Differentiation of Vector-Valued Functions on *n*-Dimensional Real Normed Linear Spaces

Takao Inoué Inaba 2205, Wing-Minamikan Nagano, Nagano, Japan Noboru Endou Gifu National College of Technology Japan

Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article, we define and develop differentiation of vectorvalued functions on n-dimensional real normed linear spaces (refer to [16] and [17]).

MML identifier: $PDIFF_6$, version: 7.11.07 4.146.1112

The papers [8], [14], [2], [3], [4], [5], [13], [18], [1], [12], [6], [10], [15], [11], [9], [21], [19], [20], and [7] provide the terminology and notation for this paper.

1. The Basic Properties of Differentiation of Functions from \mathcal{R}^m to \mathcal{R}^n

In this paper i, n, m are elements of \mathbb{N} . The following propositions are true:

- (1) Let f be a set. Then f is a partial function from \mathcal{R}^m to \mathcal{R}^n if and only if f is a partial function from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ to $\langle \mathcal{E}^n, \|\cdot\| \rangle$.
- (2) Let n, m be non empty elements of \mathbb{N} , f be a partial function from \mathcal{R}^m to \mathcal{R}^n, g be a partial function from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ to $\langle \mathcal{E}^n, \|\cdot\| \rangle$, x be an element of \mathcal{R}^m , and y be a point of $\langle \mathcal{E}^m, \|\cdot\| \rangle$. Suppose f = g and x = y. Then f is differentiable in x if and only if g is differentiable in y.

TAKAO INOUÉ et al.

- (3) Let n, m be non empty elements of N, f be a partial function from *R^m* to *Rⁿ*, g be a partial function from ⟨*E^m*, || · ||⟩ to ⟨*Eⁿ*, || · ||⟩, x be an element of *R^m*, and y be a point of ⟨*E^m*, || · ||⟩. If f = g and x = y and f is differentiable in x, then f'(x) = g'(y).
- (4) Let f_1 , f_2 be partial functions from \mathcal{R}^m to \mathcal{R}^n and g_1 , g_2 be partial functions from $\langle \mathcal{E}^m, \| \cdot \| \rangle$ to $\langle \mathcal{E}^n, \| \cdot \| \rangle$. If $f_1 = g_1$ and $f_2 = g_2$, then $f_1 + f_2 = g_1 + g_2$.
- (5) Let f_1 , f_2 be partial functions from \mathcal{R}^m to \mathcal{R}^n and g_1 , g_2 be partial functions from $\langle \mathcal{E}^m, \| \cdot \| \rangle$ to $\langle \mathcal{E}^n, \| \cdot \| \rangle$. If $f_1 = g_1$ and $f_2 = g_2$, then $f_1 f_2 = g_1 g_2$.
- (6) Let f be a partial function from \mathcal{R}^m to \mathcal{R}^n , g be a partial function from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ to $\langle \mathcal{E}^n, \|\cdot\| \rangle$, and a be a real number. If f = g, then a f = a g.
- (7) Let f_1 , f_2 be functions from \mathcal{R}^m into \mathcal{R}^n and g_1 , g_2 be points of the real norm space of bounded linear operators from $\langle \mathcal{E}^m, \|\cdot\|\rangle$ into $\langle \mathcal{E}^n, \|\cdot\|\rangle$. If $f_1 = g_1$ and $f_2 = g_2$, then $f_1 + f_2 = g_1 + g_2$.
- (8) Let f_1 , f_2 be functions from \mathcal{R}^m into \mathcal{R}^n and g_1 , g_2 be points of the real norm space of bounded linear operators from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^n, \|\cdot\| \rangle$. If $f_1 = g_1$ and $f_2 = g_2$, then $f_1 f_2 = g_1 g_2$.
- (9) Let f be a function from \mathcal{R}^m into \mathcal{R}^n , g be a point of the real norm space of bounded linear operators from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^n, \|\cdot\| \rangle$, and r be a real number. If f = g, then $r f = r \cdot g$.
- (10) Let m, n be non empty elements of \mathbb{N} , f be a partial function from \mathcal{R}^m to \mathcal{R}^n , and x be an element of \mathcal{R}^m . Suppose f is differentiable in x. Then f'(x) is a point of the real norm space of bounded linear operators from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^n, \|\cdot\| \rangle$.

