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Summary. We introduce linear transformations of Euclidean topological
spaces given by a transformation matrix. Next, we prove selected properties and
basic arithmetic operations on these linear transformations. Finally, we show that
a linear transformation given by an invertible matrix is a homeomorphism.
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The papers (2], [12], [6], [26], [7], [8], [30], [21], [22], [23], [15], [31], [29], [19],
[24], (3], [4], [9], [16], [5], [20], [18], [1], [14], [28], [13], [10], [25], [27], [11], and
[17] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following rules: X, Y denote sets, n, m, k, i
denote natural numbers, r denotes a real number, R denotes an element of Rp,
K denotes a field, f, fi, f2, g1, go denote finite sequences, 11, ro, 3 denote
real-valued finite sequences, c¢1, ¢o denote complex-valued finite sequences, and
F' denotes a function.

Let us consider X, Y and let F' be a positive yielding partial function from
X to R. One can check that F'[Y is positive yielding.

Let us consider X, Y and let F' be a negative yielding partial function from
X to R. One can verify that F'[Y is negative yielding.

Let us consider X, Y and let I’ be a non-positive yielding partial function
from X to R. Note that F'[Y is non-positive yielding.
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Let us consider X, Y and let F' be a non-negative yielding partial function
from X to R. Note that F'[Y is non-negative yielding.
Let us consider r1. One can check that ,/rq is finite sequence-like.
Let us consider ;. The functor ®r; yielding a finite sequence of elements of
R is defined by:
(Def. 1) @ry =7r1.
Let p be a finite sequence of elements of Ry. The functor ®p yields a finite
sequence of elements of R and is defined as follows:
(Def. 2) “p =p.
We now state several propositions:
( ) (@7“2) +@’l“3 =712+ 1T3.
(2) Vr2"ry=\/ra” /13
3) V{r)={Vr).
(4) V2 =rl.
(5) If r1 is non-negative yielding, then /3 r1 <Y \/r1.
(6) There exists X such that X C dom F' and rng F' = rng(F'[X) and F[X
is one-to-one.
Let us consider ¢;, X. Observe that ¢; — X is complex-valued.
Let us consider r;, X. Observe that ri — X is real-valued.
Let ¢; be a complex-valued finite subsequence. Note that Seq ¢y is complex-
valued.
Let r1 be a real-valued finite subsequence. Observe that Seqr; is real-valued.
One can prove the following propositions:
(7) For every permutation P of dom f such that f; = f - P there exists a
permutation @ of dom(f — X) such that f1 — X = (f — X) - Q.
(8) For every permutation P of domc; such that ca = ¢; - P holds Y (c2 —
X) =2(a - X).
(9) Let f, fi be finite subsequences and P be a permutation of dom f. If
f1 = f- P, then there exists a permutation @ of dom Seq(f1[P~!(X)) such
that Seq(f1X) = Seq(f1[P~1(X)) - Q.
(10) Let c1, c2 be complex-valued finite subsequences and P be a permutation
of domey. If ¢y = ¢ - P, then " Seq(c1[X) = 3 Seq(c2 [P7L(X)).
(11) Let f be a finite subsequence and n be an element of N. If for every 4
holds i +n € X iff i € Y, then Shift" f[|X = Shift"(f[Y).
(12) There exists a subset Y of N such that Seq((f1” f2)[X) = (Seq(f1[X))"
Seq(f2]Y") and for every n such that n > 0 holds n € Y iff n + len f; €
XN dom(fl - f2)
(13) Ifleng; = len f; and len go < len fo, then Seq((f1 7 f2) (91" g2) H(X)) =
(Sea(filgr1(X))) ~ Sed(f2lg2 " (X)).
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(14) Let D be a non empty set and M be a matrix over D of dimension n x
m. Then M — X is a matrix over D of dimension n — M—1(X) x m.

(15) Let F be a function from Segn into Segn, D be a non empty set, M
be a matrix over D of dimension n x m, and given . If i € Seg width M,
then (M - F)D,i = MD,i - F.

(16) Let A be a matrix over K of dimension n x m. Suppose rk(A) = n.
Then there exists a matrix B over K of dimension m —' n X m such that
rk(A ™ B) = m.

(17) Let A be a matrix over K of dimension n x m. Suppose rk(A) = m.
Then there exists a matrix B over K of dimension n x n —' m such that
k(A ™ B) =n.

For simplicity, we adopt the following convention: f, f1, fo denote n-element
real-valued finite sequences, p, p1, p2 denote points of £F, M, My, My denote
matrices over Ry of dimension n x m, and A, B denote square matrices over
Ry of dimension n.

2. LINEAR TRANSFORMATIONS OF EUCLIDEAN TOPOLOGICAL SPACES GIVEN
BY A TRANSFORMATION MATRIX

Let us consider n, m, M. The functor Mx2Tran M yielding a function from
&L into EF' is defined by:

(Def. 3)i)  (Mx2Tran M)(f) = Line(LineVec2Mx(® f) - M, 1) if n # 0,
(i)  (Mx2Tran M)(f) = Ogp, otherwise.

