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Summary.We prove that basic arithmetic operations preserve continuity
of functions.
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The terminology and notation used here have been introduced in the following
articles: [20], [1], [6], [13], [4], [7], [19], [8], [9], [5], [21], [2], [3], [10], [18], [25],
[26], [23], [12], [22], [24], [14], [16], [17], [15], and [11].

1. Preliminaries

For simplicity, we adopt the following rules: x, X are sets, i, n, m are natural
numbers, r, s are real numbers, c, c1, c2, d are complex numbers, f , g are
complex-valued functions, g1 is an n-element complex-valued finite sequence, f1
is an n-element real-valued finite sequence, T is a non empty topological space,
and p is an element of EnT.

Let R be a binary relation and let X be an empty set. Observe that R◦X is
empty and R−1(X) is empty.

Let A be an empty set. Observe that every element of A is empty.
We now state the proposition

(1) For every trivial set X and for every set Y such that X ≈ Y holds Y is
trivial.

Let r be a real number. Observe that r2 is non negative.
Let r be a positive real number. Note that r2 is positive.
Let us note that

√
0 is zero.
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Let f be an empty set. Note that 2f is empty and |f | is zero.
The following propositions are true:

(2) f (c1 + c2) = f c1 + f c2.

(3) f (c1 − c2) = f c1 − f c2.
(4) f/c+ g/c = (f + g)/c.

(5) f/c− g/c = (f − g)/c.

(6) If c1 6= 0 and c2 6= 0, then f/c1 − g/c2 = (f c2 − g c1)/(c1 · c2).
(7) If c 6= 0, then f/c− g = (f − c g)/c.

(8) (c− d) f = c f − d f.
(9) (f − g)2 = (g − f)2.

(10) (f/c)2 = f2/c2.

(11) |n 7→ r − n 7→ s| =
√
n · |r − s|.

Let us consider f , x, c. Observe that f +· (x, c) is complex-valued.
We now state a number of propositions:

(12) (〈0, . . . , 0︸ ︷︷ ︸
n

〉+· (x, c))2 = 〈0, . . . , 0︸ ︷︷ ︸
n

〉+· (x, c2).

(13) If x ∈ Seg n, then |〈0, . . . , 0︸ ︷︷ ︸
n

〉+· (x, r)| = |r|.

(14) 0EnT +· (x, 0) = 0EnT .

(15) f1 • (0EnT +· (x, r)) = 0EnT +· (x, f1(x) · r).
(16) |(f1, 0EnT +· (x, r))| = f1(x) · r.
(17) (g1 +· (i, c))− g1 = 〈0, . . . , 0︸ ︷︷ ︸

n

〉+· (i, c− g1(i)).

(18) |〈r〉| = |r|.
(19) Every real-valued finite sequence is a finite sequence of elements of R.

(20) For every real-valued finite sequence f such that |f | 6= 0 there exists a
natural number i such that i ∈ dom f and f(i) 6= 0.

(21) For every real-valued finite sequence f holds |
∑
f | ≤

∑
|f |.

(22) Let A be a non empty 1-sorted structure, B be a trivial non empty 1-
sorted structure, t be a point of B, and f be a function from A into B.
Then f = A 7−→ t.

Let n be a non zero natural number, let i be an element of Seg n, and let T
be a real-membered non empty topological space. Note that proj(Seg n 7−→ T, i)
is real-valued.

Let us consider n, let p be an element of Rn, and let us consider r. Then
p/r is an element of Rn.

One can prove the following proposition

(23) For all points p, q of EmT holds p ∈ Ball(q, r) iff −p ∈ Ball(−q, r).
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Let S be a 1-sorted structure. We say that S is complex-functions-membered
if and only if:

(Def. 1) The carrier of S is complex-functions-membered.

We say that S is real-functions-membered if and only if:

(Def. 2) The carrier of S is real-functions-membered.

Let us consider n. One can verify that EnT is real-functions-membered.
Let us observe that E0T is real-membered.
One can check that E0T is trivial.
Let us observe that every 1-sorted structure which is real-functions-

membered is also complex-functions-membered.
Let us mention that there exists a 1-sorted structure which is strict, non

empty, and real-functions-membered.
Let S be a complex-functions-membered 1-sorted structure. One can check

that the carrier of S is complex-functions-membered.
Let S be a real-functions-membered 1-sorted structure. Note that the carrier

of S is real-functions-membered.
Let us observe that there exists a topological space which is strict, non

empty, and real-functions-membered.
Let S be a complex-functions-membered topological space. Observe that

every subspace of S is complex-functions-membered.
Let S be a real-functions-membered topological space. One can verify that

every subspace of S is real-functions-membered.
Let X be a complex-functions-membered set. The functor (−)X yields a

complex-functions-membered set and is defined as follows:

(Def. 3) For every complex-valued function f holds −f ∈ (−)X iff f ∈ X.
Let us observe that the functor (−)X is involutive.

