-\mathrm{SBOX} 4)(17)=8$ and $(\mathrm{DES}-\operatorname{SBOX} 4)(18)=11$ and $($ DES-SBOX4 $)(19)=5$ and (DES-SBOX4)(20) $=6$ and $($ DES-SBOX4 $)(21)=15$ and $($ DES-SBOX 4$)(22)=0$ and $($ DES-SBOX4 $)(23)=$ 3 and (DES-SBOX4)(24) $=4$ and (DES-SBOX4)(25) $=7$
and $(\mathrm{DES}-\mathrm{SBOX} 4)(26)=2$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(27)=12$ and $(\operatorname{DES}-\mathrm{SBOX} 4)(28)=1$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(29)=10$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(30)=$ 14 and $(\mathrm{DES}-\mathrm{SBOX} 4)(31)=9$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(32)=10$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(33)=6$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(34)=9$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(35)=0$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(36)=12$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(37)=$ 11 and $(\mathrm{DES}-\mathrm{SBOX} 4)(38)=7$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(39)=13$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(40)=15$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(41)=1$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(42)=3$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(43)=14$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(44)=$ 5 and $(\mathrm{DES}-\mathrm{SBOX} 4)(45)=2$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(46)=8$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(47)=4$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(48)=3$ and $(\operatorname{DES}-\mathrm{SBOX} 4)(49)=15$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(50)=0$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(51)=$ 6 and $(\mathrm{DES}-\mathrm{SBOX} 4)(52)=10$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(53)=1$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(54)=13$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(55)=8$ and $($ DES-SBOX 4$)(56)=9$ and $($ DES-SBOX4 $)(57)=4$ and $($ DES-SBOX4 $)(58)=$ 5 and $(\mathrm{DES}-\mathrm{SBOX} 4)(59)=11$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(60)=12$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(61)=7$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(62)=2$ and $(\mathrm{DES}-\mathrm{SBOX} 4)(63)=14$.

The function DES-SBOX5 from 64 into 16 is defined by the conditions (Def. 10).
$($ Def. 10) $($ DES-SBOX5 $)(0)=2$ and $($ DES-SBOX5 $)(1)=12$ and $($ DES-SBOX5 $)(2)=$ 4 and $(\mathrm{DES}-\mathrm{SBOX} 5)(3)=1$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(4)=7$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(5)=10$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(6)=11$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(7)=$ 6 and $(\mathrm{DES}-\mathrm{SBOX} 5)(8)=8$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(9)=5$ and $($ DES-SBOX5 $)(10)=3$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(11)=15$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(12)=$ 13 and $(\mathrm{DES}-\mathrm{SBOX} 5)(13)=0$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(14)=14$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(15)=9$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(16)=14$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(17)=11$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(18)=2$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(19)=$ 12 and $(\mathrm{DES}-\mathrm{SBOX} 5)(20)=4$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(21)=7$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(22)=13$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(23)=1$ and $($ DES-SBOX5 $)(24)=5$ and $($ DES-SBOX5 $)(25)=0$ and $($ DES-SBOX5 $)(26)=$ 15 and $(\mathrm{DES}-\mathrm{SBOX} 5)(27)=10$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(28)=3$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(29)=9$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(30)=8$ and $($ DES-SBOX5 $)(31)=6$ and $($ DES-SBOX5 $)(32)=4$ and $($ DES-SBOX5 $)(33)=$ 2 and $(\mathrm{DES}-\mathrm{SBOX} 5)(34)=1$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(35)=11$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(36)=10$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(37)=13$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(38)=7$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(39)=8$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(40)=15$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(41)=9$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(42)=$ 12 and $(\mathrm{DES}-\mathrm{SBOX} 5)(43)=5$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(44)=6$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(45)=3$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(46)=0$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(47)=14$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(48)=11$ and $(\operatorname{DES}-S B O X 5)(49)=8$ and $($ DES-SBOX5 $)(50)=12$ and $(\operatorname{DES}-S B O X 5)(51)=$

7 and (DES-SBOX5)(52) $=1$ and (DES-SBOX5)(53) $=14$ and $($ DES-SBOX5 $)(54)=2$ and (DES-SBOX5)(55) $=13$ and $($ DES-SBOX5 $)(56)=6$ and $($ DES-SBOX5 $)(57)=15$ and $($ DES-SBOX5 $)(58)=$ 0 and (DES-SBOX5)(59) $=9$ and (DES-SBOX5)(60) $=10$ and (DES-SBOX5)(61) $=4$ and (DES-SBOX5)(62) $=5$ and $(\mathrm{DES}-\mathrm{SBOX} 5)(63)=3$.
The function DES-SBOX6 from 64 into 16 is defined by the conditions (Def. 11).
(Def. 11) $($ DES-SBOX6 $)(0)=12$ and $($ DES-SBOX 6$)(1)=1$ and $($ DES-SBOX 6$)(2)=$ 10 and (DES-SBOX6)(3) $=15$ and (DES-SBOX6)(4) $=9$ and (DES-SBOX6)(5) $=2$ and (DES-SBOX6)(6) $=6$ and $($ DES-SBOX6 $)(7)=8$ and $($ DES-SBOX6 $)(8)=0$ and $($ DES-SBOX6 $)(9)=$ 13 and (DES-SBOX6)(10) $=3$ and (DES-SBOX6)(11) $=4$ and $($ DES-SBOX6)(12) $=14$ and (DES-SBOX6)(13) $=7$ and $($ DES-SBOX 6$)(14)=5$ and $($ DES-SBOX6 $)(15)=11$ and $($ DES-SBOX6 $)(16)=$ 10 and (DES-SBOX6)(17) $=15$ and (DES-SBOX6)(18) $=4$ and (DES-SBOX6)(19) $=2$ and (DES-SBOX6)(20) $=7$ and $($ DES-SBOX6 $)(21)=12$ and $($ DES-SBOX6 $)(22)=9$ and $($ DES-SBOX6 $)(23)=$ 5 and (DES-SBOX6)(24) $=6$ and (DES-SBOX6)(25) $=1$ and (DES-SBOX6)(26) $=13$ and (DES-SBOX6)(27) $=14$ and $(D E S-S B O X 6)(28)=0$ and (DES-SBOX6)(29) $=11$ and $($ DES-SBOX6 $)(30)=3$ and $($ DES-SBOX6 $)(31)=8$ and $($ DES-SBOX6 $)(32)=$ 9 and (DES-SBOX6)(33) $=14$ and (DES-SBOX6)(34) $=15$ and (DES-SBOX6)(35) $=5$ and (DES-SBOX6)(36) $=2$ and $($ DES-SBOX6 $)(37)=8$ and $($ DES-SBOX6) $(38)=12$ and $($ DES-SBOX6 $)(39)=$ 3 and (DES-SBOX6)(40) $=7$ and (DES-SBOX6)(41) $=0$ and $($ DES-SBOX6)(42) $=4$ and (DES-SBOX6)(43) $=10$ and $($ DES-SBOX6 $)(44)=1$ and $($ DES-SBOX6 $)(45)=13$ and $($ DES-SBOX6 $)(46)=$ 11 and (DES-SBOX6)(47) $=6$ and (DES-SBOX6)(48) $=4$ and (DES-SBOX6)(49) $=3$ and (DES-SBOX6)(50) $=2$ and $($ DES-SBOX6 $)(51)=12$ and $($ DES-SBOX6 $)(52)=9$ and $($ DES-SBOX6 $)(53)=$ 5 and (DES-SBOX6)(54) $=15$ and (DES-SBOX6)(55) $=10$ and (DES-SBOX6)(56) $=11$ and (DES-SBOX6)(57) $=14$ and (DES-SBOX6)(58) $=1$ and (DES-SBOX6)(59) $=7$ and $($ DES-SBOX6 $)(60)=6$ and $($ DES-SBOX6 $)(61)=0$ and $($ DES-SBOX6 $)(62)=$ 8 and $($ DES-SBOX6 $)(63)=13$.
The function DES-SBOX7 from 64 into 16 is defined by the conditions (Def. 12).
(Def. 12) $($ DES-SBOX7 $)(0)=4$ and $($ DES-SBOX7 $)(1)=11$ and $($ DES-SBOX7 $)(2)=$ 2 and $(\mathrm{DES}-\mathrm{SBOX} 7)(3)=14$ and $(\mathrm{DES}-\mathrm{SBOX} 7)(4)=15$ and $(\operatorname{DES}-S B O X 7)(5)=0$ and $($ DES-SBOX 7$)(6)=8$ and $($ DES-SBOX7 $)(7)=$

