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Poland

Summary. We introduce linear transformations of Euclidean topological
spaces given by a transformation matrix. Next, we prove selected properties and
basic arithmetic operations on these linear transformations. Finally, we show that
a linear transformation given by an invertible matrix is a homeomorphism.

MML identifier: MATRTOP1, version: 7.11.07 4.156.1112

The papers [2], [12], [6], [26], [7], [8], [30], [21], [22], [23], [15], [31], [29], [19],
[24], [3], [4], [9], [16], [5], [20], [18], [1], [14], [28], [13], [10], [25], [27], [11], and
[17] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: X, Y denote sets, n, m, k, i
denote natural numbers, r denotes a real number, R denotes an element of RF,
K denotes a field, f , f1, f2, g1, g2 denote finite sequences, r1, r2, r3 denote
real-valued finite sequences, c1, c2 denote complex-valued finite sequences, and
F denotes a function.

Let us consider X, Y and let F be a positive yielding partial function from
X to R. One can check that F �Y is positive yielding.

Let us consider X, Y and let F be a negative yielding partial function from
X to R. One can verify that F �Y is negative yielding.

Let us consider X, Y and let F be a non-positive yielding partial function
from X to R. Note that F �Y is non-positive yielding.
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Let us consider X, Y and let F be a non-negative yielding partial function
from X to R. Note that F �Y is non-negative yielding.

Let us consider r1. One can check that
√
r1 is finite sequence-like.

Let us consider r1. The functor @r1 yielding a finite sequence of elements of
RF is defined by:

(Def. 1) @r1 = r1.

Let p be a finite sequence of elements of RF. The functor @p yields a finite
sequence of elements of R and is defined as follows:

(Def. 2) @p = p.

We now state several propositions:

(1) (@r2) + @r3 = r2 + r3.

(2)
√
r2 a r3 =

√
r2
a √r3.

(3)
√
〈r〉 = 〈

√
r〉.

(4)
√
r12 = |r1|.

(5) If r1 is non-negative yielding, then
√∑

r1 ≤
∑√

r1.

(6) There exists X such that X ⊆ domF and rngF = rng(F �X) and F �X
is one-to-one.

Let us consider c1, X. Observe that c1 −X is complex-valued.
Let us consider r1, X. Observe that r1 −X is real-valued.
Let c1 be a complex-valued finite subsequence. Note that Seq c1 is complex-

valued.
Let r1 be a real-valued finite subsequence. Observe that Seq r1 is real-valued.
One can prove the following propositions:

(7) For every permutation P of dom f such that f1 = f · P there exists a
permutation Q of dom(f −X) such that f1 −X = (f −X) ·Q.

(8) For every permutation P of dom c1 such that c2 = c1 · P holds
∑

(c2 −
X) =

∑
(c1 −X).

(9) Let f , f1 be finite subsequences and P be a permutation of dom f. If
f1 = f ·P, then there exists a permutation Q of dom Seq(f1�P−1(X)) such
that Seq(f�X) = Seq(f1�P−1(X)) ·Q.

(10) Let c1, c2 be complex-valued finite subsequences and P be a permutation
of dom c1. If c2 = c1 · P, then

∑
Seq(c1�X) =

∑
Seq(c2�P−1(X)).

(11) Let f be a finite subsequence and n be an element of N. If for every i

holds i+ n ∈ X iff i ∈ Y, then Shiftn f�X = Shiftn(f�Y ).

(12) There exists a subset Y of N such that Seq((f1a f2)�X) = (Seq(f1�X))a

Seq(f2�Y ) and for every n such that n > 0 holds n ∈ Y iff n + len f1 ∈
X ∩ dom(f1 a f2).

(13) If len g1 = len f1 and len g2 ≤ len f2, then Seq((f1af2)�(g1ag2)−1(X)) =
(Seq(f1�g1−1(X))) a Seq(f2�g2−1(X)).
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(14) Let D be a non empty set and M be a matrix over D of dimension n ×
m. Then M −X is a matrix over D of dimension n−′ M−1(X) × m.

(15) Let F be a function from Seg n into Seg n, D be a non empty set, M
be a matrix over D of dimension n × m, and given i. If i ∈ Seg widthM,

then (M · F )�,i = M�,i · F.
(16) Let A be a matrix over K of dimension n × m. Suppose rk(A) = n.

Then there exists a matrix B over K of dimension m−′ n × m such that
rk(A a B) = m.

(17) Let A be a matrix over K of dimension n × m. Suppose rk(A) = m.

Then there exists a matrix B over K of dimension n × n−′ m such that
rk(A_ B) = n.

For simplicity, we adopt the following convention: f , f1, f2 denote n-element
real-valued finite sequences, p, p1, p2 denote points of EnT, M , M1, M2 denote
matrices over RF of dimension n × m, and A, B denote square matrices over
RF of dimension n.

