Set of Points on Elliptic Curve in Projective Coordinates ${ }^{1}$

Yuichi Futa
Shinshu University
Nagano, Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we formalize a set of points on an elliptic curve over $\mathbf{G F}(\mathbf{p})$. Elliptic curve cryptography [10], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security.

MML identifier: EC_PF_1, version: $\underline{7.11 .074 .160 .1126}$

The notation and terminology used here have been introduced in the following papers: [15], [1], [16], [13], [3], [8], [5], [6], [19], [18], [14], [17], [2], [12], [4], [9], [22], [23], [20], [21], [11], and [7].

1. Finite Prime Field GF(p)

For simplicity, we use the following convention: x is a set, i, j are integers, n, n_{1}, n_{2} are natural numbers, and K, K_{1}, K_{2} are fields.

Let K be a field. A field is called a subfield of K if it satisfies the conditions (Def. 1).
(Def. 1)(i) The carrier of it \subseteq the carrier of K,
(ii) the addition of it $=($ the addition of $K) \upharpoonright$ (the carrier of it),
(iii) the multiplication of it $=($ the multiplication of $K) \upharpoonright$ (the carrier of it),
(iv) $1_{\mathrm{it}}=1_{K}$, and
(v) $0_{\mathrm{it}}=0_{K}$.

We now state two propositions:

[^0](1) K is a subfield of K.
(2) Let S_{1} be a non empty double loop structure. Suppose that
(i) the carrier of S_{1} is a subset of the carrier of K,
(ii) the addition of $S_{1}=($ the addition of $K) \upharpoonright\left(\right.$ the carrier of $\left.S_{1}\right)$,
(iii) the multiplication of $S_{1}=$ (the multiplication of K) \upharpoonright (the carrier of S_{1}),
(iv) $1_{\left(S_{1}\right)}=1_{K}$,
(v) $0_{\left(S_{1}\right)}=0_{K}$, and
(vi) $\quad S_{1}$ is right complementable, commutative, almost left invertible, and non degenerated. Then S_{1} is a subfield of K.

Let K be a field. One can check that there exists a subfield of K which is strict.

In the sequel S_{2}, S_{3} denote subfields of K and e_{1}, e_{2} denote elements of K. We now state several propositions:
(3) If K_{1} is a subfield of K_{2}, then for every x such that $x \in K_{1}$ holds $x \in K_{2}$.
(4) For all strict fields K_{1}, K_{2} such that K_{1} is a subfield of K_{2} and K_{2} is a subfield of K_{1} holds $K_{1}=K_{2}$.
(5) Let K_{1}, K_{2}, K_{3} be strict fields. Suppose K_{1} is a subfield of K_{2} and K_{2} is a subfield of K_{3}. Then K_{1} is a subfield of K_{3}.
(6) $\quad S_{2}$ is a subfield of S_{3} iff the carrier of $S_{2} \subseteq$ the carrier of S_{3}.
(7) $\quad S_{2}$ is a subfield of S_{3} iff for every x such that $x \in S_{2}$ holds $x \in S_{3}$.
(8) For all strict subfields S_{2}, S_{3} of K holds $S_{2}=S_{3}$ iff the carrier of $S_{2}=$ the carrier of S_{3}.
(9) For all strict subfields S_{2}, S_{3} of K holds $S_{2}=S_{3}$ iff for every x holds $x \in S_{2}$ iff $x \in S_{3}$.
Let K be a finite field. Observe that there exists a subfield of K which is finite. Then $\overline{\bar{K}}$ is an element of \mathbb{N}.

Let us mention that there exists a field which is strict and finite.
Next we state the proposition
(10) For every strict finite field K and for every strict subfield S_{2} of K such that $\overline{\bar{K}}=\overline{\overline{S_{2}}}$ holds $S_{2}=K$.
Let I_{1} be a field. We say that I_{1} is prime if and only if:
(Def. 2) If K_{1} is a strict subfield of I_{1}, then $K_{1}=I_{1}$.
Let p be a prime number. We introduce $\mathrm{GF}(p)$ as a synonym of $\mathbb{Z}_{p}^{\mathrm{R}}$. One can check that $\operatorname{GF}(p)$ is finite. One can check that $\operatorname{GF}(p)$ is prime.

One can check that there exists a field which is prime.

