Cartesian Products of Family of Real Linear Spaces

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Noboru Endou
Nagano National College of Technology
Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. In this article we introduced the isomorphism mapping between cartesian products of family of linear spaces [4]. Those products had been formalized by two different ways, i.e., the way using the functor $[: X, Y:]$ and ones using the functor "product". By the same way, the isomorphism mapping was defined between Cartesian products of family of linear normed spaces also.

MML identifier: PRVECT_3, version: 7 7.11.07 4.156.1112

The notation and terminology used in this paper are introduced in the following articles: [5], [1], [16], [11], [3], [6], [17], [7], [8], [15], [14], [2], [13], [12], [20], [18], [10], [19], and [9].

1. Preliminaries

One can prove the following propositions:
(1) Let D, E, F, G be non empty sets. Then there exists a function I from $D \times E \times(F \times G)$ into $D \times F \times(E \times G)$ such that
(i) I is one-to-one and onto, and
(ii) for all sets d, e, f, g such that $d \in D$ and $e \in E$ and $f \in F$ and $g \in G$ holds $I(\langle d, e\rangle,\langle f, g\rangle)=\langle\langle d, f\rangle,\langle e, g\rangle\rangle$.
(2) Let X be a non empty set and D be a function. Suppose dom $D=\{1\}$ and $D(1)=X$. Then there exists a function I from X into ΠD such that I is one-to-one and onto and for every set x such that $x \in X$ holds $I(x)=\langle x\rangle$.
(3) Let X, Y be non empty sets and D be a function. Suppose dom $D=$ $\{1,2\}$ and $D(1)=X$ and $D(2)=Y$. Then there exists a function I from $X \times Y$ into $\prod D$ such that I is one-to-one and onto and for all sets x, y such that $x \in X$ and $y \in Y$ holds $I(x, y)=\langle x, y\rangle$.
(4) Let X be a non empty set. Then there exists a function I from X into $\Pi\langle X\rangle$ such that I is one-to-one and onto and for every set x such that $x \in X$ holds $I(x)=\langle x\rangle$.
Let X, Y be non-empty non empty finite sequences. Observe that $X^{\wedge} Y$ is non-empty.

We now state two propositions:
(5) Let X, Y be non empty sets. Then there exists a function I from $X \times Y$ into $\Pi\langle X, Y\rangle$ such that I is one-to-one and onto and for all sets x, y such that $x \in X$ and $y \in Y$ holds $I(x, y)=\langle x, y\rangle$.
(6) Let X, Y be non-empty non empty finite sequences. Then there exists a function I from $\Pi X \times \Pi Y$ into $\Pi\left(X^{\wedge} Y\right)$ such that I is one-to-one and onto and for all finite sequences x, y such that $x \in \Pi X$ and $y \in \Pi Y$ holds $I(x, y)=x^{\frown} y$.
Let G, F be non empty additive loop structures. The functor prodadd (G, F) yielding a binary operation on (the carrier of $G) \times($ the carrier of F) is defined by:
(Def. 1) For all points g_{1}, g_{2} of G and for all points f_{1}, f_{2} of F holds $(\operatorname{prodadd}(G, F))\left(\left\langle g_{1}, f_{1}\right\rangle,\left\langle g_{2}, f_{2}\right\rangle\right)=\left\langle g_{1}+g_{2}, f_{1}+f_{2}\right\rangle$.
Let G, F be non empty RLS structures. The functor $\operatorname{prodmlt}(G, F)$ yielding a function from $\mathbb{R} \times(($ the carrier of $G) \times($ the carrier of $F))$ into (the carrier of $G) \times($ the carrier of $F)$ is defined by:
(Def. 2) For every element r of \mathbb{R} and for every point g of G and for every point f of F holds $(\operatorname{prodmlt}(G, F))(r,\langle g, f\rangle)=\langle r \cdot g, r \cdot f\rangle$.
Let G, F be non empty additive loop structures. The functor prodzero (G, F) yields an element of (the carrier of $G) \times($ the carrier of F) and is defined by:
(Def. 3) prodzero $(G, F)=\left\langle 0_{G}, 0_{F}\right\rangle$.
Let G, F be non empty additive loop structures. The functor $G \times F$ yielding a strict non empty additive loop structure is defined by:
(Def. 4) $G \times F=\langle($ the carrier of $G) \times($ the carrier of $F), \operatorname{prodadd}(G, F)$, prodzero $(G, F)\rangle$.
Let G, F be Abelian non empty additive loop structures. Observe that $G \times$ F is Abelian.

