Partial Differentiation, Differentiation and Continuity on n-Dimensional Real Normed Linear Spaces

Takao Inoué
Inaba 2205, Wing-Minamikan
Nagano, Nagano, Japan
Adam Naumowicz
Institute of Computer Science
University of Białystok
Akademicka 2, 15-267 Białystok, Poland
Noboru Endou Yasunari Shidama
Nagano National College of Technology Shinshu University
Japan
Nagano, Japan

Abstract

Summary. In this article, we aim to prove the characterization of differentiation by means of partial differentiation for vector-valued functions on n-dimensional real normed linear spaces (refer to [15] and [16]).

MML identifier: PDIFF_8, version: $\underline{7.11 .074 .156 .1112}$

The notation and terminology used in this paper have been introduced in the following papers: [2], [7], [1], [3], [4], [5], [17], [11], [13], [6], [9], [14], [10], [8], [12], and [18].

One can prove the following propositions:
(1) Let n, i be elements of \mathbb{N}, q be an element of \mathcal{R}^{n}, and p be a point of $\mathcal{E}_{\mathrm{T}}^{n}$. If $i \in \operatorname{Seg} n$ and $q=p$, then $\left|p_{i}\right| \leq|q|$.
(2) For every real number x and for every element v_{1} of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ such that $v_{1}=\langle x\rangle$ holds $\left\|v_{1}\right\|=|x|$.
(3) Let n be a non empty element of \mathbb{N}, x be a point of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and i be an element of \mathbb{N}. If $1 \leq i \leq n$, then $\|(\operatorname{Proj}(i, n))(x)\| \leq\|x\|$.
(4) For every non empty element n of \mathbb{N} and for every element x of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and for every element i of \mathbb{N} holds $\|(\operatorname{Proj}(i, n))(x)\|=|(\operatorname{proj}(i, n))(x)|$.
(5) Let n be a non empty element of \mathbb{N}, x be an element of \mathcal{R}^{n}, and i be an element of \mathbb{N}. If $1 \leq i \leq n$, then $|(\operatorname{proj}(i, n))(x)| \leq|x|$.
(6) Let m, n be non empty elements of \mathbb{N}, s be a point of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and i be an element of \mathbb{N}. Suppose $1 \leq i \leq n$. Then $\operatorname{Proj}(i, n)$ is a bounded linear operator from $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ and $\left(\mathrm{BdLinOpsNorm}\left(\left\langle\mathcal{E}^{n}, \| \cdot\right.\right.\right.$ $\left.\left.\|\rangle,\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle\right)\right)(\operatorname{Proj}(i, n)) \leq 1$.
(7) Let m, n be non empty elements of \mathbb{N}, s be a point of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and i be an element of \mathbb{N}. Suppose $1 \leq i \leq n$. Then
(i) $\operatorname{Proj}(i, n) \cdot s$ is a point of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$, and
(ii) $\quad\left(\operatorname{BdLinOpsNorm}\left(\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle,\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle\right)\right)(\operatorname{Proj}(i, n) \cdot s) \leq$ $\left(\operatorname{BdLinOpsNorm}\left(\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle,\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle\right)\right)(\operatorname{Proj}(i, n)) \cdot\left(\operatorname{BdLinOpsNorm}\left(\left\langle\mathcal{E}^{m}, \| \cdot\right.\right.\right.$ $\left.\left.\|\rangle,\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle\right)\right)(s)$.
(8) For every non empty element n of \mathbb{N} and for every element i of \mathbb{N} holds $\operatorname{Proj}(i, n)$ is homogeneous.
(9) Let n be a non empty element of \mathbb{N}, x be an element of \mathcal{R}^{n}, r be a real number, and i be an element of \mathbb{N}. Then $(\operatorname{proj}(i, n))(r \cdot x)=r$. $(\operatorname{proj}(i, n))(x)$.
(10) Let n be a non empty element of \mathbb{N}, x, y be elements of \mathcal{R}^{n}, and i be an element of \mathbb{N}. Then $(\operatorname{proj}(i, n))(x+y)=(\operatorname{proj}(i, n))(x)+(\operatorname{proj}(i, n))(y)$.
(11) Let n be a non empty element of \mathbb{N}, x, y be points of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and i be an element of \mathbb{N}. Then $(\operatorname{Proj}(i, n))(x-y)=(\operatorname{Proj}(i, n))(x)-(\operatorname{Proj}(i, n))(y)$.
(12) Let n be a non empty element of \mathbb{N}, x, y be elements of \mathcal{R}^{n}, and i be an element of \mathbb{N}. Then $(\operatorname{proj}(i, n))(x-y)=(\operatorname{proj}(i, n))(x)-(\operatorname{proj}(i, n))(y)$.
