The Axiomatization of Propositional Linear Time Temporal Logic

Mariusz Giero
Institute of Sociology
University of Białystok
Poland

Abstract

Summary. The article introduces propositional linear time temporal logic as a formal system. Axioms and rules of derivation are defined. Soundness Theorem and Deduction Theorem are proved [9].

MML identifier: LTLAXIO1, version: $\underline{7.11 .07 \text { 4.160.1126 }}$

The terminology and notation used in this paper have been introduced in the following papers: [10], [3], [4], [5], [8], [11], [13], [1], [2], [6], [12], and [7].

1. Preliminaries

In this paper a, b, c denote boolean numbers.
Next we state three propositions:
(1) $(a \Rightarrow b \wedge c) \Rightarrow(a \Rightarrow b)=1$.
(2) $(a \Rightarrow(b \Rightarrow c)) \Rightarrow(a \wedge b \Rightarrow c)=1$.
(3) $(a \wedge b \Rightarrow c) \Rightarrow(a \Rightarrow(b \Rightarrow c))=1$.

2. The Language. Basic Operators. Further Operators as
 Abbreviations

We introduce the LTLB-WFF as a synonym of HP-WFF.
For simplicity, we adopt the following rules: p, q, r, s, A, B, C are elements of the LTLB-WFF, G is a subset of the LTLB-WFF, i, j, n are elements of \mathbb{N}, and f_{1}, f_{2} are finite sequences of elements of the LTLB-WFF.

We introduce \perp_{t} as a synonym of VERUM.
Let us consider p, q. We introduce $p \mathcal{U}_{s} q$ as a synonym of $p \wedge q$.
We now state the proposition
(4) For every A holds $A=\perp_{t}$ or there exists n such that $A=\operatorname{prop} n$ or there exist p, q such that $A=p \Rightarrow q$ or there exist p, q such that $A=p \mathcal{U}_{s} q$.
Let us consider p. The functor $\neg p$ yields an element of the LTLB-WFF and is defined as follows:
(Def. 1) $\neg p=p \Rightarrow \perp_{t}$.
The functor $\mathcal{X} p$ yielding an element of the LTLB-WFF is defined as follows:
(Def. 2) $\mathcal{X} p=\perp_{t} \mathcal{U}_{s} p$.
The element T_{t} of the LTLB-WFF is defined by:
(Def. 3) $\top_{t}=\neg \perp_{t}$.
Let us consider p, q. The functor $p \& \& q$ yields an element of the LTLB-WFF and is defined as follows:
(Def. 4) $\quad p \& \& q=\left(p \Rightarrow\left(q \Rightarrow \perp_{t}\right)\right) \Rightarrow \perp_{t}$.
Let us consider p, q. The functor $p \| q$ yielding an element of the LTLB-WFF is defined as follows:
(Def. 5) $\quad p \| q=\neg(\neg p \& \& \neg q)$.
Let us consider p. The functor $\mathcal{G} p$ yielding an element of the LTLB-WFF is defined as follows:
(Def. 6) $\mathcal{G} p=\neg\left(\neg p \|\left(T_{t} \& \&\left(T_{t} \mathcal{U}_{s} \neg p\right)\right)\right)$.
Let us consider p. The functor $\mathcal{F} p$ yields an element of the LTLB-WFF and is defined as follows:
(Def. 7) $\mathcal{F} p=\neg \mathcal{G} \neg p$.
Let us consider p, q. The functor $p \mathcal{U} q$ yields an element of the LTLB-WFF and is defined as follows:
(Def. 8) $\quad p \mathcal{U} q=q \|\left(p \& \&\left(p \mathcal{U}_{s} q\right)\right)$.
Let us consider p, q. The functor $p \mathcal{R} q$ yielding an element of the LTLB-WFF is defined as follows:
(Def. 9) $\quad p \mathcal{R} q=\neg(\neg p \mathcal{U} \neg q)$.

3. The Semantics

The subset $A P$ of the LTLB-WFF is defined by:
(Def. 10) For every set x holds $x \in A P$ iff there exists an element n of \mathbb{N} such that $x=\operatorname{prop} n$.
A LTL Model is a sequence of $2^{A P}$.
In the sequel M denotes a LTL Model.