2. Arithmetic in $\mathbf{G F}(\mathbf{p})$

In the sequel b, c denote elements of $\operatorname{GF}(p)$ and F denotes a finite sequence of elements of GF (p).

Next we state a number of propositions:
(11) $0=0_{\mathrm{GF}(p)}$.
(12) $1=1_{\mathrm{GF}(p)}$.
(13) There exists n_{1} such that $a=n_{1} \bmod p$.
(14) There exists a such that $a=i \bmod p$.
(15) If $a=i \bmod p$ and $b=j \bmod p$, then $a+b=(i+j) \bmod p$.
(16) If $a=i \bmod p$, then $-a=(p-i) \bmod p$.
(17) If $a=i \bmod p$ and $b=j \bmod p$, then $a-b=(i-j) \bmod p$.
(18) If $a=i \bmod p$ and $b=j \bmod p$, then $a \cdot b=i \cdot j \bmod p$.
(19) If $a=i \bmod p$ and $i \cdot j \bmod p=1$, then $a^{-1}=j \bmod p$.
(20) $a=0$ or $b=0$ iff $a \cdot b=0$.
(21) $a^{0}=\mathbf{1}_{\mathrm{GF}(p)}$ and $a^{0}=1$.
(22) $a^{2}=a \cdot a$.
(23) If $a=n_{1} \bmod p$, then $a^{n}=n_{1}^{n} \bmod p$.
(24) $a^{n+1}=a^{n} \cdot a$.
(25) If $a \neq 0$, then $a^{n} \neq 0$.
(26) Let F be an Abelian add-associative right zeroed right complementable associative commutative well unital almost left invertible distributive non empty double loop structure and x, y be elements of F. Then $x \cdot x=y \cdot y$ if and only if $x=y$ or $x=-y$.
(27) For every prime number p and for every element x of $\operatorname{GF}(p)$ such that $2<p$ and $x+x=0_{\mathrm{GF}(p)}$ holds $x=0_{\mathrm{GF}(p)}$.
(28) $a^{n} \cdot b^{n}=(a \cdot b)^{n}$.
(29) If $a \neq 0$, then $\left(a^{-1}\right)^{n}=\left(a^{n}\right)^{-1}$.
(30) $a^{n_{1}} \cdot a^{n_{2}}=a^{n_{1}+n_{2}}$.
(31) $\left(a^{n_{1}}\right)^{n_{2}}=a^{n_{1} \cdot n_{2}}$.

Let us consider p. One can verify that MultGroup $(\operatorname{GF}(p))$ is cyclic.
The following two propositions are true:
(32) Let x be an element of MultGroup $(\operatorname{GF}(p)), x_{1}$ be an element of $\operatorname{GF}(p)$, and n be a natural number. If $x=x_{1}$, then $x^{n}=x_{1}{ }^{n}$.
(33) There exists an element g of $\mathrm{GF}(p)$ such that for every element a of $\mathrm{GF}(p)$ if $a \neq 0_{\mathrm{GF}(p)}$, then there exists a natural number n such that $a=g^{n}$.

3. Relation between Legendre Symbol and the Number of Roots in $\mathbf{G F}(\mathbf{p})$

Let us consider p, a. We say that a is quadratic residue if and only if:
(Def. 3) $\quad a \neq 0$ and there exists an element x of $\operatorname{GF}(p)$ such that $x^{2}=a$.
We say that a is not quadratic residue if and only if:
(Def. 4) $\quad a \neq 0$ and it is not true that there exists an element x of $\mathrm{GF}(p)$ such that $x^{2}=a$.
One can prove the following proposition
(34) If $a \neq 0$, then a^{2} is quadratic residue.