Let us consider n, m, M and let x be a set. One can check that (Mx2Tran M)(x)
is function-like and relation-like and (Mx2Tran M)(x) is real-valued and finite
sequence-like.

Let us consider n, m, M, f. One can check that (Mx2Tran M)(f) is m-
element.

One can prove the following propositions:

(18) If 1 <i<m and n# 0, then (Mx2Tran M)(f)(i) = (°f) - Mp,.

(19) len MX2FinS(I") = n.

(20) Let By be an ordered basis of the n-dimension vector space over Ry and
B be an ordered basis of the m-dimension vector space over Rg. Suppose
By = MX2FinS(Ip ") and By = MX2FinS(/ ™). Let M; be a matrix
over Ry of dimension len By x len By. If My = M, then Mx2Tran M =
Mx2Tran(M;, By, Bs).

(21) For every permutation P of Segn holds (Mx2Tran M)(f) =
(Mx2Tran(M - P))(f - P) and f - P is an n-element finite sequence of
elements of R.

(22) (Mx2Tran M)(f1 + f2) = (Mx2Tran M )(f1) + (Mx2Tran M)(f2).
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(23) (Mx2Tran M)(r - f) = r - (Mx2Tran M)(f).

(24) (Mx2Tran M)(f1 — f2) = (Mx2Tran M)(f1) — (Mx2Tran M )(f2).

(25)  (Mx2Tran(M; + M2))(f) = (Mx2Tran M) (f) + (Mx2Tran Ms)(f).

(26) (R)- (Mx2Tran M)(f) = (Mx2Tran(R - M))(f).

(27)  (Mx2Tran M)(p1 + p2) = (Mx2Tran M)(p1) + (Mx2Tran M )(p2).

(28) (Mx2Tran M)(p1 — p2) = (Mx2Tran M)(p1) — (Mx2Tran M)(p2).

(20) (Mx2Tran M)(0gz) = Ogge.

(30) For every subset A of &R holds (Mx2TranM)°(p + A) =

(Mx2Tran M)(p) + (Mx2Tran M)° A.

(31) For every subset A of EF holds (Mx2Tran M)~ ((Mx2Tran M)(p)+A) =
p + (Mx2Tran M)~ 1(A).

(32) Let A be a matrix over Ry of dimension n x m and B be a matrix over
Rp of dimension width A x k. If if n = 0, then m = 0 and if m = 0, then
k =0, then Mx2Tran B - Mx2Tran A = Mx2Tran(A - B).

(33) Mx2Tran(Ig ") = iden.
Ry T
(34) 1If Mx2Tran M; = Mx2Tran M,, then My = M.

(35) Let A be a matrix over Ry of dimension n x m and B be a matrix
over Ry of dimension k x m. Then (Mx2Tran(A =~ B))(f ~ (k — 0)) =
(Mx2Tran A)(f) and (Mx2Tran(B ~ A))((k — 0) ™ f) = (Mx2Tran A)(f).

(36) Let A be a matrix over Rp of dimension n X m, B be a matrix over
Rp of dimension k& x m, and g be a k-element real-valued finite sequence.
Then (Mx2Tran(A ™ B))(f ~ g) = (Mx2Tran A)(f) + (Mx2Tran B)(g).

(37) Let A be a matrix over Rp of dimension n x k and B be a matrix
over Rp of dimension n x m such that if n = 0, then £k + m = 0. Then
(Mx2Tran(A ™ B))(f) = (Mx2Tran A)(f) ~ (Mx2Tran B)(f).

(38) (Mx2Tran(Ig " [n))(f)In = f.

3. SELECTED PROPERTIES OF THE MX2TRAN OPERATOR

Next we state several propositions:

(39) Mx2Tran M is one-to-one iff rk(M) = n.

(40) Mx2Tran A is one-to-one iff Det A # Og,.

(41) Mx2Tran M is onto iff rk(M) = m.

(42) Mx2Tran A is onto iff Det A # Og,..

(43) For all A, B such that Det A # Og,, holds (Mx2Tran A)~! = Mx2Tran B

iff A~ = B.

(44) There exists an m-element finite sequence L of elements of R such that
for every i such that i € dom L holds L(i) = |*(Mp;)| and for every f
holds |[(Mx2Tran M )(f)| < > L-|f|.



LINEAR TRANSFORMATIONS OF EUCLIDEAN ... 107

(45) There exists a real number L such that L > 0 and for every f holds

|(Mx2Tran M)(f)| < L - |f].

(46) If rk(M) = n, then there exists a real number L such that L > 0 and for

every f holds |f| < L -|(Mx2Tran M)(f)].

(47) Mx2Tran M is continuous.

Let us consider n, K. One can check that there exists a square matrix over

K of dimension n which is invertible.

Let us consider n and let A be an invertible square matrix over Ry of di-

mension n. Note that Mx2Tran A is homeomorphism.
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