13 and $(\mathrm{DES}-\mathrm{SBOX} 7)(8)=3$ and (DES-SBOX7)(9) $=12$ and $($ DES-SBOX7 $)(10)=9$ and $($ DES-SBOX7 $)(11)=7$ and $($ DES-SBOX7 $)(12)=5$ and $($ DES-SBOX7 $)(13)=10$ and $($ DES-SBOX7 $)(14)=$ 6 and $(\mathrm{DES}-\mathrm{SBOX} 7)(15)=1$ and $(\mathrm{DES}-\mathrm{SBOX7})(16)=13$ and $($ DES-SBOX7 $)(17)=0$ and (DES-SBOX7)(18) $=11$ and $($ DES-SBOX7 $)(19)=7$ and $($ DES-SBOX7 $)(20)=4$ and $($ DES-SBOX7 $)(21)=$ 9 and $(\mathrm{DES}-\mathrm{SBOX} 7)(22)=1$ and $(\mathrm{DES}-\mathrm{SBOX} 7)(23)=10$ and $($ DES-SBOX7 $)(24)=14$ and (DES-SBOX7)(25) $=3$ and $($ DES-SBOX7 $)(26)=5$ and $($ DES-SBOX7 $)(27)=12$ and $($ DES-SBOX7 $)(28)=$ 2 and (DES-SBOX7)(29) $=15$ and (DES-SBOX7)(30) $=8$ and $($ DES-SBOX7 $)(31)=6$ and $($ DES-SBOX7 $)(32)=1$ and $($ DES-SBOX 7$)(33)=4$ and $($ DES-SBOX 7$)(34)=11$ and $($ DES-SBOX7 $)(35)=$ 13 and (DES-SBOX7)(36) $=12$ and (DES-SBOX7)(37) $=3$ and $($ DES-SBOX7)(38) $=7$ and (DES-SBOX7)(39) $=14$ and $(\mathrm{DES}-\mathrm{SBOX} 7)(40)=10$ and $(\mathrm{DES}-\mathrm{SBOX} 7)(41)=15$ and $($ DES-SBOX7 $)(42)=6$ and $($ DES-SBOX7 $)(43)=8$ and $(D E S-S B O X 7)(44)=$ 0 and (DES-SBOX7)(45) $=5$ and (DES-SBOX7)(46) $=9$ and $(D E S-S B O X 7)(47)=2$ and (DES-SBOX7)(48) $=6$ and $(\mathrm{DES}-\mathrm{SBOX} 7)(49)=11$ and (DES-SBOX7)(50) $=13$ and $($ DES-SBOX 7$)(51)=8$ and $($ DES-SBOX7 $)(52)=1$ and $($ DES-SBOX7 $)(53)=$ 4 and (DES-SBOX7)(54) = 10 and (DES-SBOX7)(55) $=7$ and (DES-SBOX7)(56) $=9$ and (DES-SBOX7)(57) $=5$ and $($ DES-SBOX 7$)(58)=0$ and $($ DES-SBOX7 $)(59)=15$ and $($ DES-SBOX7 $)(60)=$ 14 and $(\mathrm{DES}-\mathrm{SBOX} 7)(61)=2$ and (DES-SBOX7)(62) $=3$ and $(\mathrm{DES}-\mathrm{SBOX} 7)(63)=12$.

