On the Continuity of Some Functions

Artur Korniłowicz
Institute of Informatics
University of Białystok
Sosnowa 64, 15-887 Białystok, Poland

Abstract

Summary. We prove that basic arithmetic operations preserve continuity of functions.

MML identifier: $\underline{\text { TOPREALC, }}$ version: $\underline{7.11 .074 .156 .1112}$

The terminology and notation used here have been introduced in the following articles: [20], [1], [6], [13], [4], [7], [19], [8], [9], [5], [21], [2], [3], [10], [18], [25], [26], [23], [12], [22], [24], [14], [16], [17], [15], and [11].

1. Preliminaries

For simplicity, we adopt the following rules: x, X are sets, i, n, m are natural numbers, r, s are real numbers, c, c_{1}, c_{2}, d are complex numbers, f, g are complex-valued functions, g_{1} is an n-element complex-valued finite sequence, f_{1} is an n-element real-valued finite sequence, T is a non empty topological space, and p is an element of $\mathcal{E}_{\mathrm{T}}^{n}$.

Let R be a binary relation and let X be an empty set. Observe that $R^{\circ} X$ is empty and $R^{-1}(X)$ is empty.

Let A be an empty set. Observe that every element of A is empty.
We now state the proposition
(1) For every trivial set X and for every set Y such that $X \approx Y$ holds Y is trivial.
Let r be a real number. Observe that $r^{\mathbf{2}}$ is non negative.
Let r be a positive real number. Note that r^{2} is positive.
Let us note that $\sqrt{0}$ is zero.

Let f be an empty set. Note that ${ }^{2} f$ is empty and $|f|$ is zero.
The following propositions are true:
(2) $f\left(c_{1}+c_{2}\right)=f c_{1}+f c_{2}$.
(3) $f\left(c_{1}-c_{2}\right)=f c_{1}-f c_{2}$.
(4) $f / c+g / c=(f+g) / c$.
(5) $f / c-g / c=(f-g) / c$.
(6) If $c_{1} \neq 0$ and $c_{2} \neq 0$, then $f / c_{1}-g / c_{2}=\left(f c_{2}-g c_{1}\right) /\left(c_{1} \cdot c_{2}\right)$.
(7) If $c \neq 0$, then $f / c-g=(f-c g) / c$.
(8) $(c-d) f=c f-d f$.
(9) $(f-g)^{2}=(g-f)^{2}$.
(10) $(f / c)^{2}=f^{2} / c^{2}$.
(11) $\quad|n \mapsto r-n \mapsto s|=\sqrt{n} \cdot|r-s|$.

Let us consider f, x, c. Observe that $f+\cdot(x, c)$ is complex-valued.
We now state a number of propositions:
(12) $(\langle\underbrace{0, \ldots, 0}_{n}\rangle+\cdot(x, c))^{\mathbf{2}}=\langle\underbrace{0, \ldots, 0}_{n}\rangle+\cdot\left(x, c^{\mathbf{2}}\right)$.
(13) If $x \in \operatorname{Seg} n$, then $|\langle\underbrace{0, \ldots, 0}_{n}\rangle+\cdot(x, r)|=|r|$.
(14) $0_{\mathcal{E}_{\mathrm{T}}^{n}}+\cdot(x, 0)=0_{\mathcal{E}_{\mathrm{T}}^{n}}$.
(15) $\quad f_{1} \bullet\left(0 \mathcal{E}_{\mathrm{T}}^{n}+\cdot(x, r)\right)=0_{\mathcal{E}_{\mathrm{T}}^{n}}+\cdot\left(x, f_{1}(x) \cdot r\right)$.
(16) $\left|\left(f_{1}, 0_{\mathcal{E}_{\mathrm{T}}^{n}}+\cdot(x, r)\right)\right|=f_{1}(x) \cdot r$.
(17) $\left(g_{1}+\cdot(i, c)\right)-g_{1}=\langle\underbrace{0, \ldots, 0}_{n}\rangle+\cdot\left(i, c-g_{1}(i)\right)$.
(18) $\quad|\langle r\rangle|=|r|$.
(19) Every real-valued finite sequence is a finite sequence of elements of \mathbb{R}.
(20) For every real-valued finite sequence f such that $|f| \neq 0$ there exists a natural number i such that $i \in \operatorname{dom} f$ and $f(i) \neq 0$.
(21) For every real-valued finite sequence f holds $\left|\sum f\right| \leq \sum|f|$.
(22) Let A be a non empty 1 -sorted structure, B be a trivial non empty 1 sorted structure, t be a point of B, and f be a function from A into B. Then $f=A \longmapsto t$.
Let n be a non zero natural number, let i be an element of $\operatorname{Seg} n$, and let T be a real-membered non empty topological space. Note that $\operatorname{proj}(\operatorname{Seg} n \longmapsto T, i)$ is real-valued.