Let G, F be add-associative non empty additive loop structures. Note that $G \times F$ is add-associative.

Let G, F be right zeroed non empty additive loop structures. Note that $G \times$ F is right zeroed.

Let G, F be right complementable non empty additive loop structures. Note that $G \times F$ is right complementable.

Next we state two propositions:
(7) Let G, F be non empty additive loop structures. Then
(i) for every set x holds x is a point of $G \times F$ iff there exists a point x_{1} of G and there exists a point x_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$,
(ii) for all points x, y of $G \times F$ and for all points x_{1}, y_{1} of G and for all points x_{2}, y_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$ and $y=\left\langle y_{1}, y_{2}\right\rangle$ holds $x+y=\left\langle x_{1}+y_{1}\right.$, $\left.x_{2}+y_{2}\right\rangle$, and
(iii) $0_{G \times F}=\left\langle 0_{G}, 0_{F}\right\rangle$.
(8) Let G, F be add-associative right zeroed right complementable non empty additive loop structures, x be a point of $G \times F, x_{1}$ be a point of G, and x_{2} be a point of F. If $x=\left\langle x_{1}, x_{2}\right\rangle$, then $-x=\left\langle-x_{1},-x_{2}\right\rangle$.
Let G, F be Abelian add-associative right zeroed right complementable strict non empty additive loop structures. One can check that $G \times F$ is strict, Abelian, add-associative, right zeroed, and right complementable.

Let G, F be non empty RLS structures. The functor $G \times F$ yields a strict non empty RLS structure and is defined by:
(Def. 5) $\quad G \times F=\langle($ the carrier of $G) \times($ the carrier of $F), \operatorname{prodzero}(G, F)$, $\operatorname{prodadd}(G, F), \operatorname{prodmlt}(G, F)\rangle$.
Let G, F be Abelian non empty RLS structures. Observe that $G \times F$ is Abelian.

Let G, F be add-associative non empty RLS structures. Note that $G \times F$ is add-associative.

Let G, F be right zeroed non empty RLS structures. Note that $G \times F$ is right zeroed.

Let G, F be right complementable non empty RLS structures. One can check that $G \times F$ is right complementable.

Next we state two propositions:
(9) Let G, F be non empty RLS structures. Then
(i) for every set x holds x is a point of $G \times F$ iff there exists a point x_{1} of G and there exists a point x_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$,
(ii) for all points x, y of $G \times F$ and for all points x_{1}, y_{1} of G and for all points x_{2}, y_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$ and $y=\left\langle y_{1}, y_{2}\right\rangle$ holds $x+y=\left\langle x_{1}+y_{1}\right.$, $\left.x_{2}+y_{2}\right\rangle$,
(iii) $0_{G \times F}=\left\langle 0_{G}, 0_{F}\right\rangle$, and
(iv) for every point x of $G \times F$ and for every point x_{1} of G and for every point x_{2} of F and for every real number a such that $x=\left\langle x_{1}, x_{2}\right\rangle$ holds $a \cdot x=\left\langle a \cdot x_{1}, a \cdot x_{2}\right\rangle$.
(10) Let G, F be add-associative right zeroed right complementable non empty RLS structures, x be a point of $G \times F, x_{1}$ be a point of G, and x_{2} be a point of F. If $x=\left\langle x_{1}, x_{2}\right\rangle$, then $-x=\left\langle-x_{1},-x_{2}\right\rangle$.
Let G, F be vector distributive non empty RLS structures. Note that $G \times$ F is vector distributive.

Let G, F be scalar distributive non empty RLS structures. Note that $G \times F$ is scalar distributive.