The function DES-SBOX8 from 64 into 16 is defined by the conditions (Def. 13).
(Def. 13) $($ DES-SBOX8 $)(0)=13$ and $($ DES-SBOX8 $)(1)=2$ and $($ DES-SBOX8 $)(2)=$ 8 and $(\mathrm{DES}-\mathrm{SBOX} 8)(3)=4$ and $(\mathrm{DES}-\mathrm{SBOX} 8)(4)=6$ and $($ DES-SBOX 8$)(5)=15$ and $($ DES-SBOX8 $)(6)=11$ and $($ DES-SBOX8 $)(7)=$ 1 and (DES-SBOX8)(8) $=10$ and (DES-SBOX8)(9) $=9$ and $($ DES-SBOX8 $)(10)=3$ and $(D E S-S B O X 8)(11)=14$ and $($ DES-SBOX8 $)(12)=5$ and $($ DES-SBOX8 $)(13)=0$ and $($ DES-SBOX8 $)(14)=$ 12 and (DES-SBOX8)(15) $=7$ and (DES-SBOX8)(16) $=1$ and (DES-SBOX8)(17) $=15$ and (DES-SBOX8)(18) $=13$ and $($ DES-SBOX8)(19) $=8$ and (DES-SBOX8)(20) $=10$ and $($ DES-SBOX 8$)(21)=3$ and $($ DES-SBOX8 $)(22)=7$ and $($ DES-SBOX8 $)(23)=$ 4 and (DES-SBOX8)(24) $=12$ and (DES-SBOX8)(25) $=5$ and $($ DES-SBOX8)(26) $=5$ and (DES-SBOX8)(27) $=11$ and $($ DES-SBOX8 $)(28)=0$ and $($ DES-SBOX8 $)(29)=14$ and $($ DES-SBOX8 $)(30)=$ 9 and (DES-SBOX8)(31) $=2$ and (DES-SBOX8)(32) $=7$
and (DES-SBOX8)(33) $=11$ and (DES-SBOX8)(34) $=4$ and $($ DES-SBOX8 $)(35)=1$ and $($ DES-SBOX8 $)(36)=9$ and $($ DES-SBOX8 $)(37)=$ 12 and (DES-SBOX8)(38) $=14$ and (DES-SBOX8)(39) $=2$ and $(\mathrm{DES}-\mathrm{SBOX} 8)(40)=0$ and (DES-SBOX8)(41) $=6$ and $(\mathrm{DES}-\mathrm{SBOX} 8)(42)=10$ and (DES-SBOX8)(43) $=13$ and $($ DES-SBOX8 $)(44)=15$ and $($ DES-SBOX8 $)(45)=3$ and $($ DES-SBOX8 $)(46)=$ 5 and (DES-SBOX8)(47) $=8$ and (DES-SBOX8)(48) $=2$ and (DES-SBOX8)(49) = 1 and (DES-SBOX8)(50) $=14$ and $($ DES-SBOX8 $)(51)=7$ and $($ DES-SBOX8 $)(52)=4$ and $($ DES-SBOX8 $)(53)=$ 10 and (DES-SBOX8)(54) $=8$ and (DES-SBOX8)(55) $=13$ and (DES-SBOX8)(56) $=15$ and (DES-SBOX8)(57) $=12$ and $($ DES-SBOX8)(58) $=9$ and (DES-SBOX8)(59) $=0$ and $($ DES-SBOX8 $)(60)=3$ and $($ DES-SBOX8 $)(61)=5$ and $($ DES-SBOX8 $)(62)=$ 6 and $($ DES-SBOX8 $)(63)=11$.

3. Initial Permutation

Let r be an element of Boolean ${ }^{64}$. The functor DES-IP r yields an element of Boolean ${ }^{64}$ and is defined by the conditions (Def. 14).
(Def. 14) $\quad($ DES-IP $r)(1)=r(58)$ and $($ DES-IP $r)(2)=r(50)$ and $(\operatorname{DES}-I P r)(3)=$ $r(42)$ and $(\mathrm{DES}-\mathrm{IP} r)(4)=r(34)$ and $(\mathrm{DES}-\mathrm{IP} r)(5)=r(26)$ and $(\mathrm{DES}-\mathrm{IP} r)(6)=r(18)$ and $(\mathrm{DES}-\mathrm{IP} r)(7)=r(10)$ and $($ DES-IP $r)(8)=r(2)$ and $($ DES-IP $r)(9)=r(60)$ and $($ DES-IP $r)(10)=$ $r(52)$ and $(\mathrm{DES}-\mathrm{IP} r)(11)=r(44)$ and $(\mathrm{DES}-\mathrm{IP} r)(12)=r(36)$ and $(\mathrm{DES}-\mathrm{IP} r)(13)=r(28)$ and $(\mathrm{DES}-\mathrm{IP} r)(14)=r(20)$ and $($ DES-IP $r)(15)=r(12)$ and $($ DES-IP $r)(16)=r(4)$ and $($ DES-IP $r)(17)=$ $r(62)$ and $(\mathrm{DES}-\mathrm{IP} r)(18)=r(54)$ and $(\mathrm{DES}-\mathrm{IP} r)(19)=r(46)$ and $(\mathrm{DES}-\mathrm{IP} r)(20)=r(38)$ and $(\mathrm{DES}-\mathrm{IP} r)(21)=r(30)$ and $($ DES-IP $r)(22)=r(22)$ and $($ DES-IP $r)(23)=r(14)$ and $($ DES-IP $r)(24)=$ $r(6)$ and $(\mathrm{DES}-\mathrm{IP} r)(25)=r(64)$ and $(\mathrm{DES}-\mathrm{IP} r)(26)=r(56)$ and $(\mathrm{DES}-\mathrm{IP} r)(27)=r(48)$ and $(\mathrm{DES}-\mathrm{IP} r)(28)=r(40)$ and $($ DES-IP $r)(29)=r(32)$ and $($ DES-IP $r)(30)=r(24)$ and $($ DES-IP $r)(31)=$ $r(16)$ and $(\mathrm{DES}-\mathrm{IP} r)(32)=r(8)$ and $(\mathrm{DES}-\mathrm{IP} r)(33)=r(57)$ and $(\mathrm{DES}-\mathrm{IP} r)(34)=r(49)$ and $(\mathrm{DES}-\mathrm{IP} r)(35)=r(41)$ and $($ DES-IP $r)(36)=r(33)$ and $($ DES-IP $r)(37)=r(25)$ and $($ DES-IP $r)(38)=$ $r(17)$ and $(\mathrm{DES}-\mathrm{IP} r)(39)=r(9)$ and $(\mathrm{DES}-\mathrm{IP} r)(40)=r(1)$ and $(\mathrm{DES}-\mathrm{IP} r)(41)=r(59)$ and $(\mathrm{DES}-\mathrm{IP} r)(42)=r(51)$ and $($ DES-IP $r)(43)=r(43)$ and $($ DES-IP $r)(44)=r(35)$ and $($ DES-IP $r)(45)=$ $r(27)$ and $(\mathrm{DES}-\mathrm{IP} r)(46)=r(19)$ and $(\mathrm{DES}-\mathrm{IP} r)(47)=r(11)$ and $($ DES-IP $r)(48)=r(3)$ and $($ DES-IP $r)(49)=r(61)$ and $($ DES-IP $r)(50)=$ $r(53)$ and $(\mathrm{DES}-\mathrm{IP} r)(51)=r(45)$ and $(\mathrm{DES}-\mathrm{IP} r)(52)=r(37)$
and $(\mathrm{DES}-\mathrm{IP} r)(53)=r(29)$ and $(\mathrm{DES}-\mathrm{IP} r)(54)=r(21)$ and $(\mathrm{DES}-\mathrm{IP} r)(55)=r(13)$ and $(\mathrm{DES}-\mathrm{IP} r)(56)=r(5)$ and $(\mathrm{DES}-\mathrm{IP} r)(57)=$ $r(63)$ and $(\mathrm{DES}-\mathrm{IP} r)(58)=r(55)$ and $(\mathrm{DES}-\mathrm{IP} r)(59)=r(47)$ and $(\mathrm{DES}-\mathrm{IP} r)(60)=r(39)$ and $(\mathrm{DES}-\mathrm{IP} r)(61)=r(31)$ and $($ DES-IP $r)(62)=r(23)$ and $($ DES-IP $r)(63)=r(15)$ and $($ DES-IP $r)(64)=$ $r(7)$.
The function DES-PIP from Boolean ${ }^{64}$ into Boolean ${ }^{64}$ is defined by:
(Def. 15) For every element i of Boolean ${ }^{64}$ holds (DES-PIP) $(i)=$ DES-IP i.
Let r be an element of Boolean ${ }^{64}$. The functor DES-IPINV r yields an element of Boolean ${ }^{64}$ and is defined by the conditions (Def. 16).
(Def. 16) $(\mathrm{DES}-\mathrm{IPINV} r)(1)=r(40)$ and (DES-IPINV $r)(2)=r(8)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(3)=r(48)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(4)=r(16)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(5)=r(56)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(6)=r(24)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(7)=r(64)$ and $($ DES-IPINV $r)(8)=r(32)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(9)=r(39)$ and $($ DES-IPINV $r)(10)=r(7)$ and $($ DES-IPINV $r)(11)=r(47)$ and $($ DES-IPINV $r)(12)=r(15)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(13)=r(55)$ and (DES-IPINV $r)(14)=r(23)$ and $($ DES-IPINV $r)(15)=r(63)$ and $($ DES-IPINV $r)(16)=r(31)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(17)=r(38)$ and (DES-IPINV $r)(18)=r(6)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(19)=r(46)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(20)=r(14)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(21)=r(54)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(22)=r(22)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(23)=r(62)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(24)=r(30)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(25)=r(37)$ and (DES-IPINV $r)(26)=r(5)$ and $($ DES-IPINV $r)(27)=r(45)$ and $($ DES-IPINV $r)(28)=r(13)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(29)=r(53)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(30)=r(21)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(31)=r(61)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(32)=r(29)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(33)=r(36)$ and (DES-IPINV $r)(34)=r(4)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(35)=r(44)$ and (DES-IPINV $r)(36)=r(12)$ and $($ DES-IPINV $r)(37)=r(52)$ and $($ DES-IPINV $r)(38)=r(20)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(39)=r(60)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(40)=r(28)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(41)=r(35)$ and (DES-IPINV $r)(42)=r(3)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(43)=r(43)$ and $($ DES-IPINV $r)(44)=r(11)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(45)=r(51)$ and $(\mathrm{DES-IPINV} r)(46)=r(19)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(47)=r(59)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(48)=r(27)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(49)=r(34)$ and (DES-IPINV $r)(50)=r(2)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(51)=r(42)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(52)=r(10)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(53)=r(50)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(54)=r(18)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(55)=r(58)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(56)=r(26)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(57)=r(33)$ and (DES-IPINV $r)(58)=r(1)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(59)=r(41)$ and (DES-IPINV $r)(60)=r(9)$ and $($ DES-IPINV $r)(61)=r(49)$ and $($ DES-IPINV $r)(62)=r(17)$ and
$(\mathrm{DES}-\mathrm{IPINV} r)(63)=r(57)$ and $(\mathrm{DES}-\mathrm{IPINV} r)(64)=r(25)$.
The function DES-PIPINV from Boolean ${ }^{64}$ into Boolean ${ }^{64}$ is defined by:
(Def. 17) For every element i of Boolean ${ }^{64}$ holds (DES-PIPINV) $(i)=$ DES-IPINV i.
Let us note that DES-PIP is bijective.
Let us note that DES-PIPINV is bijective.
The following proposition is true
(36) \quad DES-PIPINV $=(\text { DES-PIP })^{-1}$.