Let M be a LTL Model. The functor SAT_{M} yielding a function from $\mathbb{N} \times$ the LTLB-WFF into Boolean is defined by the condition (Def. 11).
(Def. 11) Let given n. Then
(i) $\operatorname{SAT}_{M}\left(\left\langle n, \perp_{t}\right\rangle\right)=0$,
(ii) for every k holds $\operatorname{SAT}_{M}(\langle n$, prop $k\rangle)=1$ iff $\operatorname{prop} k \in M(n)$, and
(iii) for all p, q holds $\operatorname{SAT}_{M}(\langle n, p \Rightarrow q\rangle)=\operatorname{SAT}_{M}(\langle n, p\rangle) \Rightarrow \operatorname{SAT}_{M}(\langle n$, $q\rangle)$ and $\operatorname{SAT}_{M}\left(\left\langle n, p \mathcal{U}_{s} q\right\rangle\right)=1$ iff there exists i such that $0<i$ and $\operatorname{SAT}_{M}(\langle n+i, q\rangle)=1$ and for every j such that $1 \leq j<i$ holds $\operatorname{SAT}_{M}(\langle n+$ $j, p\rangle)=1$.
One can prove the following propositions:
(5) $\operatorname{SAT}_{M}(\langle n, \neg A\rangle)=1$ iff $\operatorname{SAT}_{M}(\langle n, A\rangle)=0$.
(6) $\operatorname{SAT}_{M}\left(\left\langle n, \top_{t}\right\rangle\right)=1$.
(7) $\operatorname{SAT}_{M}(\langle n, A \& \& B\rangle)=1 \mathrm{iff} \operatorname{SAT}_{M}(\langle n, A\rangle)=1$ and $\operatorname{SAT}_{M}(\langle n, B\rangle)=1$.
(8) $\operatorname{SAT}_{M}(\langle n, A \| B\rangle)=1$ iff $\operatorname{SAT}_{M}(\langle n, A\rangle)=1$ or $\operatorname{SAT}_{M}(\langle n, B\rangle)=1$.
(9) $\operatorname{SAT}_{M}(\langle n, \mathcal{X} A\rangle)=\operatorname{SAT}_{M}(\langle n+1, A\rangle)$.
(10) $\operatorname{SAT}_{M}(\langle n, \mathcal{G} A\rangle)=1$ iff for every i holds $\operatorname{SAT}_{M}(\langle n+i, A\rangle)=1$.
(11) $\operatorname{SAT}_{M}(\langle n, \mathcal{F} A\rangle)=1$ iff there exists i such that $\operatorname{SAT}_{M}(\langle n+i, A\rangle)=1$.
(12) $\operatorname{SAT}_{M}(\langle n, p \mathcal{U} q\rangle)=1$ iff there exists i such that $\operatorname{SAT}_{M}(\langle n+i, q\rangle)=1$ and for every j such that $j<i$ holds $\operatorname{SAT}_{M}(\langle n+j, p\rangle)=1$.
(13) $\operatorname{SAT}_{M}(\langle n, p \mathcal{R} q\rangle)=1$ if and only if one of the following conditions is satisfied:
(i) there exists i such that $\operatorname{SAT}_{M}(\langle n+i, p\rangle)=1$ and for every j such that $j \leq i$ holds $\operatorname{SAT}_{M}(\langle n+j, q\rangle)=1$, or
(ii) for every i holds $\operatorname{SAT}_{M}(\langle n+i, q\rangle)=1$.
(14) $\operatorname{SAT}_{M}(\langle n, \neg \mathcal{X} B\rangle)=\operatorname{SAT}_{M}(\langle n, \mathcal{X} \neg B\rangle)$.
(15) $\operatorname{SAT}_{M}(\langle n, \neg \mathcal{X} B \Rightarrow \mathcal{X} \neg B\rangle)=1$.
(16) $\operatorname{SAT}_{M}(\langle n, \mathcal{X} \neg B \Rightarrow \neg \mathcal{X} B\rangle)=1$.
(17) $\operatorname{SAT}_{M}(\langle n, \mathcal{X}(B \Rightarrow C) \Rightarrow(\mathcal{X} B \Rightarrow \mathcal{X} C)\rangle)=1$.
(18) $\operatorname{SAT}_{M}(\langle n, \mathcal{G} B \Rightarrow B \& \& \mathcal{X} \mathcal{G} B\rangle)=1$.
(19) $\operatorname{SAT}_{M}\left(\left\langle n, B \mathcal{U}_{s} C \Rightarrow \mathcal{X} C \| \mathcal{X}\left(B \& \&\left(B \mathcal{U}_{s} C\right)\right)\right\rangle\right)=1$.
(20) $\operatorname{SAT}_{M}\left(\left\langle n, \mathcal{X} C \| \mathcal{X}\left(B \& \&\left(B \mathcal{U}_{s} C\right)\right) \Rightarrow B \mathcal{U}_{s} C\right\rangle\right)=1$.
(21) $\operatorname{SAT}_{M}\left(\left\langle n, B \mathcal{U}_{s} C \Rightarrow \mathcal{X} \mathcal{F} C\right\rangle\right)=1$.
4. Validity. Consequence. Some Facts about the Semantical Notions

Let us consider M, p. The predicate $M \models p$ is defined as follows:
(Def. 12) For every element n of \mathbb{N} holds $\operatorname{SAT}_{M}(\langle n, p\rangle)=1$.

