Continuity of Barycentric Coordinates in Euclidean Topological Spaces

Karol Pąk
Institute of Informatics
University of Białystok
Poland

Abstract

Summary. In this paper we present selected properties of barycentric coordinates in the Euclidean topological space. We prove the topological correspondence between a subset of an affine closed space of \mathcal{E}^{n} and the set of vectors created from barycentric coordinates of points of this subset.

MML identifier: RLAFFIN3, version: $\underline{7.11 .074 .160 .1126}$

The terminology and notation used here have been introduced in the following articles: [1], [3], [15], [25], [13], [18], [5], [4], [6], [12], [7], [8], [33], [21], [24], [2], [22], [20], [17], [30], [31], [23], [10], [28], [26], [11], [16], [29], [14], [19], [27], [32], and [9].

1. Preliminaries

For simplicity, we adopt the following rules: x denotes a set, n, m, k denote natural numbers, r denotes a real number, V denotes a real linear space, v, w denote vectors of V, A_{1} denotes a finite subset of V, and A_{2} denotes a finite affinely independent subset of V.

One can prove the following propositions:
(1) For all real-valued finite sequences f_{1}, f_{2} and for every real number r holds $\left(\operatorname{Intervals}\left(f_{1}, r\right)\right)^{\wedge} \operatorname{Intervals}\left(f_{2}, r\right)=\operatorname{Intervals}\left(f_{1} \wedge f_{2}, r\right)$.
(2) Let f_{1}, f_{2} be finite sequences. Then $x \in \Pi\left(f_{1} \wedge f_{2}\right)$ if and only if there exist finite sequences p_{1}, p_{2} such that $x=p_{1}{ }^{\wedge} p_{2}$ and $p_{1} \in \Pi f_{1}$ and $p_{2} \in \Pi f_{2}$.
(3) V is finite dimensional iff Ω_{V} is finite dimensional.

Let V be a finite dimensional real linear space. One can verify that every affinely independent subset of V is finite.

Let us consider n. One can check that $\mathcal{E}_{\mathrm{T}}^{n}$ is add-continuous and multcontinuous and $\mathcal{E}_{\mathrm{T}}^{n}$ is finite dimensional.

In the sequel p_{3} denotes a point of $\mathcal{E}_{\mathrm{T}}^{n}, A_{3}$ denotes a subset of $\mathcal{E}_{\mathrm{T}}^{n}, A_{4}$ denotes an affinely independent subset of $\mathcal{E}_{\mathrm{T}}^{n}$, and A_{5} denotes a subset of $\mathcal{E}_{\mathrm{T}}^{k}$.

Next we state three propositions:
(4) $\operatorname{dim}\left(\mathcal{E}_{\mathrm{T}}^{n}\right)=n$.
(5) Let V be a finite dimensional real linear space and A be an affinely independent subset of V. Then $\overline{\bar{A}} \leq 1+\operatorname{dim}(V)$.
(6) Let V be a finite dimensional real linear space and A be an affinely independent subset of V. Then $\overline{\bar{A}}=\operatorname{dim}(V)+1$ if and only if Affin $A=\Omega_{V}$.

2. Open and Closed Subsets of a Subspace of the Euclidean Topological Space

One can prove the following propositions:
(7) If $k \leq n$ and $A_{3}=\left\{v \in \mathcal{E}_{\mathrm{T}}^{n}: v \upharpoonright k \in A_{5}\right\}$, then A_{3} is open iff A_{5} is open.
(8) Let A be a subset of $\mathcal{E}_{\mathrm{T}}^{k+n}$. Suppose $A=\left\{v^{\wedge}(n \mapsto 0): v\right.$ ranges over elements of $\left.\mathcal{E}_{\mathrm{T}}^{k}\right\}$. Let B be a subset of $\mathcal{E}_{\mathrm{T}}^{k+n} \upharpoonright A$. Suppose $B=\{v ; v$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{k+n}: v \upharpoonright k \in A_{5} \wedge v \in A\right\}$. Then A_{5} is open if and only if B is open.
(9) For every affinely independent subset A of V and for every subset B of V such that $B \subseteq A$ holds conv $A \cap \operatorname{Affin} B=\operatorname{conv} B$.
(10) Let V be a non empty RLS structure, A be a non empty set, f be a partial function from A to the carrier of V, and X be a set. Then $(r \cdot f)^{\circ} X=r \cdot f^{\circ} X$.

$$
\begin{equation*}
\text { If }\langle\underbrace{0, \ldots, 0}_{n}\rangle \in A_{3} \text {, then Affin } A_{3}=\Omega_{\operatorname{Lin}\left(A_{3}\right)} \text {. } \tag{11}
\end{equation*}
$$

Let V be a non empty additive loop structure, let A be a finite subset of V, and let v be an element of V. Note that $v+A$ is finite.

Let V be a non empty RLS structure, let A be a finite subset of V, and let us consider r. Observe that $r \cdot A$ is finite.

Next we state the proposition
(12) For every subset A of V holds $\overline{\bar{A}}=\overline{\overline{r \cdot A}}$ iff $r \neq 0$ or A is trivial.