4. Feistel Function

Let r be an element of Boolean ${ }^{32}$. The functor DES-E r yielding an element of Boolean ${ }^{48}$ is defined by the conditions (Def. 18).
(Def. 18) $\quad(\mathrm{DES}-\mathrm{E} r)(1)=r(32)$ and $(\mathrm{DES}-\mathrm{E} r)(2)=r(1)$ and $(\mathrm{DES}-\mathrm{E} r)(3)=r(2)$ and $(\mathrm{DES}-\mathrm{E} r)(4)=r(3)$ and $(\mathrm{DES}-\mathrm{E} r)(5)=r(4)$ and $(\mathrm{DES}-\mathrm{E} r)(6)=$ $r(5)$ and $(\mathrm{DES}-\mathrm{E} r)(7)=r(4)$ and $(\mathrm{DES}-\mathrm{E} r)(8)=r(5)$ and $(\mathrm{DES}-\mathrm{E} r)(9)=r(6)$ and $(\mathrm{DES}-\mathrm{E} r)(10)=r(7)$ and $(\mathrm{DES}-\mathrm{E} r)(11)=r(8)$ and $(\mathrm{DES}-\mathrm{E} r)(12)=r(9)$ and $(\mathrm{DES}-\mathrm{E} r)(13)=r(8)$ and $(\mathrm{DES}-\mathrm{E} r)(14)=$ $r(9)$ and $(\mathrm{DES}-\mathrm{E} r)(15)=r(10)$ and $(\mathrm{DES}-\mathrm{E} r)(16)=r(11)$ and $(\mathrm{DES}-\mathrm{E} r)(17)=r(12)$ and $(\mathrm{DES}-\mathrm{E} r)(18)=r(13)$ and $(\mathrm{DES}-\mathrm{E} r)(19)=$ $r(12)$ and $(\mathrm{DES}-\mathrm{E} r)(20)=r(13)$ and $(\mathrm{DES}-\mathrm{E} r)(21)=r(14)$ and $(\mathrm{DES}-\mathrm{E} r)(22)=r(15)$ and $(\mathrm{DES}-\mathrm{E} r)(23)=r(16)$ and $(\mathrm{DES}-\mathrm{E} r)(24)=$ $r(17)$ and (DES-E $r)(25)=r(16)$ and (DES-E $r)(26)=r(17)$ and $(\mathrm{DES}-\mathrm{E} r)(27)=r(18)$ and $(\mathrm{DES}-\mathrm{E} r)(28)=r(19)$ and $(\mathrm{DES}-\mathrm{E} r)(29)=$ $r(20)$ and (DES-E $r)(30)=r(21)$ and (DES-E $r)(31)=r(20)$ and $(\mathrm{DES}-\mathrm{E} r)(32)=r(21)$ and $(\mathrm{DES}-\mathrm{E} r)(33)=r(22)$ and $(\mathrm{DES}-\mathrm{E} r)(34)=$ $r(23)$ and $(\mathrm{DES}-\mathrm{E} r)(35)=r(24)$ and $(\mathrm{DES}-\mathrm{E} r)(36)=r(25)$ and $(\mathrm{DES}-\mathrm{E} r)(37)=r(24)$ and $(\mathrm{DES}-\mathrm{E} r)(38)=r(25)$ and $(\mathrm{DES}-\mathrm{E} r)(39)=$ $r(26)$ and (DES-E $r)(40)=r(27)$ and $(\mathrm{DES}-\mathrm{E} r)(41)=r(28)$ and $(\mathrm{DES}-\mathrm{E} r)(42)=r(29)$ and $(\mathrm{DES}-\mathrm{E} r)(43)=r(28)$ and $(\mathrm{DES}-\mathrm{E} r)(44)=$ $r(29)$ and $(\mathrm{DES}-\mathrm{E} r)(45)=r(30)$ and $(\mathrm{DES}-\mathrm{E} r)(46)=r(31)$ and $(\mathrm{DES}-\mathrm{E} r)(47)=r(32)$ and $(\mathrm{DES}-\mathrm{E} r)(48)=r(1)$.
Let r be an element of Boolean ${ }^{32}$. The functor DES-P r yielding an element of Boolean ${ }^{32}$ is defined by the conditions (Def. 19).
(Def. 19) $(\mathrm{DES}-\mathrm{P} r)(1)=r(16)$ and $(\mathrm{DES}-\mathrm{P} r)(2)=r(7)$ and $(\mathrm{DES}-\mathrm{P} r)(3)=$ $r(20)$ and $(\mathrm{DES}-\mathrm{P} r)(4)=r(21)$ and $(\mathrm{DES}-\mathrm{P} r)(5)=r(29)$ and $(\mathrm{DES}-\mathrm{P} r)(6)=r(12)$ and $(\mathrm{DES}-\mathrm{P} r)(7)=r(28)$ and $(\mathrm{DES}-\mathrm{P} r)(8)=$ $r(17)$ and $(\mathrm{DES}-\mathrm{P} r)(9)=r(1)$ and $(\mathrm{DES}-\mathrm{P} r)(10)=r(15)$ and $(\mathrm{DES}-\mathrm{P} r)(11)=r(23)$ and $(\mathrm{DES}-\mathrm{P} r)(12)=r(26)$ and $(\mathrm{DES}-\mathrm{P} r)(13)=$ $r(5)$ and $(\mathrm{DES}-\mathrm{P} r)(14)=r(18)$ and $(\mathrm{DES}-\mathrm{P} r)(15)=r(31)$ and
$(\mathrm{DES}-\mathrm{P} r)(16)=r(10)$ and $(\mathrm{DES}-\mathrm{P} r)(17)=r(2)$ and $(\mathrm{DES}-\mathrm{P} r)(18)=$ $r(8)$ and $(\mathrm{DES}-\mathrm{P} r)(19)=r(24)$ and $(\mathrm{DES}-\mathrm{P} r)(20)=r(14)$ and $(\mathrm{DES}-\mathrm{P} r)(21)=r(32)$ and $(\mathrm{DES}-\mathrm{P} r)(22)=r(27)$ and $(\mathrm{DES}-\mathrm{P} r)(23)=$ $r(3)$ and $(\mathrm{DES}-\mathrm{P} r)(24)=r(9)$ and $(\mathrm{DES}-\mathrm{P} r)(25)=r(19)$ and $(\mathrm{DES}-\mathrm{P} r)(26)=r(13)$ and $(\mathrm{DES}-\mathrm{P} r)(27)=r(30)$ and $(\mathrm{DES}-\mathrm{P} r)(28)=$ $r(6)$ and $(\mathrm{DES}-\mathrm{P} r)(29)=r(22)$ and $(\mathrm{DES}-\mathrm{P} r)(30)=r(11)$ and $(\mathrm{DES}-\mathrm{P} r)(31)=r(4)$ and $(\mathrm{DES}-\mathrm{P} r)(32)=r(25)$.