Let X be an empty set. One can verify that (−)X is empty.
Let X be a non empty complex-functions-membered set. Observe that (−)X

is non empty.
The following proposition is true

(24) Let X be a complex-functions-membered set and f be a complex-valued
function. Then −f ∈ X if and only if f ∈ (−)X.

Let X be a real-functions-membered set. One can verify that (−)X is real-
functions-membered.

Next we state the proposition

(25) For every subset X of EnT holds −X = (−)X.

Let us consider n and let X be a subset of EnT. Then (−)X is a subset of EnT.
Let us consider n and let X be an open subset of EnT. Observe that (−)X is

open.
Let us consider n, p, x. Then p(x) is an element of R.
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Let R, S, T be non empty topological spaces, let f be a function from R×
S into T , and let x be a point of R× S. Then f(x) is a point of T .

Let R, S, T be non empty topological spaces, let f be a function from R×
S into T , let r be a point of R, and let s be a point of S. Then f(r, s) is a point
of T .

Let us consider n, p, r. Then p+ r is a point of EnT.
Let us consider n, p, r. Then p− r is a point of EnT.
Let us consider n, p, r. Then p r is a point of EnT.
Let us consider n, p, r. Then p/r is a point of EnT.
Let us consider n and let p1, p2 be points of EnT. Then p1 p2 is a point of EnT.

Let us note that the functor p1 p2 is commutative.
Let us consider n and let p be a point of EnT. Then 2p is a point of EnT.
Let us consider n and let p1, p2 be points of EnT. Then p1/p2 is a point of EnT.
Let us consider n, p, x, r. Then p+· (x, r) is a point of EnT.
Next we state the proposition

(26) For all points a, o of EnT such that n 6= 0 and a ∈ Ball(o, r) holds
|
∑

(a− o)| < n · r.
Let us consider n. Note that En is real-functions-membered.
One can prove the following propositions:

(27) Let V be an add-associative right zeroed right complementable non emp-
ty additive loop structure and v, u be elements of V . Then (v+u)−u = v.

(28) Let V be an Abelian add-associative right zeroed right complementable
non empty additive loop structure and v, u be elements of V . Then (v −
u) + u = v.

(29) For every complex-functions-membered set Y and for every partial func-
tion f from X to Y holds f + c = f + (dom f 7−→ c).

(30) For every complex-functions-membered set Y and for every partial func-
tion f from X to Y holds f − c = f − (dom f 7−→ c).

(31) For every complex-functions-membered set Y and for every partial func-
tion f from X to Y holds f · c = f · (dom f 7−→ c).

(32) For every complex-functions-membered set Y and for every partial func-
tion f from X to Y holds f/c = f/(dom f 7−→ c).

Let D be a complex-functions-membered set and let f , g be finite sequences
of elements of D. One can verify the following observations:

∗ f + g is finite sequence-like,

∗ f − g is finite sequence-like,

∗ f · g is finite sequence-like, and

∗ f/g is finite sequence-like.

Next we state a number of propositions:
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(33) For every function f from X into EnT holds −f is a function from X into
EnT.

(34) For every function f from E iT into EnT holds f ◦ − is a function from E iT
into EnT.

(35) For every function f from X into EnT holds f + r is a function from X

into EnT.

(36) For every function f from X into EnT holds f − r is a function from X

into EnT.

(37) For every function f from X into EnT holds f ·r is a function from X into
EnT.

(38) For every function f from X into EnT holds f/r is a function from X into
EnT.

(39) For all functions f , g from X into EnT holds f + g is a function from X

into EnT.

(40) For all functions f , g from X into EnT holds f − g is a function from X

into EnT.

(41) For all functions f , g from X into EnT holds f · g is a function from X

into EnT.

(42) For all functions f , g from X into EnT holds f/g is a function from X

into EnT.

(43) Let f be a function from X into EnT and g be a function from X into R1.
Then f + g is a function from X into EnT.

(44) Let f be a function from X into EnT and g be a function from X into R1.
Then f − g is a function from X into EnT.

(45) Let f be a function from X into EnT and g be a function from X into R1.
Then f · g is a function from X into EnT.