Let V be a non empty RLS structure, let f be a finite sequence of elements of V, and let us consider r. Note that $r \cdot f$ is finite sequence-like.

3. The Vector of Barycentric Coordinates

Let X be a finite set. A one-to-one finite sequence is said to be an enumeration of X if:
(Def. 1) \quad rng it $=X$.
Let X be a 1 -sorted structure and let A be a finite subset of X. We see that the enumeration of A is a one-to-one finite sequence of elements of X.

In the sequel E_{1} denotes an enumeration of A_{2} and E_{2} denotes an enumeration of A_{4}.

One can prove the following three propositions:
(13) Let V be an Abelian add-associative right zeroed right complementable non empty additive loop structure, A be a finite subset of V, E be an enumeration of A, and v be an element of V. Then $E+\overline{\bar{A}} \mapsto v$ is an enumeration of $v+A$.
(14) For every enumeration E of A_{1} holds $r \cdot E$ is an enumeration of $r \cdot A_{1}$ iff $r \neq 0$ or A_{1} is trivial.
(15) Let M be a matrix over \mathbb{R}_{F} of dimension $n \times m$. Suppose $\operatorname{rk}(M)=n$. Let A be a finite subset of $\mathcal{E}_{\mathrm{T}}^{n}$ and E be an enumeration of A. Then $\mathrm{Mx} 2 \operatorname{Tr} a n M \cdot E$ is an enumeration of $(\operatorname{Mx} 2 \operatorname{Tran} M)^{\circ} A$.
Let us consider V, A_{1}, let E be an enumeration of A_{1}, and let us consider x. The functor $x \rightarrow E$ yielding a finite sequence of elements of \mathbb{R} is defined as follows:
(Def. 2) $\quad x \rightarrow E=\left(x \rightarrow A_{1}\right) \cdot E$.
The following propositions are true:
(16) For every enumeration E of A_{1} holds len $(x \rightarrow E)=\overline{\overline{A_{1}}}$.
(17) For every enumeration E of $v+A_{2}$ such that $w \in \operatorname{Affin} A_{2}$ and $E=$ $E_{1}+\overline{\overline{A_{2}}} \mapsto v$ holds $w \rightarrow E_{1}=v+w \rightarrow E$.
(18) For every enumeration r_{1} of $r \cdot A_{2}$ such that $v \in$ Affin A_{2} and $r_{1}=r \cdot E_{1}$ and $r \neq 0$ holds $v \rightarrow E_{1}=r \cdot v \rightarrow r_{1}$.
(19) Let M be a matrix over \mathbb{R}_{F} of dimension $n \times m$. Suppose $r k(M)=n$. Let M_{1} be an enumeration of $(\mathrm{Mx} 2 \operatorname{Tran} M)^{\circ} A_{4}$. If $M_{1}=\operatorname{Mx} 2 \operatorname{Tran} M \cdot E_{2}$, then for every p_{3} such that $p_{3} \in \operatorname{Affin} A_{4}$ holds $p_{3} \rightarrow E_{2}=(\operatorname{Mx} 2 \operatorname{Tran} M)\left(p_{3}\right) \rightarrow$ M_{1}.
(20) Let A be a subset of V. Suppose $A \subseteq A_{2}$ and $x \in \operatorname{Affin} A_{2}$. Then $x \in \operatorname{Affin} A$ if and only if for every set y such that $y \in \operatorname{dom}\left(x \rightarrow E_{1}\right)$ and $E_{1}(y) \notin A$ holds $\left(x \rightarrow E_{1}\right)(y)=0$.
(21) For every E_{1} such that $x \in \operatorname{Affin} A_{2}$ holds $x \in \operatorname{Affin}\left(E_{1}{ }^{\circ} \operatorname{Seg} k\right)$ iff $x \rightarrow$ $E_{1}=\left(\left(x \rightarrow E_{1}\right) \upharpoonright k\right)^{\wedge}\left(\left(\overline{\overline{A_{2}}}-{ }^{\prime} k\right) \mapsto 0\right)$.
(22) For every E_{1} such that $k \leq \overline{\overline{A_{2}}}$ and $x \in \operatorname{Affin} A_{2}$ holds $x \in \operatorname{Affin}\left(A_{2} \backslash\right.$ $\left.E_{1}{ }^{\circ} \operatorname{Seg} k\right)$ iff $x \rightarrow E_{1}=(k \mapsto 0)^{\frown}\left(\left(x \rightarrow E_{1}\right)_{l k}\right)$.
(23) Suppose $\langle\underbrace{0, \ldots, 0}_{n}\rangle \in A_{4}$ and $E_{2}\left(\operatorname{len} E_{2}\right)=\langle\underbrace{0, \ldots, 0}_{n}\rangle$. Then
(i) $\operatorname{rng}\left(E_{2} \upharpoonright\left({\overline{\overline{A_{4}}}}^{n}-{ }^{\prime} 1\right)\right)=A_{4} \backslash\{\langle\underbrace{0, \ldots, 0}_{n}\rangle\}$, and
(ii) for every subset A of the n-dimension vector space over \mathbb{R}_{F} such that $A_{4}=A$ holds $E_{2} \upharpoonright\left(\overline{\overline{A_{4}}}-{ }^{\prime} 1\right)$ is an ordered basis of $\operatorname{Lin}(A)$.
(24) Let A be a subset of the n-dimension vector space over \mathbb{R}_{F}. Suppose $A_{4}=A$ and $\langle\underbrace{0, \ldots, 0}_{n}\rangle \in A_{4}$ and $E_{2}\left(\operatorname{len} E_{2}\right)=\langle\underbrace{0, \ldots, 0}_{n}\rangle$. Let B be an ordered basis of $\operatorname{Lin}(A)$. If $B=E_{2} \upharpoonright\left(\overline{\overline{A_{4}}}-{ }^{\prime} 1\right)$, then for every element v of $\operatorname{Lin}(A)$ holds $v \rightarrow B=\left(v \rightarrow E_{2}\right) \upharpoonright\left(\overline{\overline{A_{4}}}-{ }^{\prime} 1\right)$.
(25) For all E_{2}, A_{3} such that $k \leq n$ and $\overline{\overline{A_{4}}}=n+1$ and $A_{3}=\left\{p_{3}:\left(p_{3} \rightarrow\right.\right.$ $\left.\left.E_{2}\right) \upharpoonright k \in A_{5}\right\}$ holds A_{5} is open iff A_{3} is open.
(26) For every E_{2} such that $k \leq n$ and $\overline{\overline{A_{4}}}=n+1$ and $A_{3}=\left\{p_{3}:\left(p_{3} \rightarrow\right.\right.$ $\left.\left.E_{2}\right) \upharpoonright k \in A_{5}\right\}$ holds A_{5} is closed iff A_{3} is closed.
Let us consider n. One can verify that every subset of $\mathcal{E}_{\mathrm{T}}^{n}$ which is affine is also closed.