Let r be an element of Boolean ${ }^{48}$. The functor DES-DIV8 r yielding an element of $\left(\text { Boolean }^{6}\right)^{8}$ is defined by the conditions (Def. 20).
(Def. 20) $\quad($ DES-DIV8 $r)(1)=\operatorname{Op-Left}(r, 6)$ and $($ DES-DIV8 $r)(2)=$
Op-Left $($ Op-Right $(r, 6), 6)$ and $($ DES-DIV8 $r)(3)=$
Op-Left $(\operatorname{Op-Right}(r, 12), 6)$ and (DES-DIV8 $r)(4)=$
Op-Left(Op-Right $(r, 18), 6)$ and (DES-DIV8r) $(5)=$
Op-Left(Op-Right $(r, 24), 6)$ and (DES-DIV8 $r)(6)=$
Op-Left (Op-Right $(r, 30), 6)$ and $(\operatorname{DES}-D I V 8 r)(7)=$
Op-Left $(\operatorname{Op-Right}(r, 36), 6)$ and $(\operatorname{DES}-D I V 8 r)(8)=\operatorname{Op-Right}(r, 42)$.
Next we state the proposition
(37) Let r be an element of Boolean ${ }^{48}$. Then there exist elements s_{1}, s_{2}, $s_{3}, s_{4}, s_{5}, s_{6}, s_{7}, s_{8}$ of Boolean ${ }^{6}$ such that $s_{1}=($ DES-DIV8r $)(1)$ and $s_{2}=($ DES-DIV8 $r)(2)$ and $s_{3}=($ DES-DIV8 $r)(3)$ and $s_{4}=$ $($ DES-DIV8 $r)(4)$ and $s_{5}=($ DES-DIV8 $r)(5)$ and $s_{6}=($ DES-DIV8 $r)(6)$ and $s_{7}=($ DES-DIV $8 r)(7)$ and $s_{8}=($ DES-DIV8 $r)(8)$ and $r=s_{1}{ }^{\wedge} s_{2}{ }^{\wedge}$ $s_{3} \wedge s_{4} \wedge s_{5} \wedge s_{6} \wedge s_{7} \wedge s_{8}$.
Let t be an element of Boolean ${ }^{6}$. The functor B6toN64t yielding an element of 64 is defined by:
(Def. 21) B6toN64t $=32 \cdot t(1)+16 \cdot t(6)+8 \cdot t(2)+4 \cdot t(3)+2 \cdot t(4)+1 \cdot t(5)$.
The function N16toB4 from 16 into Boolean ${ }^{4}$ is defined by the conditions (Def. 22).
(Def. 22) $(\mathrm{N} 16 \mathrm{toB} 4)(0)=\langle 0,0,0,0\rangle$ and $(\mathrm{N} 16 \mathrm{toB} 4)(1)=\langle 0,0,0,1\rangle$ and $(\mathrm{N} 16 \mathrm{toB} 4)(2)=\langle 0,0,1,0\rangle$ and $(\mathrm{N} 16 \mathrm{toB} 4)(3)=\langle 0,0,1,1\rangle$ and $(\mathrm{N} 16 \mathrm{toB} 4)(4)=\langle 0,1,0,0\rangle$ and $(\mathrm{N} 16 \mathrm{toB} 4)(5)=\langle 0,1,0,1\rangle$ and $(\mathrm{N} 16 \mathrm{toB} 4)(6)=\langle 0,1,1,0\rangle$ and $(\mathrm{N} 16 \mathrm{toB} 4)(7)=\langle 0,1,1,1\rangle$ and $(\mathrm{N} 16 \mathrm{toB} 4)(8)=\langle 1,0,0,0\rangle$ and $(\mathrm{N} 16 \mathrm{toB} 4)(9)=\langle 1,0,0,1\rangle$ and $(\mathrm{N} 16 \mathrm{toB} 4)(10)=\langle 1,0,1,0\rangle$ and $(\mathrm{N} 16 \mathrm{toB} 4)(11)=\langle 1,0,1,1\rangle$ and $(\mathrm{N} 16 \mathrm{toB} 4)(12)=\langle 1,1,0,0\rangle$ and $(\mathrm{N} 16 \mathrm{toB} 4)(13)=\langle 1,1,0,1\rangle$ and $(\mathrm{N} 16 \mathrm{toB} 4)(14)=\langle 1,1,1,0\rangle$ and $(\mathrm{N} 16 \mathrm{toB} 4)(15)=\langle 1,1,1,1\rangle$.
Let R be an element of Boolean ${ }^{32}$ and let R_{2} be an element of Boolean ${ }^{48}$. The functor DES-F $\left(R, R_{2}\right)$ yields an element of Boolean ${ }^{32}$ and is defined by the condition (Def. 23).
(Def. 23) There exist elements $D_{1}, D_{2}, D_{3}, D_{4}, D_{5}, D_{6}, D_{7}, D_{8}$ of Boolean ${ }^{6}$ and
there exist elements $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}$ of Boolean 4 and there exists an element C_{32} of Boolean ${ }^{32}$ such that
$D_{1}=\left(\right.$ DES-DIV8 Op-XOR $\left(\right.$ DES-E $\left.\left.R, R_{2}\right)\right)(1)$ and
$D_{2}=\left(\right.$ DES-DIV 8 Op-XOR $\left(\right.$ DES-E $\left.\left.R, R_{2}\right)\right)(2)$ and
$D_{3}=\left(\right.$ DES-DIV8 Op-XOR $\left(\right.$ DES-E $\left.\left.R, R_{2}\right)\right)(3)$ and
$D_{4}=\left(\right.$ DES-DIV 8 Op-XOR $\left(\right.$ DES-E $\left.\left.R, R_{2}\right)\right)(4)$ and
$D_{5}=\left(\right.$ DES-DIV 8 Op-XOR $\left(\right.$ DES-E $\left.\left.R, R_{2}\right)\right)(5)$ and
$D_{6}=\left(\right.$ DES-DIV 8 Op-XOR $\left(\right.$ DES-E $\left.\left.R, R_{2}\right)\right)(6)$ and
$D_{7}=\left(\right.$ DES-DIV8 Op-XOR $\left(\right.$ DES-E $\left.\left.R, R_{2}\right)\right)(7)$ and
$D_{8}=\left(\right.$ DES-DIV 8 Op-XOR $\left(\right.$ DES-E $\left.\left.R, R_{2}\right)\right)(8)$ and