Let us consider n, let p be an element of \mathcal{R}^{n}, and let us consider r. Then p / r is an element of \mathcal{R}^{n}.

One can prove the following proposition
(23) For all points p, q of $\mathcal{E}_{\mathrm{T}}^{m}$ holds $p \in \operatorname{Ball}(q, r)$ iff $-p \in \operatorname{Ball}(-q, r)$.

Let S be a 1 -sorted structure. We say that S is complex-functions-membered if and only if:
(Def. 1) The carrier of S is complex-functions-membered.
We say that S is real-functions-membered if and only if:
(Def. 2) The carrier of S is real-functions-membered.
Let us consider n. One can verify that $\mathcal{E}_{\mathrm{T}}^{n}$ is real-functions-membered.
Let us observe that $\mathcal{E}_{\mathrm{T}}^{0}$ is real-membered.
One can check that $\mathcal{E}_{\mathrm{T}}^{0}$ is trivial.
Let us observe that every 1 -sorted structure which is real-functionsmembered is also complex-functions-membered.

Let us mention that there exists a 1-sorted structure which is strict, non empty, and real-functions-membered.

Let S be a complex-functions-membered 1-sorted structure. One can check that the carrier of S is complex-functions-membered.

Let S be a real-functions-membered 1-sorted structure. Note that the carrier of S is real-functions-membered.

Let us observe that there exists a topological space which is strict, non empty, and real-functions-membered.

Let S be a complex-functions-membered topological space. Observe that every subspace of S is complex-functions-membered.

Let S be a real-functions-membered topological space. One can verify that every subspace of S is real-functions-membered.

Let X be a complex-functions-membered set. The functor $(-) X$ yields a complex-functions-membered set and is defined as follows:
(Def. 3) For every complex-valued function f holds $-f \in(-) X$ iff $f \in X$.
Let us observe that the functor $(-) X$ is involutive.
Let X be an empty set. One can verify that $(-) X$ is empty.
Let X be a non empty complex-functions-membered set. Observe that $(-) X$ is non empty.

The following proposition is true
(24) Let X be a complex-functions-membered set and f be a complex-valued function. Then $-f \in X$ if and only if $f \in(-) X$.
Let X be a real-functions-membered set. One can verify that $(-) X$ is real-functions-membered.

Next we state the proposition
(25) For every subset X of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $-X=(-) X$.

Let us consider n and let X be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Then $(-) X$ is a subset of $\mathcal{E}_{\mathrm{T}}^{n}$.
Let us consider n and let X be an open subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Observe that $(-) X$ is open.

Let us consider n, p, x. Then $p(x)$ is an element of \mathbb{R}.

Let R, S, T be non empty topological spaces, let f be a function from $R \times$ S into T, and let x be a point of $R \times S$. Then $f(x)$ is a point of T.

Let R, S, T be non empty topological spaces, let f be a function from $R \times$ S into T, let r be a point of R, and let s be a point of S. Then $f(r, s)$ is a point of T.

Let us consider n, p, r. Then $p+r$ is a point of $\mathcal{E}_{\mathrm{T}}^{n}$.
Let us consider n, p, r. Then $p-r$ is a point of $\mathcal{E}_{\mathrm{T}}^{n}$.
Let us consider n, p, r. Then $p r$ is a point of $\mathcal{E}_{\mathrm{T}}^{n}$.
Let us consider n, p, r. Then p / r is a point of $\mathcal{E}_{\mathrm{T}}^{n}$.
Let us consider n and let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Then $p_{1} p_{2}$ is a point of $\mathcal{E}_{\mathrm{T}}^{n}$. Let us note that the functor $p_{1} p_{2}$ is commutative.