(13) Let m, n be non empty elements of \mathbb{N}, s be a point of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, i$ be an element of \mathbb{N}, and s_{1} be a point of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$. If $s_{1}=\operatorname{Proj}(i, n) \cdot s$ and $1 \leq i \leq n$, then $\left\|s_{1}\right\| \leq\|s\|$.
(14) Let m, n be non empty elements of \mathbb{N}, s, t be points of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, s_{1}, t_{1}$ be points of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$, and i be an element of \mathbb{N}. If $s_{1}=\operatorname{Proj}(i, n) \cdot s$ and $t_{1}=\operatorname{Proj}(i, n) \cdot t$ and $1 \leq i \leq n$, then $\left\|s_{1}-t_{1}\right\| \leq\|s-t\|$.
(15) Let K be a real number, n be an element of \mathbb{N}, and s be an element of \mathcal{R}^{n}. Suppose that for every element i of \mathbb{N} such that $1 \leq i \leq n$ holds
$|s(i)| \leq K$. Then $|s| \leq n \cdot K$.
(16) Let K be a real number, n be a non empty element of \mathbb{N}, and s be an element of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose that for every element i of \mathbb{N} such that $1 \leq i \leq n$ holds $\|(\operatorname{Proj}(i, n))(s)\| \leq K$. Then $\|s\| \leq n \cdot K$.
(17) Let K be a real number, n be a non empty element of \mathbb{N}, and s be an element of \mathcal{R}^{n}. Suppose that for every element i of \mathbb{N} such that $1 \leq i \leq n$ holds $|(\operatorname{proj}(i, n))(s)| \leq K$. Then $|s| \leq n \cdot K$.
(18) Let m, n be non empty elements of \mathbb{N}, s be a point of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and K be a real number. Suppose that for every element i of \mathbb{N} and for every point s_{1} of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ such that $s_{1}=\operatorname{Proj}(i, n) \cdot s$ and $1 \leq i \leq n$ holds $\left\|s_{1}\right\| \leq K$. Then $\|s\| \leq n \cdot K$.
(19) Let m, n be non empty elements of \mathbb{N}, s, t be points of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and K be a real number. Suppose that for every element i of \mathbb{N} and for all points s_{1}, t_{1} of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ such that $s_{1}=\operatorname{Proj}(i, n) \cdot s$ and $t_{1}=\operatorname{Proj}(i, n) \cdot t$ and $1 \leq i \leq n$ holds $\left\|s_{1}-t_{1}\right\| \leq K$. Then $\|s-t\| \leq n \cdot K$.
(20) Let m, n be non empty elements of \mathbb{N}, f be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, X$ be a subset of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, and i be an element of \mathbb{N}. Suppose $1 \leq i \leq m$ and X is open. Then the following statements are equivalent
(i) $\quad f$ is partially differentiable on X w.r.t. i and $f \vdash^{i} X$ is continuous on X,
(ii) for every element j of \mathbb{N} such that $1 \leq j \leq n$ holds $\operatorname{Proj}(j, n) \cdot f$ is partially differentiable on X w.r.t. i and $\operatorname{Proj}(j, n) \cdot f \upharpoonright^{i} X$ is continuous on X.
(21) Let m, n be non empty elements of \mathbb{N}, f be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and X be a subset of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose X is open. Then f is differentiable on X and $f_{\mid X}^{\prime}$ is continuous on X if and only if for every element j of \mathbb{N} such that $1 \leq j \leq n$ holds $\operatorname{Proj}(j, n) \cdot f$ is differentiable on X and $(\operatorname{Proj}(j, n) \cdot f)_{\mid X}^{\prime}$ is continuous on X.
(22) Let m, n be non empty elements of \mathbb{N}, f be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and X be a subset of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose X is open. Then for every element i of \mathbb{N} such that $1 \leq i \leq m$ holds f is partially differentiable on X w.r.t. i and $f \upharpoonright^{i} X$ is continuous on X if and only if f is differentiable on X and $f_{\mid X}^{\prime}$ is continuous on X.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[8] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.
[9] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces \mathcal{R}^{n}. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. Formalized Mathematics, 12(3):321-327, 2004.
[12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[13] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.
[14] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[15] Walter Rudin. Principles of Mathematical Analysis. MacGraw-Hill, 1976.
[16] Laurent Schwartz. Cours d'analyse. Hermann, 1981.
[17] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

