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Planes and Spheres as Topological
Manifolds. Stereographic Projection

Marco Riccardi
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Summary. The goal of this article is to show some examples of topolo-
gical manifolds: planes and spheres in Euclidean space. In doing it, the article
introduces the stereographic projection [25].
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The papers [29], [34], [9], [14], [40], [41], [11], [10], [4], [2], [18], [13], [31], [20],
[21], [30], [32], [16], [17], [35], [26], [1], [22], [38], [36], [24], [19], [37], [28], [6],
[15], [8], [27], [39], [3], [42], [12], [23], [7], [5], and [33] provide the notation and
terminology for this paper.

1. Preliminaries

Let us observe that ∅ is ∅-valued and ∅ is onto.
Next we state three propositions:

(1) For every function f and for every set Y holds dom(Y �f) = f−1(Y ).

(2) For every function f and for all sets Y1, Y2 such that Y2 ⊆ Y1 holds
(Y1�f)−1(Y2) = f−1(Y2).

(3) Let S, T be topological structures and f be a function from S into T . If
f is homeomorphism, then f−1 is homeomorphism.

Let S, T be topological structures. Let us note that the predicate S and T

are homeomorphic is symmetric.
For simplicity, we use the following convention: T1, T2, T3 denote topological

spaces, A1 denotes a subset of T1, A2 denotes a subset of T2, and A3 denotes a
subset of T3.
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Next we state several propositions:

(4) Let f be a function from T1 into T2. Suppose f is homeomorphism.
Let g be a function from T1�f−1(A2) into T2�A2. If g = A2�f, then g is
homeomorphism.

(5) For every function f from T1 into T2 such that f is homeomorphism
holds f−1(A2) and A2 are homeomorphic.

(6) If A1 and A2 are homeomorphic, then A2 and A1 are homeomorphic.

(7) If A1 and A2 are homeomorphic, then A1 is empty iff A2 is empty.

(8) If A1 and A2 are homeomorphic and A2 and A3 are homeomorphic, then
A1 and A3 are homeomorphic.

(9) If T1 is second-countable and T1 and T2 are homeomorphic, then T2 is
second-countable.

In the sequel n, k are natural numbers and M , N are non empty topological
spaces.

The following propositions are true:

(10) If M is Hausdorff and M and N are homeomorphic, then N is Hausdorff.

(11) If M is n-locally Euclidean and M and N are homeomorphic, then N is
n-locally Euclidean.

(12) If M is n-manifold and M and N are homeomorphic, then N is n-
manifold.

(13) Let x1, x2 be finite sequences of elements of R and i be an element of N. If
i ∈ dom(x1•x2), then (x1•x2)(i) = (x1)i ·(x2)i and (x1•x2)i = (x1)i ·(x2)i.

(14) For all finite sequences x1, x2, y1, y2 of elements of R such that lenx1 =
lenx2 and len y1 = len y2 holds x1 a y1 • x2 a y2 = (x1 • x2) a (y1 • y2).

(15) For all finite sequences x1, x2, y1, y2 of elements of R such that lenx1 =
lenx2 and len y1 = len y2 holds |(x1 a y1, x2 a y2)| = |(x1, x2)|+ |(y1, y2)|.

In the sequel p, q, p1 are points of EnT and r is a real number.
One can prove the following propositions:

(16) If k ∈ Seg n, then (p1 + p2)(k) = p1(k) + p2(k).

(17) For every set X holds X is a linear combination of RSegnR iff X is a linear
combination of EnT.

(18) Let F be a finite sequence of elements of EnT, f1 be a function from EnT
into R, F1 be a finite sequence of elements of RSegnR , and f2 be a function
from RSegnR into R. If f1 = f2 and F = F1, then f1 · F = f2 · F1.

(19) Let F be a finite sequence of elements of EnT and F1 be a finite sequence
of elements of RSegnR . If F1 = F, then

∑
F =

∑
F1.

(20) For every linear combination L2 of RSegnR and for every linear combina-
tion L1 of EnT such that L1 = L2 holds

∑
L1 =

∑
L2.
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(21) Let A4 be a subset of RSegnR and A5 be a subset of EnT. Suppose A4 = A5.

Then A4 is linearly independent if and only if A5 is linearly independent.

(22) For every subset V of EnT such that V = RN-Basen there exists a linear
combination l of V such that p =

∑
l.

(23) RN-Basen is a basis of EnT.

(24) Let V be a subset of EnT. Then V ∈ the topology of EnT if and only if for
every p such that p ∈ V there exists r such that r > 0 and Ball(p, r) ⊆ V.

Let n be a natural number and let p be a point of EnT.

The functor InnerProduct p yields a function from EnT into R1 and is defined
by:

(Def. 1) For every point q of EnT holds (InnerProduct p)(q) = |(p, q)|.
Let us consider n, p. Note that InnerProduct p is continuous.

2. Planes

Let us consider n and let us consider p, q. The functor Plane(p, q) yielding
a subset of EnT is defined as follows:

(Def. 2) Plane(p, q) = {y; y ranges over points of EnT: |(p, y − q)| = 0}.
The following propositions are true:

(25) (transl(p1, EnT))◦ Plane(p, p2) = Plane(p, p1 + p2).

(26) If p 6= 0EnT , then there exists a linearly independent subset A of EnT such

that A = n− 1 and ΩLin(A) = Plane(p, 0EnT).

(27) If p1 6= 0EnT and p2 6= 0EnT , then there exists a function R from EnT into EnT
such that R is homeomorphism and R◦ Plane(p1, 0EnT) = Plane(p2, 0EnT).

Let us consider n and let us consider p, q. The functor TPlane(p, q) yields a
non empty subspace of EnT and is defined by:

(Def. 3) TPlane(p, q) = EnT� Plane(p, q).

The following three propositions are true:

(28) The base finite sequence of n+ 1 and n+ 1 = (0EnT) a 〈1〉.

(29) For all points p, q of En+1T such that p 6= 0En+1T
holds EnT and TPlane(p, q)

are homeomorphic.

(30) For all points p, q of En+1T such that p 6= 0En+1T
holds TPlane(p, q) is

n-manifold.
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3. Spheres

Let us consider n. The functor Sn yields a topological space and is defined
by:

(Def. 4) Sn = TopUnitCircle(n+ 1).

Let us consider n. Note that Sn is non empty.
Let us consider n, p and let S be a subspace of EnT. Let us assume that p ∈

Sphere((0EnT), 1). The functor σS,p yielding a function from S into TPlane(p, 0EnT)
is defined as follows:

(Def. 5) For every q such that q ∈ S holds (σS,p)(q) = 1
1−|(q,p)| · (q − |(q, p)| · p).

Next we state the proposition

(31) For every subspace S of EnT such that ΩS = Sphere((0EnT), 1) \ {p} and
p ∈ Sphere((0EnT), 1) holds σS,p is homeomorphism.

Let us consider n. One can verify the following observations:

∗ Sn is second-countable,

∗ Sn is n-locally Euclidean, and

∗ Sn is n-manifold.
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