Let us consider n and let p be a point of $\mathcal{E}_{\mathrm{T}}^{n}$. Then ${ }^{2} p$ is a point of $\mathcal{E}_{\mathrm{T}}^{n}$.
Let us consider n and let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Then p_{1} / p_{2} is a point of $\mathcal{E}_{\mathrm{T}}^{n}$.
Let us consider n, p, x, r. Then $p+\cdot(x, r)$ is a point of $\mathcal{E}_{\mathrm{T}}^{n}$.
Next we state the proposition
(26) For all points a, o of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $n \neq 0$ and $a \in \operatorname{Ball}(o, r)$ holds $\left|\sum(a-o)\right|<n \cdot r$.
Let us consider n. Note that \mathcal{E}^{n} is real-functions-membered.
One can prove the following propositions:
(27) Let V be an add-associative right zeroed right complementable non empty additive loop structure and v, u be elements of V. Then $(v+u)-u=v$.
(28) Let V be an Abelian add-associative right zeroed right complementable non empty additive loop structure and v, u be elements of V. Then $(v-$ $u)+u=v$.
(29) For every complex-functions-membered set Y and for every partial function f from X to Y holds $f+c=f+(\operatorname{dom} f \longmapsto c)$.
(30) For every complex-functions-membered set Y and for every partial function f from X to Y holds $f-c=f-(\operatorname{dom} f \longmapsto c)$.
(31) For every complex-functions-membered set Y and for every partial function f from X to Y holds $f \cdot c=f \cdot(\operatorname{dom} f \longmapsto c)$.
(32) For every complex-functions-membered set Y and for every partial function f from X to Y holds $f / c=f /(\operatorname{dom} f \longmapsto c)$.
Let D be a complex-functions-membered set and let f, g be finite sequences of elements of D. One can verify the following observations:

* $f+g$ is finite sequence-like,
* $f-g$ is finite sequence-like,
* $f \cdot g$ is finite sequence-like, and
* f / g is finite sequence-like.