Let p be a prime number. Observe that $1_{\mathrm{GF}(p)}$ is quadratic residue.
Let us consider p, a. The functor Lege ${ }_{p} a$ yields an integer and is defined as follows:
(Def. 5) $\operatorname{Lege}_{p} a=\left\{\begin{array}{l}0, \text { if } a=0, \\ 1, \text { if } a \text { is quadratic residue, } \\ -1, \text { otherwise } .\end{array}\right.$
Next we state several propositions:
(35) a is not quadratic residue iff $\operatorname{Lege}_{p} a=-1$.
(36) a is quadratic residue iff $\operatorname{Lege}_{p} a=1$.
(37) $a=0$ iff $\operatorname{Lege}_{p} a=0$.
(38) If $a \neq 0$, then $\operatorname{Lege}_{p}\left(a^{2}\right)=1$.
(39) $\operatorname{Lege}_{p}(a \cdot b)=\operatorname{Lege}_{p} a \cdot \operatorname{Lege}_{p} b$.
(40) If $a \neq 0$ and $n \bmod 2=0$, then $\operatorname{Lege}_{p}\left(a^{n}\right)=1$.
(41) If $n \bmod 2=1$, then $\operatorname{Lege}_{p}\left(a^{n}\right)=\operatorname{Lege}_{p} a$.
(42) If $2<p$, then $\overline{\overline{\left\{b: b^{2}=a\right\}}}=1+\operatorname{Lege}_{p} a$.

4. Set of Points on an Elliptic Curve over GF(p)

Let K be a field. The functor ProjCo K yields a non empty subset of (the carrier of $K) \times($ the carrier of $K) \times($ the carrier of $K)$ and is defined by:
(Def. 6) $\operatorname{ProjCo} K=(($ the carrier of $K) \times($ the carrier of $K) \times$ (the carrier of $K)$) $\backslash\left\{\left\langle 0_{K}, 0_{K}, 0_{K}\right\rangle\right\}$.
One can prove the following proposition
(43) $\operatorname{ProjCo~GF}(p)=(($ the carrier of $\mathrm{GF}(p)) \times($ the carrier of $\mathrm{GF}(p)) \times$ (the carrier of $\mathrm{GF}(p))) \backslash\{\langle 0,0,0\rangle\}$.
In the sequel P_{1}, P_{2}, P_{3} are elements of $\operatorname{GF}(p)$.
Let p be a prime number and let a, b be elements of $\mathrm{GF}(p)$. The functor $\operatorname{Disc}(a, b, p)$ yields an element of $\operatorname{GF}(p)$ and is defined as follows:
(Def. 7) For all elements g_{4}, g_{27} of $\operatorname{GF}(p)$ such that $g_{4}=4 \bmod p$ and $g_{27}=$ $27 \bmod p$ holds $\operatorname{Disc}(a, b, p)=g_{4} \cdot a^{3}+g_{27} \cdot b^{2}$.
Let p be a prime number and let a, b be elements of $\mathrm{GF}(p)$. The functor EC WEqProjCo (a, b, p) yielding a function from (the carrier of $\mathrm{GF}(p)) \times($ the carrier of $\mathrm{GF}(p)) \times($ the carrier of $\mathrm{GF}(p))$ into $\mathrm{GF}(p)$ is defined by the condition (Def. 8).
(Def. 8) Let P be an element of (the carrier of $\operatorname{GF}(p)) \times($ the carrier of $\mathrm{GF}(p)) \times$ (the carrier of $\mathrm{GF}(p))$. Then (EC WEqProjCo $(a, b, p))(P)=\left(P_{\mathbf{2}}\right)^{2} \cdot P_{\mathbf{3}}-$ $\left(\left(P_{\mathbf{1}}\right)^{3}+a \cdot P_{\mathbf{1}} \cdot\left(P_{\mathbf{3}}\right)^{2}+b \cdot\left(P_{\mathbf{3}}\right)^{3}\right)$.
