More on Continuous Functions on Normed Linear Spaces

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Noboru Endou
Nagano National College of Technology
Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. In this article we formalize the definition and some facts about continuous functions from \mathbb{R} into normed linear spaces [14].

MML identifier: NFCONT_3, version: $\underline{7.11 .074 .156 .1112}$

The terminology and notation used in this paper have been introduced in the following papers: [2], [12], [3], [4], [10], [11], [1], [5], [13], [7], [17], [18], [15], [9], [8], [16], [19], and [6].

1. Preliminaries

For simplicity, we adopt the following rules: n denotes an element of \mathbb{N}, X, X_{1} denote sets, r, p denote real numbers, s, x_{0}, x_{1}, x_{2} denote real numbers, S, T denote real normed spaces, f, f_{1}, f_{2} denote partial functions from \mathbb{R} to the carrier of S, s_{1} denotes a sequence of real numbers, and Y denotes a subset of \mathbb{R}.

The following propositions are true:
(1) Let s_{2} be a sequence of real numbers and h be a partial function from \mathbb{R} to the carrier of S. If $\mathrm{rng} s_{2} \subseteq \operatorname{dom} h$, then $s_{2}(n) \in \operatorname{dom} h$.
(2) Let h_{1}, h_{2} be partial functions from \mathbb{R} to the carrier of S and s_{2} be a sequence of real numbers. If rng $s_{2} \subseteq \operatorname{dom} h_{1} \cap \operatorname{dom} h_{2}$, then $\left(h_{1}+h_{2}\right)_{*} s_{2}=$ $\left(h_{1 *} s_{2}\right)+\left(h_{2 *} s_{2}\right)$ and $\left(h_{1}-h_{2}\right)_{*} s_{2}=\left(h_{1 *} s_{2}\right)-\left(h_{2 *} s_{2}\right)$.
(3) For every sequence h of S and for every real number r holds $r h=r \cdot h$.
(4) Let h be a partial function from \mathbb{R} to the carrier of S, s_{2} be a sequence of real numbers, and r be a real number. If $\operatorname{rng} s_{2} \subseteq \operatorname{dom} h$, then $r h_{*} s_{2}=$ $r \cdot\left(h_{*} s_{2}\right)$.
(5) Let h be a partial function from \mathbb{R} to the carrier of S and s_{2} be a sequence of real numbers. If $\operatorname{rng} s_{2} \subseteq \operatorname{dom} h$, then $\left\|h_{*} s_{2}\right\|=\|h\|_{*} s_{2}$ and $-\left(h_{*} s_{2}\right)=-h_{*} s_{2}$.