Let G, F be scalar associative non empty RLS structures. Observe that $G \times$ F is scalar associative.

Let G, F be scalar unital non empty RLS structures. One can verify that $G \times F$ is scalar unital.

Let G be an Abelian add-associative right zeroed right complementable scalar distributive vector distributive scalar associative scalar unital non empty RLS structure. Note that $\langle G\rangle$ is real-linear-space-yielding.

Let G, F be Abelian add-associative right zeroed right complementable scalar distributive vector distributive scalar associative scalar unital non empty RLS structures. Note that $\langle G, F\rangle$ is real-linear-space-yielding.

2. Cartesian Products of Real Linear Spaces

One can prove the following proposition
(11) Let X be a real linear space. Then there exists a function I from X into $\Pi\langle X\rangle$ such that
(i) I is one-to-one and onto,
(ii) for every point x of X holds $I(x)=\langle x\rangle$,
(iii) for all points v, w of X holds $I(v+w)=I(v)+I(w)$,
(iv) for every point v of X and for every element r of \mathbb{R} holds $I(r \cdot v)=r \cdot I(v)$, and
(v) $\quad I\left(0_{X}\right)=0 \prod_{\langle X\rangle}$.

Let G, F be non empty real-linear-space-yielding finite sequences. Observe that $G^{\wedge} F$ is real-linear-space-yielding.

We now state three propositions:
(12) Let X, Y be real linear spaces. Then there exists a function I from $X \times$ Y into $\Pi\langle X, Y\rangle$ such that
(i) I is one-to-one and onto,
(ii) for every point x of X and for every point y of Y holds $I(x, y)=\langle x$, $y\rangle$,
(iii) for all points v, w of $X \times Y$ holds $I(v+w)=I(v)+I(w)$,
(iv) for every point v of $X \times Y$ and for every element r of \mathbb{R} holds $I(r \cdot v)=$ $r \cdot I(v)$, and
(v) $\quad I\left(0_{X \times Y}\right)=0 \prod_{\langle X, Y\rangle}$.
(13) Let X, Y be non empty real linear space-sequences. Then there exists a function I from $\Pi X \times \Pi Y$ into $\Pi\left(X^{\wedge} Y\right)$ such that
(i) I is one-to-one and onto,
(ii) for every point x of ΠX and for every point y of ΠY there exist finite sequences x_{1}, y_{1} such that $x=x_{1}$ and $y=y_{1}$ and $I(x, y)=x_{1}{ }^{\wedge} y_{1}$,
(iii) for all points v, w of $\Pi X \times \prod Y$ holds $I(v+w)=I(v)+I(w)$,
(iv) for every point v of $\Pi X \times \prod Y$ and for every element r of \mathbb{R} holds $I(r \cdot v)=r \cdot I(v)$, and
(v) $\quad I\left(0 \prod_{X \times \prod Y}\right)=0 \prod_{(X \wedge Y)}$.
(14) Let G, F be real linear spaces. Then
(i) for every set x holds x is a point of $\Pi\langle G, F\rangle$ iff there exists a point x_{1} of G and there exists a point x_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$,
(ii) for all points x, y of $\Pi\langle G, F\rangle$ and for all points x_{1}, y_{1} of G and for all points x_{2}, y_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$ and $y=\left\langle y_{1}, y_{2}\right\rangle$ holds $x+y=$ $\left\langle x_{1}+y_{1}, x_{2}+y_{2}\right\rangle$,
(iii) ${ }^{0} \prod_{\langle G, F\rangle}=\left\langle 0_{G}, 0_{F}\right\rangle$,
(iv) for every point x of $\Pi\langle G, F\rangle$ and for every point x_{1} of G and for every point x_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$ holds $-x=\left\langle-x_{1},-x_{2}\right\rangle$, and
(v) for every point x of $\Pi\langle G, F\rangle$ and for every point x_{1} of G and for every point x_{2} of F and for every real number a such that $x=\left\langle x_{1}, x_{2}\right\rangle$ holds $a \cdot x=\left\langle a \cdot x_{1}, a \cdot x_{2}\right\rangle$.