Let us consider M, F. The predicate $M \models F$ is defined by:
(Def. 13) For every p such that $p \in F$ holds $M \models p$.
Let us consider F, p. The predicate $F \models p$ is defined as follows:
(Def. 14) For every M such that $M \models F$ holds $M \models p$.
One can prove the following propositions:
(22) $\quad M \models F$ and $M \models G$ iff $M \models F \cup G$.
(23) $M \models A$ iff $M \models\{A\}$.
(24) If $F \models A$ and $F \models A \Rightarrow B$, then $F \models B$.
(25) If $F \models A$, then $F \models \mathcal{X} A$.
(26) If $F \models A$, then $F \models \mathcal{G} A$.
(27) If $F \models A \Rightarrow B$ and $F \models A \Rightarrow \mathcal{X} A$, then $F \models A \Rightarrow \mathcal{G} B$.
(28) $\operatorname{SAT}_{(M \uparrow i)}(\langle j, A\rangle)=\operatorname{SAT}_{M}(\langle i+j, A\rangle)$.
(29) If $M \models F$, then $M \uparrow i \models F$.
(30) $F \cup\{A\} \mid=B$ iff $F \models \mathcal{G} A \Rightarrow B$.

Let f be a function from the LTLB-WFF into Boolean. The functor VAL f yielding a function from the LTLB-WFF into Boolean is defined as follows:
(Def. 15) $\quad(\operatorname{VAL} f)\left(\perp_{t}\right)=0$ and $(\operatorname{VAL} f)(\operatorname{prop} n)=f(\operatorname{prop} n)$ and $(\operatorname{VAL} f)(A \Rightarrow$ $B)=(\operatorname{VAL} f)(A) \Rightarrow(\operatorname{VAL} f)(B)$ and $(\operatorname{VAL} f)\left(A \mathcal{U}_{s} B\right)=f\left(A \mathcal{U}_{s} B\right)$.
The following propositions are true:
(31) For every function f from the LTLB-WFF into Boolean and for all p, q holds $(\operatorname{VAL} f)(p \& \& q)=(\operatorname{VAL} f)(p) \wedge(\operatorname{VAL} f)(q)$.
(32) Let f be a function from the LTLB-WFF into Boolean. Suppose that for every set B such that $B \in$ the LTLB-WFF holds $f(B)=\operatorname{SAT}_{M}(\langle n, B\rangle)$. Then $(\operatorname{VAL} f)(A)=\operatorname{SAT}_{M}(\langle n, A\rangle)$.
Let us consider p. We say that p is tautologically valid if and only if:
(Def. 16) For every function f from the LTLB-WFF into Boolean holds $(\operatorname{VAL} f)(p)=1$.
One can prove the following proposition
(33) If A is tautologically valid, then $F \models A$.

5. Axioms. Derivation Rules. Derivability. Soundness Theorem for LTL

Let D be a set. We say that D has LTL axioms if and only if the condition (Def. 17) is satisfied.
(Def. 17) Let given p, q. Then if p is tautologically valid, then $p \in D$,
$\neg \mathcal{X} p \Rightarrow \mathcal{X} \neg p \in D$, $\mathcal{X} \neg p \Rightarrow \neg \mathcal{X} p \in D$,

$$
\begin{aligned}
& \mathcal{X}(p \Rightarrow q) \Rightarrow(\mathcal{X} p \Rightarrow \mathcal{X} q) \in D \\
& \mathcal{G} p \Rightarrow p \& \& \mathcal{X} \mathcal{G} p \in D \\
& p \mathcal{U}_{s} q \Rightarrow \mathcal{X} q \| \mathcal{X}\left(p \& \&\left(p \mathcal{U}_{s} q\right)\right) \in D \\
& \mathcal{X} q \| \mathcal{X}\left(p \& \&\left(p \mathcal{U}_{s} q\right)\right) \Rightarrow p \mathcal{U}_{s} q \in D \\
& p \mathcal{U}_{s} q \Rightarrow \mathcal{X} \mathcal{F} q \in D
\end{aligned}
$$

The subset $A X_{\text {LTL }}$ of the LTLB-WFF is defined as follows:
(Def. 18) $A X_{\text {LTL }}$ has LTL axioms and for every subset D of the LTLB-WFF such that D has LTL axioms holds $A X_{\mathrm{LTL}} \subseteq D$.
Let us mention that $A X_{\text {LTL }}$ has LTL axioms.
Next we state two propositions:
(34) $p \Rightarrow(q \Rightarrow p) \in A X_{\mathrm{LTL}}$.
(35) $\quad(p \Rightarrow(q \Rightarrow r)) \Rightarrow((p \Rightarrow q) \Rightarrow(p \Rightarrow r)) \in A X_{\mathrm{LTL}}$.