Next we state a number of propositions:
(33) For every function f from X into $\mathcal{E}_{\mathrm{T}}^{n}$ holds $-f$ is a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$.
(34) For every function f from $\mathcal{E}_{\mathrm{T}}^{i}$ into $\mathcal{E}_{\mathrm{T}}^{n}$ holds $f \circ-$ is a function from $\mathcal{E}_{\mathrm{T}}^{i}$ into $\mathcal{E}_{\mathrm{T}}^{n}$.
(35) For every function f from X into $\mathcal{E}_{\mathrm{T}}^{n}$ holds $f+r$ is a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$.
(36) For every function f from X into $\mathcal{E}_{\mathrm{T}}^{n}$ holds $f-r$ is a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$.
(37) For every function f from X into $\mathcal{E}_{\mathrm{T}}^{n}$ holds $f \cdot r$ is a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$.
(38) For every function f from X into $\mathcal{E}_{\mathrm{T}}^{n}$ holds f / r is a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$.
(39) For all functions f, g from X into $\mathcal{E}_{\mathrm{T}}^{n}$ holds $f+g$ is a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$.
(40) For all functions f, g from X into $\mathcal{E}_{\mathrm{T}}^{n}$ holds $f-g$ is a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$.
(41) For all functions f, g from X into $\mathcal{E}_{\mathrm{T}}^{n}$ holds $f \cdot g$ is a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$.
(42) For all functions f, g from X into $\mathcal{E}_{\mathrm{T}}^{n}$ holds f / g is a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$.
(43) Let f be a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$ and g be a function from X into \mathbb{R}^{1}. Then $f+g$ is a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$.
(44) Let f be a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$ and g be a function from X into \mathbb{R}^{1}. Then $f-g$ is a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$.
(45) Let f be a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$ and g be a function from X into \mathbb{R}^{1}. Then $f \cdot g$ is a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$.
(46) Let f be a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$ and g be a function from X into $\mathbb{R}^{\mathbf{1}}$. Then f / g is a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$.
Let n be a natural number, let T be a non empty set, let R be a realmembered set, and let f be a function from T into R. The functor $\operatorname{incl}(f, n)$ yields a function from T into $\mathcal{E}_{\mathrm{T}}^{n}$ and is defined by:
(Def. 4) For every element t of T holds $(\operatorname{incl}(f, n))(t)=n \mapsto f(t)$.
We now state several propositions:
(47) Let R be a real-membered set, f be a function from T into R, and t be a point of T. If $x \in \operatorname{Seg} n$, then $(\operatorname{incl}(f, n))(t)(x)=f(t)$.
(48) For every non empty set T and for every real-membered set R and for every function f from T into R holds $\operatorname{incl}(f, 0)=T \longmapsto 0$.
(49) For every function f from T into $\mathcal{E}_{\mathrm{T}}^{n}$ and for every function g from T into \mathbb{R}^{1} holds $f+g=f+\operatorname{incl}(g, n)$.
(50) For every function f from T into $\mathcal{E}_{\mathrm{T}}^{n}$ and for every function g from T into $\mathbb{R}^{\mathbf{1}}$ holds $f-g=f-\operatorname{incl}(g, n)$.
(51) For every function f from T into $\mathcal{E}_{\mathrm{T}}^{n}$ and for every function g from T into $\mathbb{R}^{\mathbf{1}}$ holds $f \cdot g=f \cdot \operatorname{incl}(g, n)$.
(52) For every function f from T into $\mathcal{E}_{\mathrm{T}}^{n}$ and for every function g from T into \mathbb{R}^{1} holds $f / g=f / \operatorname{incl}(g, n)$.
Let us consider n. The functor \otimes_{n} yields a function from $\mathcal{E}_{\mathrm{T}}^{n} \times \mathcal{E}_{\mathrm{T}}^{n}$ into $\mathcal{E}_{\mathrm{T}}^{n}$ and is defined by:
(Def. 5) For all points x, y of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $\otimes_{n}(x, y)=x y$.
Next we state two propositions:
(53) $\otimes_{0}=\mathcal{E}_{\mathrm{T}}^{0} \times \mathcal{E}_{\mathrm{T}}^{0} \longmapsto 0_{\mathcal{E}_{\mathrm{T}}^{0}}$.
(54) For all functions f, g from T into $\mathcal{E}_{\mathrm{T}}^{n}$ holds $f \cdot g=\left(\bigotimes_{n}\right)^{\circ}(f, g)$.

Let us consider m, n. The functor $\operatorname{PROJ}(m, n)$ yields a function from $\mathcal{E}_{\mathrm{T}}^{m}$ into \mathbb{R}^{1} and is defined as follows:
(Def. 6) For every element p of $\mathcal{E}_{\mathrm{T}}^{m}$ holds $(\operatorname{PROJ}(m, n))(p)=p_{n}$.
One can prove the following propositions:
(55) For every point p of $\mathcal{E}_{\mathrm{T}}^{m}$ such that $n \in \operatorname{dom} p$ holds $(\operatorname{PROJ}(m, n))^{\circ} \operatorname{Ball}(p, r)=$ $] p_{n}-r, p_{n}+r[$.
(56) For every non zero natural number m and for every function f from T into $\mathbb{R}^{\mathbf{1}}$ holds $f=\operatorname{PROJ}(m, m) \cdot \operatorname{incl}(f, m)$.

2. Continuity

Let us consider T. One can check that there exists a function from T into \mathbb{R}^{1} which is non-empty and continuous.

Next we state two propositions:
(57) If $n \in \operatorname{Seg} m$, then $\operatorname{PROJ}(m, n)$ is continuous.
(58) If $n \in \operatorname{Seg} m$, then $\operatorname{PROJ}(m, n)$ is open.

Let us consider n, T and let f be a continuous function from T into $\mathbb{R}^{\mathbf{1}}$. Observe that $\operatorname{incl}(f, n)$ is continuous.