3. Cartesian Products of Real Normed Linear Spaces

Let G, F be non empty normed structures. The functor $\operatorname{prodnorm}(G, F)$ yields a function from (the carrier of $G) \times($ the carrier of F) into \mathbb{R} and is defined by:
(Def. 6) For every point g of G and for every point f of F there exists an element v of \mathcal{R}^{2} such that $v=\langle\|g\|,\|f\|\rangle$ and $(\operatorname{prodnorm}(G, F))(g, f)=|v|$.
Let G, F be non empty normed structures. The functor $G \times F$ yielding a strict non empty normed structure is defined as follows:
(Def. 7) $\quad G \times F=\langle($ the carrier of $G) \times($ the carrier of $F), \operatorname{prodzero}(G, F)$,
$\operatorname{prodadd}(G, F), \operatorname{prodmlt}(G, F)$, prodnorm $(G, F)\rangle$.
Let G, F be real normed spaces. Observe that $G \times F$ is reflexive, discernible, and real normed space-like.

Let G, F be reflexive discernible real normed space-like scalar distributive vector distributive scalar associative scalar unital Abelian add-associative right
zeroed right complementable non empty normed structures. One can verify that $G \times F$ is strict, reflexive, discernible, real normed space-like, scalar distributive, vector distributive, scalar associative, scalar unital, Abelian, add-associative, right zeroed, and right complementable.

Let G be a reflexive discernible real normed space-like scalar distributive vector distributive scalar associative scalar unital Abelian add-associative right zeroed right complementable non empty normed structure. One can verify that $\langle G\rangle$ is real-norm-space-yielding.

Let G, F be reflexive discernible real normed space-like scalar distributive vector distributive scalar associative scalar unital Abelian add-associative right zeroed right complementable non empty normed structures. Observe that $\langle G$, $F\rangle$ is real-norm-space-yielding.

One can prove the following propositions:
(15) Let X, Y be real normed spaces. Then there exists a function I from $X \times Y$ into $\Pi\langle X, Y\rangle$ such that
(i) I is one-to-one and onto,
(ii) for every point x of X and for every point y of Y holds $I(x, y)=\langle x$, $y\rangle$,
(iii) for all points v, w of $X \times Y$ holds $I(v+w)=I(v)+I(w)$,
(iv) for every point v of $X \times Y$ and for every element r of \mathbb{R} holds $I(r \cdot v)=$ $r \cdot I(v)$,
(v) ${ }^{0} \prod_{\langle X, Y\rangle}=I\left(0_{X \times Y}\right)$, and
(vi) for every point v of $X \times Y$ holds $\|I(v)\|=\|v\|$.
(16) Let X be a real normed space. Then there exists a function I from X into $\Pi\langle X\rangle$ such that
(i) I is one-to-one and onto,
(ii) for every point x of X holds $I(x)=\langle x\rangle$,
(iii) for all points v, w of X holds $I(v+w)=I(v)+I(w)$,
(iv) for every point v of X and for every element r of \mathbb{R} holds $I(r \cdot v)=r \cdot I(v)$,
(v) ${ }^{0} \prod_{\langle X\rangle}=I\left(0_{X}\right)$, and
(vi) for every point v of X holds $\|I(v)\|=\|v\|$.

Let G, F be non empty real-norm-space-yielding finite sequences. One can check that $G^{\wedge} F$ is non empty and real-norm-space-yielding.

