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continuous functions from R into normed linear spaces [14].
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The terminology and notation used in this paper have been introduced in the
following papers: [2], [12], [3], [4], [10], [11], [1], [5], [13], [7], [17], [18], [15], [9],
[8], [16], [19], and [6].

1. Preliminaries

For simplicity, we adopt the following rules: n denotes an element of N, X,
X1 denote sets, r, p denote real numbers, s, x0, x1, x2 denote real numbers, S,
T denote real normed spaces, f , f1, f2 denote partial functions from R to the
carrier of S, s1 denotes a sequence of real numbers, and Y denotes a subset of
R.

The following propositions are true:

(1) Let s2 be a sequence of real numbers and h be a partial function from
R to the carrier of S. If rng s2 ⊆ domh, then s2(n) ∈ domh.

(2) Let h1, h2 be partial functions from R to the carrier of S and s2 be a
sequence of real numbers. If rng s2 ⊆ domh1∩domh2, then (h1 +h2)∗s2 =
(h1∗s2) + (h2∗s2) and (h1 − h2)∗s2 = (h1∗s2)− (h2∗s2).
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(3) For every sequence h of S and for every real number r holds r h = r · h.
(4) Let h be a partial function from R to the carrier of S, s2 be a sequence

of real numbers, and r be a real number. If rng s2 ⊆ domh, then r h∗s2 =
r · (h∗s2).

(5) Let h be a partial function from R to the carrier of S and s2 be a
sequence of real numbers. If rng s2 ⊆ domh, then ‖h∗s2‖ = ‖h‖∗s2 and
−(h∗s2) = −h∗s2.

2. Continuous Real Functions into Normed Linear Spaces

Let us consider S, f , x0. We say that f is continuous in x0 if and only if:

(Def. 1) x0 ∈ dom f and for every s1 such that rng s1 ⊆ dom f and s1 is conver-
gent and lim s1 = x0 holds f∗s1 is convergent and fx0 = lim(f∗s1).

Next we state a number of propositions:

(6) If x0 ∈ X and f is continuous in x0, then f�X is continuous in x0.

(7) f is continuous in x0 if and only if the following conditions are satisfied:
(i) x0 ∈ dom f, and

(ii) for every s1 such that rng s1 ⊆ dom f and s1 is convergent and lim s1 =
x0 and for every n holds s1(n) 6= x0 holds f∗s1 is convergent and fx0 =
lim(f∗s1).

(8) f is continuous in x0 if and only if the following conditions are satisfied:
(i) x0 ∈ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for every
x1 such that x1 ∈ dom f and |x1 − x0| < s holds ‖fx1 − fx0‖ < r.

(9) Let given S, f , x0. Then f is continuous in x0 if and only if the following
conditions are satisfied:

(i) x0 ∈ dom f, and
(ii) for every neighbourhood N1 of fx0 there exists a neighbourhood N of x0

such that for every x1 such that x1 ∈ dom f and x1 ∈ N holds fx1 ∈ N1.

(10) Let given S, f , x0. Then f is continuous in x0 if and only if the following
conditions are satisfied:

(i) x0 ∈ dom f, and
(ii) for every neighbourhood N1 of fx0 there exists a neighbourhood N of

x0 such that f◦N ⊆ N1.

(11) If there exists a neighbourhood N of x0 such that dom f ∩ N = {x0},
then f is continuous in x0.

(12) If x0 ∈ dom f1 ∩ dom f2 and f1 is continuous in x0 and f2 is continuous
in x0, then f1 + f2 is continuous in x0 and f1 − f2 is continuous in x0.

(13) If f is continuous in x0, then r f is continuous in x0.
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(14) If x0 ∈ dom f and f is continuous in x0, then ‖f‖ is continuous in x0

and −f is continuous in x0.

(15) Let f1 be a partial function from R to the carrier of S and f2 be a partial
function from the carrier of S to the carrier of T . Suppose x0 ∈ dom(f2 ·f1)
and f1 is continuous in x0 and f2 is continuous in (f1)x0 . Then f2 · f1 is
continuous in x0.

Let us consider S, f . We say that f is continuous if and only if:

(Def. 2) For every x0 such that x0 ∈ dom f holds f is continuous in x0.

Next we state two propositions:

(16) Let given X, f . Suppose X ⊆ dom f. Then f�X is continuous if and only
if for every s1 such that rng s1 ⊆ X and s1 is convergent and lim s1 ∈ X
holds f∗s1 is convergent and flim s1 = lim(f∗s1).

(17) Suppose X ⊆ dom f. Then f�X is continuous if and only if for all x0, r
such that x0 ∈ X and 0 < r there exists s such that 0 < s and for every
x1 such that x1 ∈ X and |x1 − x0| < s holds ‖fx1 − fx0‖ < r.