Let us consider n. One can verify that \otimes_{n} is continuous.
One can prove the following proposition
(59) Let f be a function from $\mathcal{E}_{\mathrm{T}}^{m}$ into $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose f is continuous. Then $f \circ-$ is a continuous function from $\mathcal{E}_{\mathrm{T}}^{m}$ into $\mathcal{E}_{\mathrm{T}}^{n}$.
Let us consider T and let f be a continuous function from T into \mathbb{R}^{1}. Observe that $-f$ is continuous.

Let us consider T and let f be a non-empty continuous function from T into \mathbb{R}^{1}. One can verify that f^{-1} is continuous.

Let us consider T, let f be a continuous function from T into $\mathbb{R}^{\mathbf{1}}$, and let us consider r. One can check the following observations:

* $f+r$ is continuous,
* $f-r$ is continuous,
* $f r$ is continuous, and
* f / r is continuous.

Let us consider T and let f, g be continuous functions from T into $\mathbb{R}^{\mathbf{1}}$. One can verify the following observations:

* $f+g$ is continuous,
* $f-g$ is continuous, and
* $f g$ is continuous.

Let us consider T, let f be a continuous function from T into $\mathbb{R}^{\mathbf{1}}$, and let g be a non-empty continuous function from T into $\mathbb{R}^{\mathbf{1}}$. Observe that f / g is continuous.

Let us consider n, T and let f, g be continuous functions from T into $\mathcal{E}_{\mathrm{T}}^{n}$. One can verify the following observations:

* $f+g$ is continuous,
* $f-g$ is continuous, and
* $f \cdot g$ is continuous.

Let us consider n, T, let f be a continuous function from T into $\mathcal{E}_{\mathrm{T}}^{n}$, and let g be a continuous function from T into $\mathbb{R}^{\mathbf{1}}$. One can verify the following observations:

* $f+g$ is continuous,
* $f-g$ is continuous, and
* $f \cdot g$ is continuous.

Let us consider n, T, let f be a continuous function from T into $\mathcal{E}_{\mathrm{T}}^{n}$, and let g be a non-empty continuous function from T into $\mathbb{R}^{\mathbf{1}}$. Observe that f / g is continuous.

Let us consider n, T, r and let f be a continuous function from T into $\mathcal{E}_{\mathrm{T}}^{n}$. One can verify the following observations:

* $f+r$ is continuous,
* $f-r$ is continuous,
* $f \cdot r$ is continuous, and
* f / r is continuous.

We now state two propositions:
(60) Let r be a non negative real number, n be a non zero natural number, and p be a point of $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}, r\right)$. Then $-p$ is a point of $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}, r\right)$.
(61) Let r be a non negative real number and f be a function from $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{n+1}}, r\right)$ into $\mathcal{E}_{\mathrm{T}}^{n}$. Then $f \circ-$ is a function from Tcircle $\left(0_{\mathcal{E}_{\mathrm{T}}^{n+1}}, r\right)$ into $\mathcal{E}_{\mathrm{T}}^{n}$.
Let n be a natural number, let r be a non negative real number, and let X be a subset of $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{n+1}}, r\right)$. Then $(-) X$ is a subset of $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{n+1}}, r\right)$.

Let us consider m, let r be a non negative real number, and let X be an open subset of $\operatorname{Tcircle}\left(0_{\mathcal{E}_{T}^{m+1}}, r\right)$. One can verify that $(-) X$ is open.

The following proposition is true
(62) Let r be a non negative real number and f be a continuous function from $\operatorname{Tcircle}\left(0_{\mathcal{E}_{\mathrm{T}}^{m+1}}, r\right)$ into $\mathcal{E}_{\mathrm{T}}^{m}$. Then $f \circ-$ is a continuous function from Tcircle $\left(0_{\mathcal{E}_{\mathrm{T}}^{m+1}}, r\right)$ into $\mathcal{E}_{\mathrm{T}}^{m}$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[6] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[8] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[12] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[13] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[14] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[15] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43-60, 2009, doi:10.2478/v10037-009-0005-y.
[16] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in $\mathcal{E}_{\mathrm{T}}^{n}$. Formalized Mathematics, 12(3):301-306, 2004.
[17] Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117-124, 2005.
[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[20] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[21] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341347, 2003.
[22] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[26] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