One can prove the following propositions:
(17) Let X, Y be non empty real norm space-sequences. Then there exists a function I from $\Pi X \times \Pi Y$ into $\Pi\left(X^{\wedge} Y\right)$ such that
(i) I is one-to-one and onto,
(ii) for every point x of ΠX and for every point y of ΠY there exist finite sequences x_{1}, y_{1} such that $x=x_{1}$ and $y=y_{1}$ and $I(x, y)=x_{1}{ }^{\wedge} y_{1}$,
(iii) for all points v, w of $\Pi X \times \Pi Y$ holds $I(v+w)=I(v)+I(w)$,
(iv) for every point v of $\Pi X \times \prod Y$ and for every element r of \mathbb{R} holds $I(r \cdot v)=r \cdot I(v)$,
(v) $\quad I\left(0 \prod_{X \times \prod Y}\right)=\prod_{\prod(X \sim Y)}$, and
(vi) for every point v of $\Pi X \times \prod Y$ holds $\|I(v)\|=\|v\|$.
(18) Let G, F be real normed spaces. Then
(i) for every set x holds x is a point of $G \times F$ iff there exists a point x_{1} of G and there exists a point x_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$,
(ii) for all points x, y of $G \times F$ and for all points x_{1}, y_{1} of G and for all points x_{2}, y_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$ and $y=\left\langle y_{1}, y_{2}\right\rangle$ holds $x+y=\left\langle x_{1}+y_{1}\right.$, $\left.x_{2}+y_{2}\right\rangle$,
(iii) $0_{G \times F}=\left\langle 0_{G}, 0_{F}\right\rangle$,
(iv) for every point x of $G \times F$ and for every point x_{1} of G and for every point x_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$ holds $-x=\left\langle-x_{1},-x_{2}\right\rangle$,
(v) for every point x of $G \times F$ and for every point x_{1} of G and for every point x_{2} of F and for every real number a such that $x=\left\langle x_{1}, x_{2}\right\rangle$ holds $a \cdot x=\left\langle a \cdot x_{1}, a \cdot x_{2}\right\rangle$, and
(vi) for every point x of $G \times F$ and for every point x_{1} of G and for every point x_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$ there exists an element w of \mathcal{R}^{2} such that $w=\left\langle\left\|x_{1}\right\|,\left\|x_{2}\right\|\right\rangle$ and $\|x\|=|w|$.
(19) Let G, F be real normed spaces. Then
(i) for every set x holds x is a point of $\Pi\langle G, F\rangle$ iff there exists a point x_{1} of G and there exists a point x_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$,
(ii) for all points x, y of $\Pi\langle G, F\rangle$ and for all points x_{1}, y_{1} of G and for all points x_{2}, y_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$ and $y=\left\langle y_{1}, y_{2}\right\rangle$ holds $x+y=$ $\left\langle x_{1}+y_{1}, x_{2}+y_{2}\right\rangle$,
(iii) ${ }^{0} \prod_{\langle G, F\rangle}=\left\langle 0_{G}, 0_{F}\right\rangle$,
(iv) for every point x of $\prod\langle G, F\rangle$ and for every point x_{1} of G and for every point x_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$ holds $-x=\left\langle-x_{1},-x_{2}\right\rangle$,
(v) for every point x of $\Pi\langle G, F\rangle$ and for every point x_{1} of G and for every point x_{2} of F and for every real number a such that $x=\left\langle x_{1}, x_{2}\right\rangle$ holds $a \cdot x=\left\langle a \cdot x_{1}, a \cdot x_{2}\right\rangle$, and
(vi) for every point x of $\Pi\langle G, F\rangle$ and for every point x_{1} of G and for every point x_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$ there exists an element w of \mathcal{R}^{2} such that $w=\left\langle\left\|x_{1}\right\|,\left\|x_{2}\right\|\right\rangle$ and $\|x\|=|w|$.
Let X, Y be complete real normed spaces. Observe that $X \times Y$ is complete.
We now state several propositions:
(20) Let X, Y be non empty real norm space-sequences. Then there exists a function I from $\Pi\langle\Pi X, \Pi Y\rangle$ into $\Pi\left(X^{\wedge} Y\right)$ such that
(i) I is one-to-one and onto,
(ii) for every point x of ΠX and for every point y of ΠY there exist finite sequences x_{1}, y_{1} such that $x=x_{1}$ and $y=y_{1}$ and $I(\langle x, y\rangle)=x_{1} \frown y_{1}$,