Let us consider S. One can check that every partial function from R to the
carrier of S which is constant is also continuous.

Let us consider S. Note that there exists a partial function from R to the
carrier of S which is continuous.

Let us consider S, let f be a continuous partial function from R to the carrier
of S, and let X be a set. Observe that f�X is continuous.

Next we state the proposition

(18) If f�X is continuous and X1 ⊆ X, then f�X1 is continuous.

Let us consider S. Observe that every partial function from R to the carrier
of S which is empty is also continuous.

Let us consider S, f and let X be a trivial set. Observe that f�X is conti-
nuous.

Let us consider S and let f1, f2 be continuous partial functions from R to
the carrier of S. Observe that f1 + f2 is continuous and f1 − f2 is continuous.

The following two propositions are true:

(19) Let givenX, f1, f2. SupposeX ⊆ dom f1∩dom f2 and f1�X is continuous
and f2�X is continuous. Then (f1 + f2)�X is continuous and (f1 − f2)�X
is continuous.

(20) Let given X, X1, f1, f2. Suppose X ⊆ dom f1 and X1 ⊆ dom f2 and
f1�X is continuous and f2�X1 is continuous. Then (f1 + f2)�(X ∩X1) is
continuous and (f1 − f2)�(X ∩X1) is continuous.

Let us consider S, let f be a continuous partial function from R to the carrier
of S, and let us consider r. One can check that r f is continuous.

We now state several propositions:

(21) If X ⊆ dom f and f�X is continuous, then (r f)�X is continuous.
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(22) If X ⊆ dom f and f�X is continuous, then ‖f‖�X is continuous and
(−f)�X is continuous.

(23) If f is total and for all x1, x2 holds fx1+x2 = fx1 + fx2 and there exists
x0 such that f is continuous in x0, then f�R is continuous.

(24) If dom f is compact and f� dom f is continuous, then rng f is compact.

(25) If Y ⊆ dom f and Y is compact and f�Y is continuous, then f◦Y is
compact.

3. Lipschitz Continuity

Let us consider S, f . We say that f is Lipschitzian if and only if:

(Def. 3) There exists a real number r such that 0 < r and for all x1, x2 such that
x1, x2 ∈ dom f holds ‖fx1 − fx2‖ ≤ r · |x1 − x2|.

The following proposition is true

(26) f�X is Lipschitzian if and only if there exists a real number r such that
0 < r and for all x1, x2 such that x1, x2 ∈ dom(f�X) holds ‖fx1 − fx2‖ ≤
r · |x1 − x2|.

Let us consider S. Observe that every partial function from R to the carrier
of S which is empty is also Lipschitzian.

Let us consider S. One can verify that there exists a partial function from
R to the carrier of S which is empty.

Let us consider S, let f be a Lipschitzian partial function from R to the
carrier of S, and let X be a set. One can check that f�X is Lipschitzian.

The following proposition is true

(27) If f�X is Lipschitzian and X1 ⊆ X, then f�X1 is Lipschitzian.

Let us consider S and let f1, f2 be Lipschitzian partial functions from R
to the carrier of S. One can check that f1 + f2 is Lipschitzian and f1 − f2 is
Lipschitzian.

One can prove the following propositions:

(28) If f1�X is Lipschitzian and f2�X1 is Lipschitzian, then (f1+f2)�(X∩X1)
is Lipschitzian.

(29) If f1�X is Lipschitzian and f2�X1 is Lipschitzian, then (f1−f2)�(X∩X1)
is Lipschitzian.

Let us consider S, let f be a Lipschitzian partial function from R to the
carrier of S, and let us consider p. Note that p f is Lipschitzian.

Next we state the proposition

(30) If f�X is Lipschitzian and X ⊆ dom f, then (p f)�X is Lipschitzian.

Let us consider S and let f be a Lipschitzian partial function from R to the
carrier of S. Note that ‖f‖ is Lipschitzian.
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One can prove the following proposition

(31) If f�X is Lipschitzian, then −f�X is Lipschitzian and (−f)�X is Lip-
schitzian and ‖f‖�X is Lipschitzian.

Let us consider S. One can verify that every partial function from R to the
carrier of S which is constant is also Lipschitzian.

Let us consider S. Observe that every partial function from R to the carrier
of S which is Lipschitzian is also continuous.

Next we state two propositions:

(32) If there exists a point r of S such that rng f = {r}, then f is continuous.

(33) For all points r, p of S such that for every x0 such that x0 ∈ X holds
fx0 = x0 · r + p holds f�X is continuous.
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