D_{8} and $x_{1}=(\mathrm{N} 16 \mathrm{toB} 4)\left((\mathrm{DES}-\mathrm{SBOX} 1)\left(\mathrm{B} 6 \mathrm{toN} 64 D_{1}\right)\right)$ and $x_{2}=$ (N16toB4)((DES-SBOX2)(B6toN64 $\left.\left.D_{2}\right)\right)$ and
$x_{3}=(\mathrm{N} 16 \mathrm{toB} 4)\left((\mathrm{DES}-\mathrm{SBOX} 3)\left(\mathrm{B} 6 \mathrm{toN} 64 D_{3}\right)\right)$ and
$x_{4}=(\mathrm{N} 16 \mathrm{toB} 4)\left((\mathrm{DES}-\mathrm{SBOX} 4)\left(\mathrm{B} 6 \mathrm{toN} 64 D_{4}\right)\right)$ and
$x_{5}=(\mathrm{N} 16 \mathrm{toB} 4)\left((\mathrm{DES}-\mathrm{SBOX} 5)\left(\mathrm{B} 6 \mathrm{toN} 64 D_{5}\right)\right)$ and
$x_{6}=(\mathrm{N} 16 \mathrm{toB} 4)\left((\mathrm{DES}-\mathrm{SBOX} 6)\left(\mathrm{B} 6 \mathrm{toN} 64 D_{6}\right)\right)$ and
$x_{7}=(\mathrm{N} 16 \mathrm{toB} 4)\left((\mathrm{DES}-\mathrm{SBOX} 7)\left(\mathrm{B} 6 \mathrm{toN} 64 D_{7}\right)\right)$ and
$x_{8}=(\mathrm{N} 16 \mathrm{toB} 4)\left((\mathrm{DES}-\mathrm{SBOX} 8)\left(\mathrm{B} 6 \mathrm{toN} 64 D_{8}\right)\right)$ and $C_{32}=x_{1}{ }^{\wedge} x_{2}{ }^{\wedge} x_{3} \wedge$
$x_{4}{ }^{\wedge} x_{5}{ }^{\wedge} x_{6} \wedge x_{7} \wedge x_{8}$ and $\operatorname{DES}-\mathrm{F}\left(R, R_{2}\right)=\operatorname{DES}-\mathrm{P} C_{32}$.
The function DES-FFUNC from Boolean ${ }^{32} \times$ Boolean 48 into Boolean ${ }^{32}$ is defined as follows:
(Def. 24) For every element z of Boolean ${ }^{32} \times$ Boolean 48 holds (DES-FFUNC) $(z)=$ $\operatorname{DES}-\mathrm{F}\left(z_{1}, z_{2}\right)$.