Let n, m be natural numbers and let I_1 be a function from \mathcal{R}^m into \mathcal{R}^n . We say that I_1 is additive if and only if:

(Def. 1) For all elements x, y of \mathcal{R}^m holds $I_1(x+y) = I_1(x) + I_1(y)$.

We say that I_1 is homogeneous if and only if:

(Def. 2) For every element x of \mathcal{R}^m and for every real number r holds $I_1(r \cdot x) = r \cdot I_1(x)$.

The following three propositions are true:

- (11) For every function I_1 from \mathcal{R}^m into \mathcal{R}^n such that I_1 is additive holds $I_1(\langle \underbrace{0,\ldots,0}_m \rangle) = \langle \underbrace{0,\ldots,0}_n \rangle.$
- (12) Let f be a function from \mathcal{R}^m into \mathcal{R}^n and g be a function from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^n, \|\cdot\| \rangle$. If f = g, then f is additive iff g is additive.
- (13) Let f be a function from \mathcal{R}^m into \mathcal{R}^n and g be a function from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^n, \|\cdot\| \rangle$. If f = g, then f is homogeneous iff g is homogeneous.

208

Let n, m be natural numbers. One can verify that the function $\mathcal{R}^m \mapsto \langle 0, \ldots, 0 \rangle$ is additive and homogeneous.

Let n, m be natural numbers. Note that there exists a function from \mathcal{R}^m into \mathcal{R}^n which is additive and homogeneous.

Let m, n be natural numbers. A linear operator from m into n is defined by an additive homogeneous function from \mathcal{R}^m into \mathcal{R}^n .

We now state the proposition

(14) Let f be a set. Then f is a linear operator from m into n if and only if f is a linear operator from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^n, \|\cdot\| \rangle$.

Let m, n be natural numbers, let I_1 be a function from \mathcal{R}^m into \mathcal{R}^n , and let x be an element of \mathcal{R}^m . Then $I_1(x)$ is an element of \mathcal{R}^n .

Let m, n be natural numbers and let I_1 be a function from \mathcal{R}^m into \mathcal{R}^n . We say that I_1 is bounded if and only if:

(Def. 3) There exists a real number K such that $0 \le K$ and for every element x of \mathcal{R}^m holds $|I_1(x)| \le K \cdot |x|$.

Next we state three propositions:

- (15) Let x_1, y_1 be finite sequences of elements of \mathcal{R}^m . Suppose len $x_1 =$ len $y_1 + 1$ and $x_1 \upharpoonright$ len $y_1 = y_1$. Then there exists an element v of \mathcal{R}^m such that $v = x_1(\text{len } x_1)$ and $\sum x_1 = \sum y_1 + v$.
- (16) Let f be a linear operator from m into n, x_1 be a finite sequence of elements of \mathcal{R}^m , and y_1 be a finite sequence of elements of \mathcal{R}^n . Suppose len $x_1 = \text{len } y_1$ and for every element i of \mathbb{N} such that $i \in \text{dom } x_1$ holds $y_1(i) = f(x_1(i))$. Then $\sum y_1 = f(\sum x_1)$.
- (17) Let x_1 be a finite sequence of elements of \mathcal{R}^m and y_1 be a finite sequence of elements of \mathbb{R} . Suppose len $x_1 = \text{len } y_1$ and for every element i of \mathbb{N} such that $i \in \text{dom } x_1$ there exists an element v of \mathcal{R}^m such that $v = x_1(i)$ and $y_1(i) = |v|$. Then $|\sum x_1| \leq \sum y_1$.

Let m, n be natural numbers. Note that every linear operator from m into n is bounded.

Let us consider m, n. Observe that every linear operator from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^n, \|\cdot\| \rangle$ is bounded.

Next we state several propositions:

- (18) Let m, n be non empty elements of \mathbb{N} , f be a partial function from \mathcal{R}^m to \mathcal{R}^n , and x be an element of \mathcal{R}^m . Suppose f is differentiable in x. Then f'(x) is a linear operator from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^n, \|\cdot\| \rangle$.
- (19) Let m, n be non empty elements of \mathbb{N} , f be a partial function from \mathcal{R}^m to \mathcal{R}^n , and x be an element of \mathcal{R}^m . Suppose f is differentiable in x. Then f'(x) is a linear operator from m into n.
- (20) Let n, m be non empty elements of \mathbb{N}, g_1, g_2 be partial functions from

TAKAO INOUÉ et al.

