
FORMALIZED MATHEMATICS

Vol. 19, No. 2, Pages 69–72, 2011
DOI: 10.2478/v10037-011-0012-7

Differentiable Functions into Real Normed
Spaces

Hiroyuki Okazaki
Shinshu University

Nagano, Japan

Noboru Endou
Nagano National College of Technology

Nagano, Japan

Keiko Narita
Hirosaki-city

Aomori, Japan

Yasunari Shidama
Shinshu University

Nagano, Japan

Summary. In this article, we formalize the differentiability of functions
from the set of real numbers into a normed vector space [14].
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The notation and terminology used here have been introduced in the following
papers: [12], [2], [3], [7], [9], [11], [1], [4], [10], [13], [6], [17], [18], [15], [8], [16],
[19], and [5].

For simplicity, we adopt the following rules: F denotes a non trivial real
normed space, G denotes a real normed space, X denotes a set, x, x0, r, p
denote real numbers, n, k denote elements of N, Y denotes a subset of R, Z
denotes an open subset of R, s1 denotes a sequence of real numbers, s2 denotes
a sequence of G, f , f1, f2 denote partial functions from R to the carrier of F ,
h denotes a convergent to 0 sequence of real numbers, and c denotes a constant
sequence of real numbers.

We now state two propositions:

(1) If for every n holds ‖s2(n)‖ ≤ s1(n) and s1 is convergent and lim s1 = 0,
then s2 is convergent and lim s2 = 0G.

(2) (s1 ↑ k) (s2 ↑ k) = (s1 s2) ↑ k.
Let us consider F and let I1 be a partial function from R to the carrier of

F . We say that I1 is rest-like if and only if:
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(Def. 1) I1 is total and for every h holds h−1 (I1∗h) is convergent and
lim(h−1 (I1∗h)) = 0F .

Let us consider F . One can check that there exists a partial function from R
to the carrier of F which is rest-like. Let us consider F . A rest of F is a rest-like
partial function from R to the carrier of F . Let us consider F and let I1 be a
function from R into the carrier of F . We say that I1 is linear if and only if:

(Def. 2) There exists a point r of F such that for every real number p holds
I1(p) = p · r.

Let us consider F . Note that there exists a function from R into the carrier
of F which is linear. Let us consider F . A linear of F is a linear function from
R into the carrier of F .

We use the following convention: R, R1, R2 denote rests of F and L, L1, L2
denote linears of F .

The following propositions are true:

(3) L1 + L2 is a linear of F and L1 − L2 is a linear of F .

(4) r L is a linear of F .

(5) Let h1, h2 be partial functions from R to the carrier of F and s2 be a
sequence of real numbers. If rng s2 ⊆ domh1∩domh2, then (h1+h2)∗s2 =
(h1∗s2) + (h2∗s2) and (h1 − h2)∗s2 = (h1∗s2)− (h2∗s2).

(6) Let h1, h2 be partial functions from R to the carrier of F and s2 be a
sequence of real numbers. If h1 is total and h2 is total, then (h1+h2)∗s2 =
(h1∗s2) + (h2∗s2) and (h1 − h2)∗s2 = (h1∗s2)− (h2∗s2).

(7) R1 +R2 is a rest of F and R1 −R2 is a rest of F .

(8) r R is a rest of F .

Let us consider F , f and let x0 be a real number. We say that f is differen-
tiable in x0 if and only if:

(Def. 3) There exists a neighbourhood N of x0 such that N ⊆ dom f and there
exist L, R such that for every x such that x ∈ N holds fx − fx0 = L(x−
x0) +Rx−x0 .

Let us consider F , f and let x0 be a real number. Let us assume that f is
differentiable in x0. The functor f ′(x0) yielding a point of F is defined by the
condition (Def. 4).

(Def. 4) There exists a neighbourhood N of x0 such that N ⊆ dom f and there
exist L, R such that f ′(x0) = L(1) and for every x such that x ∈ N holds
fx − fx0 = L(x− x0) +Rx−x0 .