In the sequel p_{4} denotes an element of $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright$ Affin A_{4}.
Next we state two propositions:
(27) For every E_{2} and for every subset B of $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright$ Affin A_{4} such that $k<\overline{\overline{A_{4}}}$ and $B=\left\{p_{4}:\left(p_{4} \rightarrow E_{2}\right) \upharpoonright k \in A_{5}\right\}$ holds A_{5} is open iff B is open.
(28) Let given E_{2} and B be a subset of $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright$ Affin A_{4}. Suppose $k<\overline{\overline{A_{4}}}$ and $B=\left\{p_{4}:\left(p_{4} \rightarrow E_{2}\right) \upharpoonright k \in A_{5}\right\}$. Then A_{5} is closed if and only if B is closed.
Let us consider n and let p, q be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Observe that halfline (p, q) is closed.

4. Continuity of Barycentric Coordinates

Let us consider V, let A be a subset of V, and let us consider x. The functor $\vdash(A, x)$ yielding a function from V into $\mathbb{R}^{\mathbf{1}}$ is defined as follows:
(Def. 3) $\quad(\vdash(A, x))(v)=(v \rightarrow A)(x)$.
One can prove the following four propositions:
(29) For every subset A of V such that $x \notin A$ holds $\vdash(A, x)=\Omega_{V} \longmapsto 0$.
(30) For every affinely independent subset A of V such that $\vdash(A, x)=$ $\Omega_{V} \longmapsto 0$ holds $x \notin A$.
(31) $\vdash\left(A_{4}, x\right) \upharpoonright$ Affin A_{4} is a continuous function from $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright$ Affin A_{4} into $\mathbb{R}^{\mathbf{1}}$.
(32) If $\overline{\overline{A_{4}}}=n+1$, then $\vdash\left(A_{4}, x\right)$ is continuous.

Let us consider n, A_{4}. Note that conv A_{4} is closed.
We now state the proposition

$$
\begin{equation*}
\text { If } \overline{\overline{A_{4}}}=n+1 \text {, then } \operatorname{Int} A_{4} \text { is open. } \tag{33}
\end{equation*}
$$

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990
[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Czesław Byliński. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99-107, 2005.
[11] Jing-Chao Chen. The Steinitz theorem and the dimension of a real linear space. Formalized Mathematics, 6(3):411-415, 1997.
[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[13] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[14] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[15] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.
[16] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.
[17] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[18] Artur Korniłowicz. The correspondence between n-dimensional Euclidean space and the product of n real lines. Formalized Mathematics, 18(1):81-85, 2010, doi: 10.2478/v10037-010-0011-0.
[19] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[20] Anna Lango and Grzegorz Bancerek. Product of families of groups and vector spaces. Formalized Mathematics, 3(2):235-240, 1992.
[21] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339345, 1996.
[22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[23] Karol Pąk. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z.
[24] Karol Pąk. Linear transformations of Euclidean topological spaces. Formalized Mathematics, 19(2):103-108, 2011, doi: 10.2478/v10037-011-0016-3.
[25] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[26] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.
[27] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
[28] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[29] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[31] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[32] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.
[33] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.

Received December 21, 2010