2. Linear Transformations of Euclidean Topological Spaces Given
by a Transformation Matrix

Let us consider n, m, M . The functor Mx2TranM yielding a function from
EnT into EmT is defined by:

(Def. 3)(i) (Mx2TranM)(f) = Line(LineVec2Mx(@f) ·M, 1) if n 6= 0,
(ii) (Mx2TranM)(f) = 0EmT , otherwise.

Let us consider n,m,M and let x be a set. One can check that (Mx2TranM)(x)
is function-like and relation-like and (Mx2TranM)(x) is real-valued and finite
sequence-like.

Let us consider n, m, M , f . One can check that (Mx2TranM)(f) is m-
element.

One can prove the following propositions:

(18) If 1 ≤ i ≤ m and n 6= 0, then (Mx2TranM)(f)(i) = (@f) ·M�,i.
(19) len MX2FinS(In×nK ) = n.

(20) Let B1 be an ordered basis of the n-dimension vector space over RF and
B2 be an ordered basis of the m-dimension vector space over RF. Suppose
B1 = MX2FinS(In×nRF ) and B2 = MX2FinS(Im×mRF ). Let M1 be a matrix
over RF of dimension lenB1 × lenB2. If M1 = M, then Mx2TranM =
Mx2Tran(M1, B1, B2).

(21) For every permutation P of Seg n holds (Mx2TranM)(f) =
(Mx2Tran(M · P ))(f · P ) and f · P is an n-element finite sequence of
elements of R.

(22) (Mx2TranM)(f1 + f2) = (Mx2TranM)(f1) + (Mx2TranM)(f2).
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(23) (Mx2TranM)(r · f) = r · (Mx2TranM)(f).

(24) (Mx2TranM)(f1 − f2) = (Mx2TranM)(f1)− (Mx2TranM)(f2).

(25) (Mx2Tran(M1 +M2))(f) = (Mx2TranM1)(f) + (Mx2TranM2)(f).

(26) (R) · (Mx2TranM)(f) = (Mx2Tran(R ·M))(f).

(27) (Mx2TranM)(p1 + p2) = (Mx2TranM)(p1) + (Mx2TranM)(p2).

(28) (Mx2TranM)(p1 − p2) = (Mx2TranM)(p1)− (Mx2TranM)(p2).

(29) (Mx2TranM)(0EnT) = 0EmT .

(30) For every subset A of EnT holds (Mx2TranM)◦(p + A) =
(Mx2TranM)(p) + (Mx2TranM)◦A.

(31) For every subset A of EmT holds (Mx2TranM)−1((Mx2TranM)(p)+A) =
p+ (Mx2TranM)−1(A).

(32) Let A be a matrix over RF of dimension n × m and B be a matrix over
RF of dimension widthA × k. If if n = 0, then m = 0 and if m = 0, then
k = 0, then Mx2TranB ·Mx2TranA = Mx2Tran(A ·B).

(33) Mx2Tran(In×nRF ) = idEnT .

(34) If Mx2TranM1 = Mx2TranM2, then M1 = M2.

(35) Let A be a matrix over RF of dimension n × m and B be a matrix
over RF of dimension k × m. Then (Mx2Tran(A a B))(f a (k 7→ 0)) =
(Mx2TranA)(f) and (Mx2Tran(B a A))((k 7→ 0) a f) = (Mx2TranA)(f).

(36) Let A be a matrix over RF of dimension n × m, B be a matrix over
RF of dimension k × m, and g be a k-element real-valued finite sequence.
Then (Mx2Tran(A a B))(f a g) = (Mx2TranA)(f) + (Mx2TranB)(g).

(37) Let A be a matrix over RF of dimension n × k and B be a matrix
over RF of dimension n × m such that if n = 0, then k + m = 0. Then
(Mx2Tran(A_ B))(f) = (Mx2TranA)(f) a (Mx2TranB)(f).

(38) (Mx2Tran(Im×mRF �n))(f)�n = f.

3. Selected Properties of the Mx2Tran Operator

Next we state several propositions:

(39) Mx2TranM is one-to-one iff rk(M) = n.

(40) Mx2TranA is one-to-one iff DetA 6= 0RF .

(41) Mx2TranM is onto iff rk(M) = m.

(42) Mx2TranA is onto iff DetA 6= 0RF .

(43) For all A, B such that DetA 6= 0RF holds (Mx2TranA)−1 = Mx2TranB
iff A` = B.

(44) There exists an m-element finite sequence L of elements of R such that
for every i such that i ∈ domL holds L(i) = |@(M�,i)| and for every f

holds |(Mx2TranM)(f)| ≤
∑
L · |f |.
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(45) There exists a real number L such that L > 0 and for every f holds
|(Mx2TranM)(f)| ≤ L · |f |.

(46) If rk(M) = n, then there exists a real number L such that L > 0 and for
every f holds |f | ≤ L · |(Mx2TranM)(f)|.

(47) Mx2TranM is continuous.

Let us consider n, K. One can check that there exists a square matrix over
K of dimension n which is invertible.

Let us consider n and let A be an invertible square matrix over RF of di-
mension n. Note that Mx2TranA is homeomorphism.
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