5. Key Schedule

Let r be an element of Boolean ${ }^{64}$. The functor DES-PC1 r yields an element of Boolean ${ }^{56}$ and is defined by the conditions (Def. 25).
(Def. 25) $(\mathrm{DES}-\mathrm{PC} 1 r)(1)=r(57)$ and (DES-PC1 $r)(2)=r(49)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(3)=r(41)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(4)=r(33)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(5)=r(25)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(6)=r(17)$ and $($ DES-PC1 $r)(7)=r(9)$ and $($ DES-PC1 $r)(8)=r(1)$ and $($ DES-PC1 $r)(9)=$ $r(58)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(10)=r(50)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(11)=r(42)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(12)=r(34)$ and (DES-PC1 $r)(13)=r(26)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(14)=r(18)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(15)=r(10)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(16)=r(2)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(17)=r(59)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(18)=r(51)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(19)=r(43)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(20)=r(35)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(21)=r(27)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(22)=r(19)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(23)=r(11)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(24)=r(3)$ and $(\mathrm{DES}-\mathrm{PC} 1 r)(25)=r(60)$ and

EES-PC1 r)(26)		$r(52)$	$($ DES-PC1 r)(27)		$r(44)$
$($ DES-PC1 r)(28)	$=$	$r(36)$ and	$($ DES-PC1 r)(29)		$r(63)$
$(\mathrm{DES}-\mathrm{PC} 1 r)(30)$	$=$	$r(55)$ and	$($ DES-PC1 r)(31)		$r(47)$
$(\mathrm{DES}-\mathrm{PC} 1 r)(32)$		$r(39)$ and	$($ DES-PC1 r)(33)		$r(31)$
$($ DES-PC1 1)(34)		$r(23)$ and	$(\mathrm{DES}-\mathrm{PC} 1 r)(35)$		r (15)
$($ DES-PC1 r)(36)	=	$r(7)$ and	$(\mathrm{DES}-\mathrm{PC} 1 r)(37)$		r (62)
$($ DES-PC1 r)(38)	=	$r(54)$ and	$($ DES-PC1 r)(39)		$r(46)$
$($ DES-PC1 r)(40)		$r(38)$ and	$($ DES-PC1 r)(41)		$r(30)$
$($ DES-PC1 r)(42)		$r(22)$ and	(DES-PC1 r)(43)		$r(14)$
$($ DES-PC1 r)(44)	$=$	$r(6)$ and	$(\mathrm{DES}-\mathrm{PC1} 1 r)(45)$		r (61)
$($ DES-PC1 r)(46)	$=$	$r(53)$ and	$($ DES-PC1 r)(47)		$r(45)$
$($ DES-PC1 r)(48)		$r(37)$ and	$($ DES-PC1 r)(49)		$r(29)$
$($ DES-PC1 1)(50)		$r(21)$ and	(DES-PC1 r)(51)		$r(13)$
$(\mathrm{DES}-\mathrm{PC1} 1 r)(52)$	=	$r(5)$ and	$(\mathrm{DES}-\mathrm{PC} 1 r)(53)$		$r(28)$
$(\mathrm{DES}-\mathrm{PC1} 1 r)(54)$		$r(20)$ and	$(\mathrm{DES}-\mathrm{PC} 1 r)(55)$		$r(12)$
$(\mathrm{DES}-\mathrm{PC1} 1 r)(56)=r(4)$.					

Let r be an element of Boolean ${ }^{56}$. The functor DES-PC2 r yielding an element of Boolean ${ }^{48}$ is defined by the conditions (Def. 26).
(Def. 26) $(\mathrm{DES}-\mathrm{PC} 2 r)(1)=r(14)$ and (DES-PC2 $r)(2)=r(17)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(3)=r(11)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(4)=r(24)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(5)=r(1)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(6)=r(5)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(7)=$ $r(3)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(8)=r(28)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(9)=r(15)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(10)=r(6)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(11)=r(21)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(12)=r(10)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(13)=r(23)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(14)=r(19)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(15)=r(12)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(16)=r(4)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(17)=r(26)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(18)=r(8)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(19)=r(16)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(20)=r(7)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(21)=r(27)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(22)=r(20)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(23)=r(13)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(24)=r(2)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(25)=r(41)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(26)=r(52)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(27)=r(31)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(28)=r(37)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(29)=r(47)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(30)=r(55)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(31)=r(30)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(32)=r(40)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(33)=r(51)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(34)=r(45)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(35)=r(33)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(36)=r(48)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(37)=r(44)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(38)=r(49)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(39)=r(39)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(40)=r(56)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(41)=r(34)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(42)=r(53)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(43)=r(46)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(44)=r(42)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(45)=r(50)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(46)=r(36)$ and $(\mathrm{DES}-\mathrm{PC} 2 r)(47)=r(29)$ and
$(\mathrm{DES}-\mathrm{PC} 2 r)(48)=r(32)$.
The finite sequence bitshift ${ }_{\text {DES }}$ of elements of \mathbb{N} is defined by the conditions (Def. 27).
(Def. 27) bitshift ${ }_{\text {DES }}$ is 16 -element and $\left(\right.$ bitshift $\left._{\text {DES }}\right)(1)=1$ and $\left(\operatorname{bitshift}_{\text {DES }}\right)(2)=$ 1 and $\left(\operatorname{bitshift}_{\text {DES }}\right)(3)=2$ and $\left(\right.$ bitshift $\left._{\text {DES }}\right)(4)=2$ and $\left(\right.$ bitshift $\left._{\text {DES }}\right)(5)=$ 2 and $\left(\operatorname{bitshift}_{\text {DES }}\right)(6)=2$ and $\left(\operatorname{bitshift}_{\mathrm{DES}}\right)(7)=2$ and $\left(\right.$ bitshift $\left._{\mathrm{DES}}\right)(8)=$ 2 and $\left(\right.$ bitshift $\left._{\text {DES }}\right)(9)=1$ and $\left(\right.$ bitshift $\left._{\text {DES }}\right)(10)=2$ and $\left(\operatorname{bitshift}_{\text {DES }}\right)(11)=2$ and $\left(\right.$ bitshift $\left._{\text {DES }}\right)(12)=2$ and $\left(\right.$ bitshift $\left._{\text {DES }}\right)(13)=$ 2 and $\left(\right.$ bitshift $\left._{\text {DES }}\right)(14)=2$ and $\left(\right.$ bitshift $\left._{\text {DES }}\right)(15)=2$ and $\left(\right.$ bitshift $\left._{\text {DES }}\right)(16)=1$.
Let K_{1} be an element of Boolean ${ }^{64}$. The functor DES-KS K_{1} yielding an element of $\left(\text { Boolean }{ }^{48}\right)^{16}$ is defined by the condition (Def. 28).
(Def. 28) There exist sequences C, D of Boolean ${ }^{28}$ such that
(i) $\quad C(0)=$ Op-Left $\left(\mathrm{DES}-\mathrm{PC} 1 K_{1}, 28\right)$,
(ii) $\quad D(0)=$ Op-Right(DES-PC1 $\left.K_{1}, 28\right)$, and
(iii) for every element i of \mathbb{N} such that $0 \leq i \leq 15$ holds $\left(\mathrm{DES}-\mathrm{KS} K_{1}\right)(i+1)=\operatorname{DES-PC2}(C(i+1) \wedge D(i+1))$ and $C(i+1)=O$ Op-Shift $\left(C(i),\left(\operatorname{bitshift}_{\text {DES }}\right)(i)\right)$ and $D(i+1)=$ Op-Shift($D(i),\left(\right.$ bitshift $\left.\left._{\text {DES }}\right)(i)\right)$.