Let us consider p, q. The predicate $\operatorname{NEX}(p, q)$ is defined as follows:
(Def. 19) $q=\mathcal{X} p$.
Let us consider r. The predicate $\operatorname{MP}(p, q, r)$ is defined as follows:
(Def. 20) $\quad q=p \Rightarrow r$.
The predicate $\operatorname{IND}(p, q, r)$ is defined as follows:
(Def. 21) There exist A, B such that $p=A \Rightarrow B$ and $q=A \Rightarrow \mathcal{X} A$ and $r=A \Rightarrow$ $\mathcal{G} B$.
Let us observe that $A X_{\text {LTL }}$ is non empty.
Let us consider A. We say that A is LTL axiom 1 if and only if:
(Def. 22) There exists B such that $A=\neg \mathcal{X} B \Rightarrow \mathcal{X} \neg B$.
We say that A is LTL axiom 1a if and only if:
(Def. 23) There exists B such that $A=\mathcal{X} \neg B \Rightarrow \neg \mathcal{X} B$.
We say that A is LTL axiom 2 if and only if:
(Def. 24) There exist B, C such that $A=\mathcal{X}(B \Rightarrow C) \Rightarrow(\mathcal{X} B \Rightarrow \mathcal{X} C)$.
We say that A is LTL axiom 3 if and only if:
(Def. 25) There exists B such that $A=\mathcal{G} B \Rightarrow B \& \& \mathcal{X} \mathcal{G} B$.
We say that A is LTL axiom 4 if and only if:
(Def. 26) There exist B, C such that $A=B \mathcal{U}_{s} C \Rightarrow \mathcal{X} C \| \mathcal{X}\left(B \& \&\left(B \mathcal{U}_{s} C\right)\right)$.
We say that A is LTL axiom 5 if and only if:
(Def. 27) There exist B, C such that $A=\mathcal{X} C \| \mathcal{X}\left(B \& \&\left(B \mathcal{U}_{s} C\right)\right) \Rightarrow B \mathcal{U}_{s} C$.
We say that A is LTL axiom 6 if and only if:
(Def. 28) There exist B, C such that $A=B \mathcal{U}_{s} C \Rightarrow \mathcal{X} \mathcal{F} C$.
Next we state two propositions:
(36) Every element of $A X_{\text {LTL }}$ is tautologically valid, or LTL axiom 1, or LTL axiom 1a, or LTL axiom 2, or LTL axiom 3, or LTL axiom 4, or LTL axiom 5 , or LTL axiom 6 .
(37) Suppose that A is LTL axiom 1, or LTL axiom 1a, or LTL axiom 2, or LTL axiom 3, or LTL axiom 4, or LTL axiom 5, or LTL axiom 6. Then $F \models A$.
Let i be a natural number and let us consider f, X. The predicate $\operatorname{prc}(f, X, i)$ is defined by the conditions (Def. 29).
(Def. 29)(i) $\quad f(i) \in A X_{\text {LTL }}$, or
(ii) $f(i) \in X$, or
(iii) there exist natural numbers j, k such that $1 \leq j<i$ and $1 \leq k<i$ and $\operatorname{MP}\left(f_{j}, f_{k}, f_{i}\right)$ or $\operatorname{IND}\left(f_{j}, f_{k}, f_{i}\right)$, or
(iv) there exists a natural number j such that $1 \leq j<i$ and $\operatorname{NEX}\left(f_{j}, f_{i}\right)$.