 \mathcal{R}^m to \mathcal{R}^n , and y_0 be an element of \mathcal{R}^m . Suppose g_1 is differentiable in y_0 and g_2 is differentiable in y_0 . Then $g_1 + g_2$ is differentiable in y_0 and $(g_1 + g_2)'(y_0) = g_1'(y_0) + g_2'(y_0)$.

- (21) Let n, m be non empty elements of \mathbb{N}, g_1, g_2 be partial functions from \mathcal{R}^m to \mathcal{R}^n , and y_0 be an element of \mathcal{R}^m . Suppose g_1 is differentiable in y_0 and g_2 is differentiable in y_0 . Then $g_1 g_2$ is differentiable in y_0 and $(g_1 g_2)'(y_0) = g_1'(y_0) g_2'(y_0)$.
- (22) Let n, m be non empty elements of \mathbb{N}, g be a partial function from \mathcal{R}^m to \mathcal{R}^n, y_0 be an element of \mathcal{R}^m , and r be a real number. Suppose g is differentiable in y_0 . Then r g is differentiable in y_0 and $(r g)'(y_0) = r g'(y_0)$.
- (23) Let x_0 be an element of \mathcal{R}^m , y_0 be a point of $\langle \mathcal{E}^m, \| \cdot \| \rangle$, and r be a real number. Suppose $x_0 = y_0$. Then $\{y \in \mathcal{R}^m : |y x_0| < r\} = \{z; z \text{ ranges over points of } \langle \mathcal{E}^m, \| \cdot \| \rangle : \|z y_0\| < r\}.$
- (24) Let m, n be non empty elements of \mathbb{N}, f be a partial function from \mathcal{R}^m to \mathcal{R}^n, x_0 be an element of \mathcal{R}^m , and L, R be functions from \mathcal{R}^m into \mathcal{R}^n . Suppose that
 - (i) L is a linear operator from m into n, and
 - (ii) there exists a real number r_0 such that $0 < r_0$ and $\{y \in \mathcal{R}^m : |y x_0| < r_0\} \subseteq \text{dom } f$ and for every real number r such that r > 0 there exists a real number d such that d > 0 and for every element z of \mathcal{R}^m and for every element w of \mathcal{R}^n such that $z \neq \langle \underbrace{0, \ldots, 0}_m \rangle$ and |z| < d and w = R(z)

holds $|z|^{-1} \cdot |w| < r$ and for every element x of \mathcal{R}^m such that $|x - x_0| < r_0$ holds $f(x) - f(x_0) = L(x - x_0) + R(x - x_0)$.

- Then f is differentiable in x_0 and $f'(x_0) = L$.
- (25) Let m, n be non empty elements of \mathbb{N} , f be a partial function from \mathcal{R}^m to \mathcal{R}^n , and x_0 be an element of \mathcal{R}^m . Then f is differentiable in x_0 if and only if there exists a real number r_0 such that $0 < r_0$ and $\{y \in \mathcal{R}^m : |y x_0| < r_0\} \subseteq \text{dom } f$ and there exist functions L, R from \mathcal{R}^m into \mathcal{R}^n such that L is a linear operator from m into n and for every real number r such that r > 0 there exists a real number d such that d > 0 and for every element z of \mathcal{R}^m and for every element w of \mathcal{R}^n such that $z \neq \langle 0, \ldots, 0 \rangle_m$

and |z| < d and w = R(z) holds $|z|^{-1} \cdot |w| < r$ and for every element x of \mathcal{R}^m such that $|x - x_0| < r_0$ holds $f(x) - f(x_0) = L(x - x_0) + R(x - x_0)$.