We now state the proposition
(44) For all elements X, Y, Z of $\operatorname{GF}(p)$ holds (EC WEqProjCo $(a, b, p))(\langle X$, $Y, Z\rangle)=Y^{2} \cdot Z-\left(X^{3}+a \cdot X \cdot Z^{2}+b \cdot Z^{3}\right)$.
Let p be a prime number and let a, b be elements of $\operatorname{GF}(p)$. The functor EC SetProjCo (a, b, p) yielding a non empty subset of $\operatorname{ProjCoGF}(p)$ is defined by:
(Def. 9) EC SetProjCo $(a, b, p)=\{P \in \operatorname{ProjCoGF}(p):(E C W E q P r o j C o(a, b, p))$ $\left.(P)=0_{\mathrm{GF}(p)}\right\}$.
One can prove the following two propositions:
(45) $\langle 0,1,0\rangle$ is an element of EC $\operatorname{SetProjCo}(a, b, p)$.
(46) Let p be a prime number and a, b, X, Y be elements of $\operatorname{GF}(p)$. Then $Y^{2}=$ $X^{3}+a \cdot X+b$ if and only if $\langle X, Y, 1\rangle$ is an element of $\operatorname{EC} \operatorname{SetProjCo}(a, b, p)$.
Let p be a prime number and let P, Q be elements of $\operatorname{ProjCoGF}(p)$. We say that $P \mathrm{EQ} Q$ if and only if:
(Def. 10) There exists an element a of $\mathrm{GF}(p)$ such that $a \neq 0_{\mathrm{GF}(p)}$ and $P_{\mathbf{1}}=a \cdot Q_{\mathbf{1}}$ and $P_{2}=a \cdot Q_{2}$ and $P_{3}=a \cdot Q_{3}$.
Let us notice that the predicate $P \mathrm{EQ} Q$ is reflexive and symmetric.
We now state two propositions:
(47) For every prime number p and for all elements P, Q, R of $\operatorname{ProjCoGF}(p)$ such that P EQ Q and Q EQ R holds P EQ R.
(48) Let p be a prime number, a, b be elements of $\operatorname{GF}(p), P, Q$ be elements of (the carrier of $\mathrm{GF}(p)) \times($ the carrier of $\mathrm{GF}(p)) \times($ the carrier of $\mathrm{GF}(p))$, and d be an element of $\operatorname{GF}(p)$. Suppose $p>3$ and $\operatorname{Disc}(a, b, p) \neq 0_{\mathrm{GF}(p)}$ and $P \in \mathrm{ECSetProjCo}(a, b, p)$ and $d \neq 0_{\mathrm{GF}(p)}$ and $Q_{1}=d \cdot P_{\mathbf{1}}$ and $Q_{2}=d \cdot P_{\mathbf{2}}$ and $Q_{\mathbf{3}}=d \cdot P_{\mathbf{3}}$. Then $Q \in \operatorname{ECSetProjCo}(a, b, p)$.
Let p be a prime number. The functor \mathbb{R}-ProjCo p yielding a binary relation on $\operatorname{ProjCo} \operatorname{GF}(p)$ is defined by:
(Def. 11) \mathbb{R}-ProjCo $p=\{\langle P, Q\rangle ; P$ ranges over elements of $\operatorname{ProjCo~} \mathrm{GF}(p), Q$ ranges over elements of $\operatorname{ProjCo} \operatorname{GF}(p): P$ EQ $Q\}$.
One can prove the following proposition
(49) For every prime number p and for all elements P, Q of $\operatorname{ProjCogF}(p)$ holds P EQ Q iff $\langle P, Q\rangle \in \mathbb{R}$-ProjCo p.
Let p be a prime number. Note that \mathbb{R}-ProjCo p is total, symmetric, and transitive.