Let us consider X, p. The predicate $X \vdash p$ is defined as follows:
(Def. 30) There exists f such that $f(\operatorname{len} f)=p$ and $1 \leq \operatorname{len} f$ and for every natural number i such that $1 \leq i \leq \operatorname{len} f$ holds $\operatorname{prc}(f, X, i)$.
We now state four propositions:
(38) Let i, n be natural numbers. Suppose $n+\operatorname{len} f \leq \operatorname{len} f_{2}$ and for every natural number k such that $1 \leq k \leq \operatorname{len} f$ holds $f(k)=f_{2}(k+n)$ and $1 \leq i \leq \operatorname{len} f$. If $\operatorname{prc}(f, X, i)$, then $\operatorname{prc}\left(f_{2}, X, i+n\right)$.
(39) Suppose that
(i) $f_{2}=f^{\wedge} f_{1}$,
(ii) $1 \leq \operatorname{len} f$,
(iii) $1 \leq \operatorname{len} f_{1}$,
(iv) for every natural number i such that $1 \leq i \leq \operatorname{len} f$ holds $\operatorname{prc}(f, X, i)$, and
(v) for every natural number i such that $1 \leq i \leq \operatorname{len} f_{1}$ holds $\operatorname{prc}\left(f_{1}, X, i\right)$. Let i be a natural number. If $1 \leq i \leq \operatorname{len} f_{2}$, then $\operatorname{prc}\left(f_{2}, X, i\right)$.
(40) Suppose $f=f_{1} \wedge\langle p\rangle$ and $1 \leq \operatorname{len} f_{1}$ and for every natural number i such that $1 \leq i \leq \operatorname{len} f_{1}$ holds $\operatorname{prc}\left(f_{1}, X, i\right)$ and $\operatorname{prc}(f, X$, len $f)$. Then for every natural number i such that $1 \leq i \leq \operatorname{len} f$ holds $\operatorname{prc}(f, X, i)$ and $X \vdash p$.
$(41)^{1}$ If $F \vdash A$, then $F \models A$.

6. Derivation of Some Formulas. Deduction Theorem of LTL

We now state a number of propositions:
(42) If $p \in A X_{\text {LTL }}$ or $p \in X$, then $X \vdash p$.
(43) If $X \vdash p$ and $X \vdash p \Rightarrow q$, then $X \vdash q$.
(44) If $X \vdash p$, then $X \vdash \mathcal{X} p$.
(45) If $X \vdash p \Rightarrow q$ and $X \vdash p \Rightarrow \mathcal{X} p$, then $X \vdash p \Rightarrow \mathcal{G} q$.
(46) If $X \vdash r \Rightarrow p \& \& q$, then $X \vdash r \Rightarrow p$ and $X \vdash r \Rightarrow q$.

[^0](47) If $X \vdash p \Rightarrow q$ and $X \vdash q \Rightarrow r$, then $X \vdash p \Rightarrow r$.
(48) If $X \vdash p \Rightarrow(q \Rightarrow r)$, then $X \vdash p \& \& q \Rightarrow r$.
(49) If $X \vdash p \& \& q \Rightarrow r$, then $X \vdash p \Rightarrow(q \Rightarrow r)$.
(50) If $X \vdash p \& \& q \Rightarrow r$ and $X \vdash p \Rightarrow s$, then $X \vdash p \& \& q \Rightarrow s \& \& r$.
(51) If $X \vdash p \Rightarrow(q \Rightarrow r)$ and $X \vdash r \Rightarrow s$, then $X \vdash p \Rightarrow(q \Rightarrow s)$.
(52) If $X \vdash p \Rightarrow q$, then $X \vdash \neg q \Rightarrow \neg p$.
(53) $X \vdash \mathcal{X} p \& \& \mathcal{X} q \Rightarrow \mathcal{X}(p \& \& q)$.
(54) If $F \vdash p$, then $F \vdash \mathcal{G} p$.
(55) If $p \Rightarrow q \in F$, then $F \cup\{p\} \vdash \mathcal{G} q$.
(56) If $F \vdash q$, then $F \cup\{p\} \vdash q$.
$(57)^{2}$ If $F \cup\{p\} \vdash q$, then $F \vdash \mathcal{G} p \Rightarrow q$.
(58) If $F \vdash p \Rightarrow q$, then $F \cup\{p\} \vdash q$.
(59) If $F \vdash \mathcal{G} p \Rightarrow q$, then $F \cup\{p\} \vdash q$.
(60) $\quad F \vdash \mathcal{G}(p \Rightarrow q) \Rightarrow(\mathcal{G} p \Rightarrow \mathcal{G} q)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
[6] $\begin{aligned} & \text { 1990. } \\ & \text { Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, } 1990 .\end{aligned}$
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics, 8(1):69-72, 1999.
[9] Fred Kröger and Stephan Merz. Temporal Logic and State Systems. Springer-Verlag, 2008.
[10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[11] Andrzej Trybulec. Defining by structural induction in the positive propositional language. Formalized Mathematics, 8(1):133-137, 1999.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[13] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.

Received November 20, 2010

[^1]
[^0]: ${ }^{1}$ Soundness Theorem for LTL

[^1]: ${ }^{2}$ Deduction Theorem of LTL