Let us consider F , f , X. We say that f is differentiable on X if and only if:

(Def. 5) X ⊆ dom f and for every x such that x ∈ X holds f�X is differentiable
in x.

The following propositions are true:
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(9) If f is differentiable on X, then X is a subset of R.

(10) f is differentiable on Z iff Z ⊆ dom f and for every x such that x ∈ Z
holds f is differentiable in x.

(11) If f is differentiable on Y , then Y is open.

Let us consider F , f , X. Let us assume that f is differentiable on X. The
functor f ′�X yields a partial function from R to the carrier of F and is defined
by:

(Def. 6) dom(f ′�X) = X and for every x such that x ∈ X holds f ′�X(x) = f ′(x).

Next we state a number of propositions:

(12) Suppose Z ⊆ dom f and there exists a point r of F such that rng f = {r}.
Then f is differentiable on Z and for every x such that x ∈ Z holds
(f ′�Z)x = 0F .

(13) Let x0 be a real number and N be a neighbourhood of x0. Suppose f is
differentiable in x0 and N ⊆ dom f. Let given h, c. Suppose rng c = {x0}
and rng(h + c) ⊆ N. Then h−1 ((f∗(h + c)) − (f∗c)) is convergent and
f ′(x0) = lim(h−1 ((f∗(h+ c))− (f∗c))).

(14) If f1 is differentiable in x0 and f2 is differentiable in x0, then f1 + f2 is
differentiable in x0 and (f1 + f2)′(x0) = f1

′(x0) + f2
′(x0).

(15) If f1 is differentiable in x0 and f2 is differentiable in x0, then f1 − f2 is
differentiable in x0 and (f1 − f2)′(x0) = f1

′(x0)− f2′(x0).
(16) For every real number r such that f is differentiable in x0 holds r f is

differentiable in x0 and (r f)′(x0) = r · f ′(x0).
(17) Suppose Z ⊆ dom(f1 + f2) and f1 is differentiable on Z and f2 is diffe-

rentiable on Z. Then f1 + f2 is differentiable on Z and for every x such
that x ∈ Z holds (f1 + f2)′�Z(x) = f1

′(x) + f2
′(x).

(18) Suppose Z ⊆ dom(f1 − f2) and f1 is differentiable on Z and f2 is diffe-
rentiable on Z. Then f1 − f2 is differentiable on Z and for every x such
that x ∈ Z holds (f1 − f2)′�Z(x) = f1

′(x)− f2′(x).

(19) Suppose Z ⊆ dom(r f) and f is differentiable on Z. Then r f is differen-
tiable on Z and for every x such that x ∈ Z holds (r f)′�Z(x) = r · f ′(x).

(20) If Z ⊆ dom f and f�Z is constant, then f is differentiable on Z and for
every x such that x ∈ Z holds f ′�Z(x) = 0F .

(21) Let r, p be points of F and given Z, f . Suppose Z ⊆ dom f and for every
x such that x ∈ Z holds fx = x · r + p. Then f is differentiable on Z and
for every x such that x ∈ Z holds f ′�Z(x) = r.

(22) For every real number x0 such that f is differentiable in x0 holds f is
continuous in x0.

(23) If f is differentiable on X, then f�X is continuous.

(24) If f is differentiable on X and Z ⊆ X, then f is differentiable on Z.
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(25) There exists a rest R of F such that R0 = 0F and R is continuous in 0.

Let us consider F and let f be a partial function from R to the carrier of F .
We say that f is differentiable if and only if:

(Def. 7) f is differentiable on dom f.

Let us consider F . One can check that there exists a function from R into
the carrier of F which is differentiable. We now state the proposition

(26) Let f be a differentiable partial function from R to the carrier of F . If
Z ⊆ dom f, then f is differentiable on Z.
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