2. Continuous Real Functions into Normed Linear Spaces

Let us consider S, f, x_{0}. We say that f is continuous in x_{0} if and only if:
(Def. 1) $\quad x_{0} \in \operatorname{dom} f$ and for every s_{1} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and s_{1} is convergent and $\lim s_{1}=x_{0}$ holds $f_{*} s_{1}$ is convergent and $f_{x_{0}}=\lim \left(f_{*} s_{1}\right)$.
Next we state a number of propositions:
(6) If $x_{0} \in X$ and f is continuous in x_{0}, then $f \upharpoonright X$ is continuous in x_{0}.
(7) f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every s_{1} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and s_{1} is convergent and $\lim s_{1}=$ x_{0} and for every n holds $s_{1}(n) \neq x_{0}$ holds $f_{*} s_{1}$ is convergent and $f_{x_{0}}=$ $\lim \left(f_{*} s_{1}\right)$.
(8) f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for every x_{1} such that $x_{1} \in \operatorname{dom} f$ and $\left|x_{1}-x_{0}\right|<s$ holds $\left\|f_{x_{1}}-f_{x_{0}}\right\|<r$.
(9) Let given S, f, x_{0}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every neighbourhood N_{1} of $f_{x_{0}}$ there exists a neighbourhood N of x_{0} such that for every x_{1} such that $x_{1} \in \operatorname{dom} f$ and $x_{1} \in N$ holds $f_{x_{1}} \in N_{1}$.
(10) Let given S, f, x_{0}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every neighbourhood N_{1} of $f_{x_{0}}$ there exists a neighbourhood N of x_{0} such that $f^{\circ} N \subseteq N_{1}$.
(11) If there exists a neighbourhood N of x_{0} such that $\operatorname{dom} f \cap N=\left\{x_{0}\right\}$, then f is continuous in x_{0}.
(12) If $x_{0} \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and f_{1} is continuous in x_{0} and f_{2} is continuous in x_{0}, then $f_{1}+f_{2}$ is continuous in x_{0} and $f_{1}-f_{2}$ is continuous in x_{0}.
(13) If f is continuous in x_{0}, then $r f$ is continuous in x_{0}.
(14) If $x_{0} \in \operatorname{dom} f$ and f is continuous in x_{0}, then $\|f\|$ is continuous in x_{0} and $-f$ is continuous in x_{0}.
(15) Let f_{1} be a partial function from \mathbb{R} to the carrier of S and f_{2} be a partial function from the carrier of S to the carrier of T. Suppose $x_{0} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and f_{1} is continuous in x_{0} and f_{2} is continuous in $\left(f_{1}\right)_{x_{0}}$. Then $f_{2} \cdot f_{1}$ is continuous in x_{0}.
Let us consider S, f. We say that f is continuous if and only if:
(Def. 2) For every x_{0} such that $x_{0} \in \operatorname{dom} f$ holds f is continuous in x_{0}.
Next we state two propositions:
(16) Let given X, f. Suppose $X \subseteq \operatorname{dom} f$. Then $f \upharpoonright X$ is continuous if and only if for every s_{1} such that $\mathrm{rng} s_{1} \subseteq X$ and s_{1} is convergent and $\lim s_{1} \in X$ holds $f_{*} s_{1}$ is convergent and $f_{\lim s_{1}}=\lim \left(f_{*} s_{1}\right)$.
(17) Suppose $X \subseteq \operatorname{dom} f$. Then $f \upharpoonright X$ is continuous if and only if for all x_{0}, r such that $x_{0} \in X$ and $0<r$ there exists s such that $0<s$ and for every x_{1} such that $x_{1} \in X$ and $\left|x_{1}-x_{0}\right|<s$ holds $\left\|f_{x_{1}}-f_{x_{0}}\right\|<r$.
Let us consider S. One can check that every partial function from \mathbb{R} to the carrier of S which is constant is also continuous.

Let us consider S. Note that there exists a partial function from \mathbb{R} to the carrier of S which is continuous.

Let us consider S, let f be a continuous partial function from \mathbb{R} to the carrier of S, and let X be a set. Observe that $f \upharpoonright X$ is continuous.

Next we state the proposition
(18) If $f \upharpoonright X$ is continuous and $X_{1} \subseteq X$, then $f \upharpoonright X_{1}$ is continuous.

Let us consider S. Observe that every partial function from \mathbb{R} to the carrier of S which is empty is also continuous.

Let us consider S, f and let X be a trivial set. Observe that $f\lceil X$ is continuous.

Let us consider S and let f_{1}, f_{2} be continuous partial functions from \mathbb{R} to the carrier of S. Observe that $f_{1}+f_{2}$ is continuous and $f_{1}-f_{2}$ is continuous.

The following two propositions are true:
(19) Let given X, f_{1}, f_{2}. Suppose $X \subseteq \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and $f_{1} \upharpoonright X$ is continuous and $f_{2} \mid X$ is continuous. Then $\left(f_{1}+f_{2}\right) \upharpoonright X$ is continuous and $\left(f_{1}-f_{2}\right) \upharpoonright X$ is continuous.
(20) Let given X, X_{1}, f_{1}, f_{2}. Suppose $X \subseteq \operatorname{dom} f_{1}$ and $X_{1} \subseteq \operatorname{dom} f_{2}$ and $f_{1} \upharpoonright X$ is continuous and $f_{2} \upharpoonright X_{1}$ is continuous. Then $\left(f_{1}+f_{2}\right) \upharpoonright\left(X \cap X_{1}\right)$ is continuous and $\left(f_{1}-f_{2}\right) \upharpoonright\left(X \cap X_{1}\right)$ is continuous.
Let us consider S, let f be a continuous partial function from \mathbb{R} to the carrier of S, and let us consider r. One can check that $r f$ is continuous.