Let p be a prime number and let a, b be elements of $\operatorname{GF}(p)$. The functor \mathbb{R} - $\operatorname{EllCur}(a, b, p)$ yielding an equivalence relation of $\operatorname{EC} \operatorname{SetProjCo}(a, b, p)$ is defined as follows:
(Def. 12) $\quad \mathbb{R}-\operatorname{EllCur}(a, b, p)=\mathbb{R}-\operatorname{ProjCo} p \cap \nabla_{\mathrm{EC}} \operatorname{SetProj\operatorname {Co}(a,b,p)}$.
Next we state a number of propositions:
(50) Let p be a prime number, a, b be elements of $\mathrm{GF}(p)$, and P, Q be elements of $\operatorname{ProjCoGF}(p)$. Suppose $\operatorname{Disc}(a, b, p) \neq 0_{\mathrm{GF}(p)}$ and P, $Q \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p)$. Then $P \mathrm{EQ} Q$ if and only if $\langle P, Q\rangle \in$ $\mathbb{R}-\operatorname{EllCur}(a, b, p)$.
(51) Let p be a prime number, a, b be elements of $\operatorname{GF}(p)$, and P be an element of $\operatorname{ProjCoGF}(p)$. Suppose $p>3$ and $\operatorname{Disc}(a, b, p) \neq 0_{\mathrm{GF}(p)}$ and $P \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p)$ and $P_{\mathbf{3}} \neq 0$. Then there exists an element Q of $\operatorname{ProjCo} \operatorname{GF}(p)$ such that $Q \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p)$ and Q EQ P and $Q_{3}=1$.
(52) Let p be a prime number, a, b be elements of $\mathrm{GF}(p)$, and P be an element of $\operatorname{ProjCoGF}(p)$. Suppose $p>3$ and $\operatorname{Disc}(a, b, p) \neq 0_{\mathrm{GF}(p)}$ and $P \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p)$ and $P_{\mathbf{3}}=0$. Then there exists an element Q of $\operatorname{ProjCoGF}(p)$ such that $Q \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p)$ and Q EQ P and $Q_{1}=0$ and $Q_{2}=1$ and $Q_{3}=0$.
(53) Let p be a prime number, a, b be elements of $\mathrm{GF}(p)$, and x be a set. Suppose $p>3$ and $\operatorname{Disc}(a, b, p) \neq 0_{\mathrm{GF}(p)}$ and $x \in \operatorname{Classes} \mathbb{R}$-EllCur (a, b, p). Then
(i) there exists an element P of $\operatorname{ProjCoGF}(p)$ such that $P \in$ EC SetProjCo (a, b, p) and $P=\langle 0,1,0\rangle$ and $x=[P]_{\mathbb{R}-\operatorname{EllCur}(a, b, p)}$, or
(ii) there exists an element P of $\operatorname{ProjCoGF}(p)$ and there exist elements X, Y of $\operatorname{GF}(p)$ such that $P \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p)$ and $P=\langle X, Y, 1\rangle$ and $x=[P]_{\mathbb{R}-\operatorname{EllCur}(a, b, p)}$.
(54) Let p be a prime number and a, b be elements of $\operatorname{GF}(p)$. Suppose $p>3$ and $\operatorname{Disc}(a, b, p) \neq 0_{\mathrm{GF}(p)}$. Then Classes $\mathbb{R}-\operatorname{EllCur}(a, b, p)=$ $\left\{[\langle 0,1,0\rangle]_{\mathbb{R}-\operatorname{EllCur}(a, b, p)}\right\} \cup\left\{[P]_{\mathbb{R}-\operatorname{EllCur}(a, b, p)} ; P\right.$ ranges over elements of $\operatorname{ProjCogF}(p): P \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p) \wedge \bigvee_{X, Y}$: element of $\operatorname{GF}(p) P=$ $\langle X, Y, 1\rangle\}$.
(55) Let p be a prime number and $a, b, d_{1}, Y_{1}, d_{2}, Y_{2}$ be elements of $\operatorname{GF}(p)$. Suppose $p>3$ and $\operatorname{Disc}(a, b, p) \neq 0_{\mathrm{GF}(p)}$ and $\left\langle d_{1}, Y_{1}, 1\right\rangle$, $\left\langle d_{2}, Y_{2}, 1\right\rangle \in \operatorname{ECSetProjCo}(a, b, p)$. Then $\left[\left\langle d_{1}, Y_{1}, 1\right\rangle\right]_{\mathbb{R}-\operatorname{EllCur}(a, b, p)}=$ $\left[\left\langle d_{2}, Y_{2}, 1\right\rangle\right]_{\mathbb{R}-\operatorname{EllCur}(a, b, p)}$ if and only if $d_{1}=d_{2}$ and $Y_{1}=Y_{2}$.
(56) Let p be a prime number, a, b be elements of $\operatorname{GF}(p)$, and F_{1}, F_{2} be sets. Suppose that
(i) $p>3$,
(ii) $\operatorname{Disc}(a, b, p) \neq 0_{\mathrm{GF}(p)}$,
(iii) $\quad F_{1}=\left\{[\langle 0,1,0\rangle]_{\mathbb{R}-\operatorname{EllCur}(a, b, p)}\right\}$, and
(iv) $\quad F_{2}=\left\{[P]_{\mathbb{R}-\operatorname{EllCur}(a, b, p)} ; P\right.$ ranges over elements of $\operatorname{ProjCoGF}(p): P \in$ EC SetProjCo $\left.(a, b, p) \wedge \bigvee_{X, Y \text { : element of } \operatorname{GF}(p)} P=\langle X, Y, 1\rangle\right\}$.