6. Encryption and Decryption

Let n, m, k be non empty elements of \mathbb{N}, let R_{1} be an element of $\left(\text { Boolean }^{m}\right)^{k}$, let F be a function from Boolean ${ }^{n} \times$ Boolean m into Boolean ${ }^{n}$, let I_{1} be a permutation of Boolean ${ }^{2 \cdot n}$, and let M be an element of Boolean ${ }^{2 \cdot n}$. The functor DES-like-CoDec $\left(M, F, I_{1}, R_{1}\right)$ yields an element of Boolean ${ }^{2 \cdot n}$ and is defined by the condition (Def. 29).
(Def. 29) There exist sequences L, R of Boolean ${ }^{n}$ such that
(i) $L(0)=$ SP-Left $I_{1}(M)$,
(ii) $\quad R(0)=\operatorname{SP}-\operatorname{Right} I_{1}(M)$,
(iii) for every element i of \mathbb{N} such that $0 \leq i \leq k-1$ holds $L(i+1)=R(i)$ and $R(i+1)=\operatorname{Op-XOR}\left(L(i), F\left(R(i),\left(R_{1}\right)_{i+1}\right)\right)$, and
(iv) DES-like- $\operatorname{CoDec}\left(M, F, I_{1}, R_{1}\right)=I_{1}{ }^{-1}\left(R(k)^{\wedge} L(k)\right)$.

The following proposition is true
(38) Let n, m, k be non empty elements of \mathbb{N}, R_{1} be an element of $\left(\text { Boolean }^{m}\right)^{k}, F$ be a function from Boolean ${ }^{n} \times$ Boolean m into Boolean ${ }^{n}, I_{1}$ be a permutation of Boolean ${ }^{2 \cdot n}$, and M be an element of Boolean ${ }^{2 \cdot n}$. Then DES-like- $\operatorname{CoDec}\left(\mathrm{DES}-\mathrm{like}-\operatorname{CoDec}\left(M, F, I_{1}, R_{1}\right), F, I_{1}, \operatorname{Rev}\left(R_{1}\right)\right)=M$.
Let R_{1} be an element of $\left(\text { Boolean }{ }^{48}\right)^{16}$, let F be a function from Boolean ${ }^{32} \times$ Boolean ${ }^{48}$ into Boolean ${ }^{32}$, let I_{1} be a permutation of Boolean ${ }^{64}$, and let M be an
element of Boolean ${ }^{64}$. The functor $\operatorname{DES}-\operatorname{CoDec}\left(M, F, I_{1}, R_{1}\right)$ yielding an element of Boolean ${ }^{64}$ is defined by:
(Def. 30) There exists a permutation I_{2} of Boolean ${ }^{2 \cdot 32}$ and there exists an element M_{1} of Boolean ${ }^{2 \cdot 32}$ such that $I_{2}=I_{1}$ and $M_{1}=M$ and $\operatorname{DES}-\operatorname{CoDec}\left(M, F, I_{1}, R_{1}\right)=\mathrm{DES}-\mathrm{like-CoDec}\left(M_{1}, F, I_{2}, R_{1}\right)$.
The following proposition is true
(39) Let R_{1} be an element of $\left(\text { Boolean }^{48}\right)^{16}, F$ be a function from Boolean ${ }^{32} \times$ Boolean ${ }^{48}$ into Boolean ${ }^{32}, I_{1}$ be a permutation of Boolean ${ }^{64}$, and M be an element of Boolean ${ }^{64}$.
Then $\operatorname{DES}-\operatorname{CoDec}\left(\operatorname{DES}-\operatorname{CoDec}\left(M, F, I_{1}, R_{1}\right), F, I_{1}, \operatorname{Rev}\left(R_{1}\right)\right)=M$.
Let p_{1}, s_{9} be elements of Boolean ${ }^{64}$. The functor $\operatorname{DES}-\operatorname{ENC}\left(p_{1}, s_{9}\right)$ yields an element of Boolean ${ }^{64}$ and is defined by:
(Def. 31) DES-ENC $\left(p_{1}, s_{9}\right)=\operatorname{DES}-\operatorname{CoDec}\left(p_{1}, \operatorname{DES-FFUNC,~DES-PIP,~DES-KS~} s_{9}\right)$.
Let c_{1}, s_{9} be elements of Boolean ${ }^{64}$. The functor $\operatorname{DES}-\operatorname{DEC}\left(c_{1}, s_{9}\right)$ yields an element of Boolean ${ }^{64}$ and is defined as follows:
(Def. 32) DES-DEC $\left(c_{1}, s_{9}\right)=$
DES-CoDec (c_{1}, DES-FFUNC, DES-PIP, $\left.\operatorname{Rev}\left(\operatorname{DES}-K S s_{9}\right)\right)$.
The following proposition is true
(40) For all elements m_{1}, s_{9} of Boolean ${ }^{64}$ holds
$\operatorname{DES}-\operatorname{DEC}\left(\operatorname{DES}-\operatorname{ENC}\left(m_{1}, s_{9}\right), s_{9}\right)=m_{1}$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[11] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[12] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249-254, 1998.
[13] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[14] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, $4(\mathbf{1}): 83-86,1993$.
[15] U.S. Department of Commerce/National Institute of Standards and Technology. Fips pub 46-3, data encryption standard (DES). http://csrc.nist.gov/publications/fips/-fips46-3/fips46-3.pdf. Federal Information Processing Standars Publication, 1999.
[16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[17] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[18] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received November 30, 2011

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI 21240001.