We now state several propositions:
(21) If $X \subseteq \operatorname{dom} f$ and $f \upharpoonright X$ is continuous, then $(r f) \upharpoonright X$ is continuous.
(22) If $X \subseteq \operatorname{dom} f$ and $f \upharpoonright X$ is continuous, then $\|f\| \upharpoonright X$ is continuous and $(-f) \mid X$ is continuous.
(23) If f is total and for all x_{1}, x_{2} holds $f_{x_{1}+x_{2}}=f_{x_{1}}+f_{x_{2}}$ and there exists x_{0} such that f is continuous in x_{0}, then $f \upharpoonright \mathbb{R}$ is continuous.
(24) If $\operatorname{dom} f$ is compact and $f \upharpoonright \operatorname{dom} f$ is continuous, then $\operatorname{rng} f$ is compact.
(25) If $Y \subseteq \operatorname{dom} f$ and Y is compact and $f \upharpoonright Y$ is continuous, then $f^{\circ} Y$ is compact.

3. Lipschitz Continuity

Let us consider S, f. We say that f is Lipschitzian if and only if:
(Def. 3) There exists a real number r such that $0<r$ and for all x_{1}, x_{2} such that $x_{1}, x_{2} \in \operatorname{dom} f$ holds $\left\|f_{x_{1}}-f_{x_{2}}\right\| \leq r \cdot\left|x_{1}-x_{2}\right|$.
The following proposition is true
(26) $f \upharpoonright X$ is Lipschitzian if and only if there exists a real number r such that $0<r$ and for all x_{1}, x_{2} such that $x_{1}, x_{2} \in \operatorname{dom}(f \mid X)$ holds $\left\|f_{x_{1}}-f_{x_{2}}\right\| \leq$ $r \cdot\left|x_{1}-x_{2}\right|$.
Let us consider S. Observe that every partial function from \mathbb{R} to the carrier of S which is empty is also Lipschitzian.

Let us consider S. One can verify that there exists a partial function from \mathbb{R} to the carrier of S which is empty.

Let us consider S, let f be a Lipschitzian partial function from \mathbb{R} to the carrier of S, and let X be a set. One can check that $f \upharpoonright X$ is Lipschitzian.

The following proposition is true
(27) If $f \upharpoonright X$ is Lipschitzian and $X_{1} \subseteq X$, then $f \upharpoonright X_{1}$ is Lipschitzian.

Let us consider S and let f_{1}, f_{2} be Lipschitzian partial functions from \mathbb{R} to the carrier of S. One can check that $f_{1}+f_{2}$ is Lipschitzian and $f_{1}-f_{2}$ is Lipschitzian.

One can prove the following propositions:
(28) If $f_{1} \upharpoonright X$ is Lipschitzian and $f_{2} \upharpoonright X_{1}$ is Lipschitzian, then $\left(f_{1}+f_{2}\right) \upharpoonright\left(X \cap X_{1}\right)$ is Lipschitzian.
(29) If $f_{1} \upharpoonright X$ is Lipschitzian and $f_{2} \upharpoonright X_{1}$ is Lipschitzian, then $\left(f_{1}-f_{2}\right) \upharpoonright\left(X \cap X_{1}\right)$ is Lipschitzian.
Let us consider S, let f be a Lipschitzian partial function from \mathbb{R} to the carrier of S, and let us consider p. Note that $p f$ is Lipschitzian.

Next we state the proposition
(30) If $f \upharpoonright X$ is Lipschitzian and $X \subseteq \operatorname{dom} f$, then $(p f) \upharpoonright X$ is Lipschitzian.

Let us consider S and let f be a Lipschitzian partial function from \mathbb{R} to the carrier of S. Note that $\|f\|$ is Lipschitzian.

One can prove the following proposition
(31) If $f \upharpoonright X$ is Lipschitzian, then $-f \upharpoonright X$ is Lipschitzian and $(-f) \upharpoonright X$ is Lipschitzian and $\|f\| \upharpoonright X$ is Lipschitzian.
Let us consider S. One can verify that every partial function from \mathbb{R} to the carrier of S which is constant is also Lipschitzian.

Let us consider S. Observe that every partial function from \mathbb{R} to the carrier of S which is Lipschitzian is also continuous.

Next we state two propositions:
(32) If there exists a point r of S such that $\operatorname{rng} f=\{r\}$, then f is continuous.
(33) For all points r, p of S such that for every x_{0} such that $x_{0} \in X$ holds $f_{x_{0}}=x_{0} \cdot r+p$ holds $f \upharpoonright X$ is continuous.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.
[11] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[12] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[14] Laurent Schwartz. Cours d'analyse, vol. 1. Hermann Paris, 1967.
[15] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[19] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Received August 17, 2010