Then F_{1} misses F_{2}.
(57) Let X be a non empty finite set, R be an equivalence relation of X, S be a Classes R-valued function, and i be a set. If $i \in \operatorname{dom} S$, then $S(i)$ is a finite subset of X.
(58) Let X be a non empty set, R be an equivalence relation of X, and S be a Classes R-valued function. If S is one-to-one, then S is disjoint valued.
(59) Let X be a non empty set, R be an equivalence relation of X, and S be a Classes R-valued function. If S is onto, then $\bigcup S=X$.
(60) Let X be a non empty finite set, R be an equivalence relation of X, S be a Classes R-valued function, and L be a finite sequence of elements of \mathbb{N}. Suppose S is one-to-one and onto and $\operatorname{dom} S=\operatorname{dom} L$ and for every natural number i such that $i \in \operatorname{dom} S$ holds $L(i)=\overline{\overline{S(i)}}$. Then $\overline{\bar{X}}=\sum L$.
(61) Let p be a prime number, a, b, d be elements of $\operatorname{GF}(p)$, and F, G be sets. Suppose that
(i) $p>3$,
(ii) $\operatorname{Disc}(a, b, p) \neq 0_{\mathrm{GF}(p)}$,
(iii) $\quad F=\left\{Y \in \operatorname{GF}(p): Y^{2}=d^{3}+a \cdot d+b\right\}$,
(iv) $F \neq \emptyset$, and
(v) $G=\left\{[\langle d, Y, 1\rangle]_{\mathbb{R}-\operatorname{EllCur}(a, b, p)} ; Y\right.$ ranges over elements of $\operatorname{GF}(p):\langle d, Y$, $1\rangle \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p)\}$.
Then there exists a function from F into G which is onto and one-to-one.
(62) Let p be a prime number and a, b, d be elements of $\operatorname{GF}(p)$. Suppose $p>3$ and $\operatorname{Disc}(a, b, p) \neq 0_{\mathrm{GF}(p)}$.
Then $\overline{\overline{\left\{[\langle d, Y, 1\rangle]_{\mathbb{R}-\operatorname{EllCur}(a, b, p)} ; Y \text { ranges over elements of GF }(p) \text { : }\right.} \text { } . ~}$
$\overline{\langle d, Y, 1\rangle \in \operatorname{EC~SetProjCo}(a, b, p)\}}=1+\operatorname{Lege}_{p}\left(d^{3}+a \cdot d+b\right)$.
(63) Let p be a prime number and a, b be elements of GF (p). Suppose $p>3$ and $\operatorname{Disc}(a, b, p) \neq 0_{\mathrm{GF}(p)}$. Then there exists a finite sequence F of elements of \mathbb{N} such that
(i) $\operatorname{len} F=p$,
(ii) for every natural number n such that $n \in \operatorname{Seg} p$ there exists an element d of $\operatorname{GF}(p)$ such that $d=n-1$ and $F(n)=1+\operatorname{Lege}_{p}\left(d^{3}+a \cdot d+b\right)$, and
(iii) $\overline{\overline{\left\{[P]_{\mathbb{R}-\operatorname{EllCur}(a, b, p)} ; P\right.} \text { ranges over elements of ProjCo GF }(p) \text { : }}$
$\left.\overline{\bar{P} \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p) \wedge \bigvee_{X, Y}: \text { element of } \operatorname{GF}(p)} P=\langle X, Y, 1\rangle\right\}=\sum F$.
(64) Let p be a prime number and a, b be elements of $\operatorname{GF}(p)$. Suppose $p>3$ and $\operatorname{Disc}(a, b, p) \neq 0_{\mathrm{GF}(p)}$. Then there exists a finite sequence F of elements of \mathbb{Z} such that
(i) $\operatorname{len} F=p$,
(ii) for every natural number n such that $n \in \operatorname{Seg} p$ there exists an element d of $\operatorname{GF}(p)$ such that $d=n-1$ and $F(n)=\operatorname{Lege}_{p}\left(d^{3}+a \cdot d+b\right)$, and
(iii) $\overline{\overline{\text { Classes } \mathbb{R}-E l l C u r}(a, b, p)}=1+p+\sum F$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] G. Seroussi I. Blake and N. Smart. Elliptic Curves in Cryptography. Number 265 in London Mathematical Society Lecture Note Series. Cambridge University Press, 1999.
[11] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[12] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[14] Christoph Schwarzweller. The ring of integers, euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999.
[15] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.
[16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[17] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[23] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI 22300285.