(iii) for all points v, w of $\Pi\langle\Pi X, \Pi Y\rangle$ holds $I(v+w)=I(v)+I(w)$,
(iv) for every point v of $\Pi\langle\Pi X, \Pi Y\rangle$ and for every element r of \mathbb{R} holds $I(r \cdot v)=r \cdot I(v)$,
(v) $\quad I\left(0 \prod_{\langle } \Pi_{X, ~ П Y\rangle}\right)={ }^{0} \prod_{(X \sim Y)}$, and
(vi) for every point v of $\Pi\langle\Pi X, \Pi Y\rangle$ holds $\|I(v)\|=\|v\|$.
(21) Let X, Y be non empty real linear spaces. Then there exists a function I from $X \times Y$ into $X \times \Pi\langle Y\rangle$ such that
(i) I is one-to-one and onto,
(ii) for every point x of X and for every point y of Y holds $I(x, y)=\langle x$, $\langle y\rangle\rangle$,
(iii) for all points v, w of $X \times Y$ holds $I(v+w)=I(v)+I(w)$,
(iv) for every point v of $X \times Y$ and for every element r of \mathbb{R} holds $I(r \cdot v)=$ $r \cdot I(v)$, and
(v) $I\left(0_{X \times Y}\right)=0_{X \times \prod\langle Y\rangle}$.
(22) Let X be a non empty real linear space-sequence and Y be a real linear space. Then there exists a function I from $\Pi X \times Y$ into $\Pi\left(X^{\wedge}\langle Y\rangle\right)$ such that
(i) I is one-to-one and onto,
(ii) for every point x of ΠX and for every point y of Y there exist finite sequences x_{1}, y_{1} such that $x=x_{1}$ and $\langle y\rangle=y_{1}$ and $I(x, y)=x_{1}{ }^{\wedge} y_{1}$,
(iii) for all points v, w of $\Pi X \times Y$ holds $I(v+w)=I(v)+I(w)$,
(iv) for every point v of $\Pi X \times Y$ and for every element r of \mathbb{R} holds $I(r \cdot v)=r \cdot I(v)$, and
(v) $\quad I\left(0^{0}{ }_{X \times Y}\right)=0{ }^{0}(X \sim\langle Y\rangle)$.
(23) Let X, Y be non empty real normed spaces. Then there exists a function I from $X \times Y$ into $X \times \Pi\langle Y\rangle$ such that
(i) I is one-to-one and onto,
(ii) for every point x of X and for every point y of Y holds $I(x, y)=\langle x$, $\langle y\rangle\rangle$,
(iii) for all points v, w of $X \times Y$ holds $I(v+w)=I(v)+I(w)$,
(iv) for every point v of $X \times Y$ and for every element r of \mathbb{R} holds $I(r \cdot v)=$ $r \cdot I(v)$,
(v) $I\left(0_{X \times Y}\right)=0_{X \times \prod\langle Y\rangle}$, and
(vi) for every point v of $X \times Y$ holds $\|I(v)\|=\|v\|$.
(24) Let X be a non empty real norm space-sequence and Y be a real normed space. Then there exists a function I from $\Pi X \times Y$ into $\Pi\left(X^{\wedge}\langle Y\rangle\right)$ such that
(i) I is one-to-one and onto,
(ii) for every point x of ΠX and for every point y of Y there exist finite sequences x_{1}, y_{1} such that $x=x_{1}$ and $\langle y\rangle=y_{1}$ and $I(x, y)=x_{1}{ }^{\wedge} y_{1}$,
(iii) for all points v, w of $\Pi X \times Y$ holds $I(v+w)=I(v)+I(w)$,
(iv) for every point v of $\Pi X \times Y$ and for every element r of \mathbb{R} holds $I(r \cdot v)=r \cdot I(v)$,
(v) $\quad I\left(0 \prod_{X \times Y}\right)=0 \prod_{(X \sim\langle Y\rangle)}$, and
(vi) for every point v of $\Pi X \times Y$ holds $\|I(v)\|=\|v\|$.

References

[1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Nicolas Bourbaki. Topological vector spaces: Chapters 1-5. Springer, 1981.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[8] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[12] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. The product space of real normed spaces and its properties. Formalized Mathematics, 15(3):81-85, 2007, doi:10.2478/v10037-007-0010-y.
[13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[15] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
[16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, $1(\mathbf{1}): 115-122,1990$.
[17] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[18] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received August 17, 2010