2. Differentiation of Functions from Normed Linear Spaces \mathcal{R}^m to Normed Linear Spaces \mathcal{R}^n

One can prove the following propositions:

- (26) For all points y_2 , y_3 of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ holds $(\operatorname{Proj}(i, n))(y_2 + y_3) = (\operatorname{Proj}(i, n))(y_2) + (\operatorname{Proj}(i, n))(y_3).$
- (27) For every point y_2 of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ and for every real number r holds $(\operatorname{Proj}(i,n))(r \cdot y_2) = r \cdot (\operatorname{Proj}(i,n))(y_2).$
- (28) Let m, n be non empty elements of \mathbb{N}, g be a partial function from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ to $\langle \mathcal{E}^n, \|\cdot\| \rangle$, x_0 be a point of $\langle \mathcal{E}^m, \|\cdot\| \rangle$, and i be an element of \mathbb{N} . Suppose $1 \leq i \leq n$ and g is differentiable in x_0 . Then $\operatorname{Proj}(i, n) \cdot g$ is differentiable in x_0 and $\operatorname{Proj}(i, n) \cdot g'(x_0) = (\operatorname{Proj}(i, n) \cdot g)'(x_0)$.
- (29) Let m, n be non empty elements of \mathbb{N}, g be a partial function from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ to $\langle \mathcal{E}^n, \|\cdot\| \rangle$, and x_0 be a point of $\langle \mathcal{E}^m, \|\cdot\| \rangle$. Then g is differentiable in x_0 if and only if for every element i of \mathbb{N} such that $1 \leq i \leq n$ holds $\operatorname{Proj}(i, n) \cdot g$ is differentiable in x_0 .

Let X be a set, let n, m be non empty elements of \mathbb{N} , and let f be a partial function from \mathcal{R}^m to \mathcal{R}^n . We say that f is differentiable on X if and only if:

(Def. 4) $X \subseteq \text{dom } f$ and for every element x of \mathcal{R}^m such that $x \in X$ holds $f \upharpoonright X$ is differentiable in x.

The following four propositions are true:

- (30) Let X be a set, m, n be non empty elements of \mathbb{N} , f be a partial function from \mathcal{R}^m to \mathcal{R}^n , and g be a partial function from $\langle \mathcal{E}^m, \| \cdot \| \rangle$ to $\langle \mathcal{E}^n, \| \cdot \| \rangle$. Suppose f = g. Then f is differentiable on X if and only if g is differentiable on X.
- (31) Let X be a set, m, n be non empty elements of \mathbb{N} , and f be a partial function from \mathcal{R}^m to \mathcal{R}^n . If f is differentiable on X, then X is a subset of \mathcal{R}^m .
- (32) Let m, n be non empty elements of \mathbb{N} , f be a partial function from \mathcal{R}^m to \mathcal{R}^n , and Z be a subset of \mathcal{R}^m . Given a subset Z_0 of $\langle \mathcal{E}^m, \|\cdot\| \rangle$ such that $Z = Z_0$ and Z_0 is open. Then f is differentiable on Z if and only if the following conditions are satisfied:
 - (i) $Z \subseteq \text{dom } f$, and
- (ii) for every element x of \mathcal{R}^m such that $x \in Z$ holds f is differentiable in x.
- (33) Let m, n be non empty elements of \mathbb{N} , f be a partial function from \mathcal{R}^m to \mathcal{R}^n , and Z be a subset of \mathcal{R}^m . Suppose f is differentiable on Z. Then there exists a subset Z_0 of $\langle \mathcal{E}^m, \| \cdot \| \rangle$ such that $Z = Z_0$ and Z_0 is open.

TAKAO INOUÉ et al.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990: Difference in the set of the se
- [6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
 [8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [9] Ngata Damochwal. The Euclidean space. Formatized Mathematics, 2(4):339 003, 1391.
 [9] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. For-
- malized Mathematics, 13(4):577-580, 2005.
- [10] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces Rⁿ. Formalized Mathematics, 15(2):65–72, 2007, doi:10.2478/v10037-007-0008-5.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [12] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. *Formalized Mathematics*, 12(3):321–327, 2004.
- [13] Keiichi Miyajima and Yasunari Shidama. Riemann integral of functions from \mathbb{R} into \mathcal{R}^n . Formalized Mathematics, 17(2):179–185, 2009, doi: 10.2478/v10037-009-0021-y.
- [14] Yatsuka Nakamura, Artur Korniłowicz, Nagato Oya, and Yasunari Shidama. The real vector spaces of finite sequences are finite dimensional. *Formalized Mathematics*, 17(1):1– 9, 2009, doi:10.2478/v10037-009-0001-2.
- [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [16] Walter Rudin. Principles of Mathematical Analysis. MacGraw-Hill, 1976.
- [17] Laurent Schwartz. Cours d'analyse. Hermann, 1981.
- [18] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39–48, 2004.
- [19] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(2):291–296, 1990.
- [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received February 23, 2010