(46) Let f be a function from X into EnT and g be a function from X into R1.
Then f/g is a function from X into EnT.

Let n be a natural number, let T be a non empty set, let R be a real-
membered set, and let f be a function from T into R. The functor incl(f, n)
yields a function from T into EnT and is defined by:

(Def. 4) For every element t of T holds (incl(f, n))(t) = n 7→ f(t).

We now state several propositions:

(47) Let R be a real-membered set, f be a function from T into R, and t be
a point of T . If x ∈ Seg n, then (incl(f, n))(t)(x) = f(t).

(48) For every non empty set T and for every real-membered set R and for
every function f from T into R holds incl(f, 0) = T 7−→ 0.

(49) For every function f from T into EnT and for every function g from T

into R1 holds f + g = f + incl(g, n).
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(50) For every function f from T into EnT and for every function g from T

into R1 holds f − g = f − incl(g, n).

(51) For every function f from T into EnT and for every function g from T

into R1 holds f · g = f · incl(g, n).

(52) For every function f from T into EnT and for every function g from T

into R1 holds f/g = f/ incl(g, n).

Let us consider n. The functor
⊗

n yields a function from EnT × EnT into EnT
and is defined by:

(Def. 5) For all points x, y of EnT holds
⊗
n(x, y) = x y.

Next we state two propositions:

(53)
⊗
0 = E0T × E0T 7−→ 0E0T .

(54) For all functions f , g from T into EnT holds f · g = (
⊗
n)◦(f, g).

Let us consider m, n. The functor PROJ(m,n) yields a function from EmT
into R1 and is defined as follows:

(Def. 6) For every element p of EmT holds (PROJ(m,n))(p) = pn.

One can prove the following propositions:

(55) For every point p of EmT such that n ∈ dom p holds (PROJ(m,n))◦Ball(p, r) =
]pn − r, pn + r[.

(56) For every non zero natural number m and for every function f from T

into R1 holds f = PROJ(m,m) · incl(f,m).

2. Continuity

Let us consider T . One can check that there exists a function from T into
R1 which is non-empty and continuous.

Next we state two propositions:

(57) If n ∈ Segm, then PROJ(m,n) is continuous.

(58) If n ∈ Segm, then PROJ(m,n) is open.

Let us consider n, T and let f be a continuous function from T into R1.
Observe that incl(f, n) is continuous.

Let us consider n. One can verify that
⊗

n is continuous.
One can prove the following proposition

(59) Let f be a function from EmT into EnT. Suppose f is continuous. Then
f ◦ − is a continuous function from EmT into EnT.

Let us consider T and let f be a continuous function from T into R1. Observe
that −f is continuous.

Let us consider T and let f be a non-empty continuous function from T into
R1. One can verify that f−1 is continuous.
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Let us consider T , let f be a continuous function from T into R1, and let us
consider r. One can check the following observations:

∗ f + r is continuous,

∗ f − r is continuous,

∗ f r is continuous, and

∗ f/r is continuous.

Let us consider T and let f , g be continuous functions from T into R1. One
can verify the following observations:

∗ f + g is continuous,

∗ f − g is continuous, and

∗ f g is continuous.

Let us consider T , let f be a continuous function from T into R1, and let
g be a non-empty continuous function from T into R1. Observe that f/g is
continuous.

Let us consider n, T and let f , g be continuous functions from T into EnT.
One can verify the following observations:

∗ f + g is continuous,

∗ f − g is continuous, and

∗ f · g is continuous.

Let us consider n, T , let f be a continuous function from T into EnT, and
let g be a continuous function from T into R1. One can verify the following
observations:

∗ f + g is continuous,

∗ f − g is continuous, and

∗ f · g is continuous.

Let us consider n, T , let f be a continuous function from T into EnT, and
let g be a non-empty continuous function from T into R1. Observe that f/g is
continuous.

Let us consider n, T , r and let f be a continuous function from T into EnT.
One can verify the following observations:

∗ f + r is continuous,

∗ f − r is continuous,

∗ f · r is continuous, and

∗ f/r is continuous.

We now state two propositions:

(60) Let r be a non negative real number, n be a non zero natural number,
and p be a point of Tcircle(0EnT , r). Then −p is a point of Tcircle(0EnT , r).
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(61) Let r be a non negative real number and f be a function from
Tcircle(0En+1T

, r) into EnT. Then f ◦ − is a function from Tcircle(0En+1T
, r)

into EnT.

Let n be a natural number, let r be a non negative real number, and let X
be a subset of Tcircle(0En+1T

, r). Then (−)X is a subset of Tcircle(0En+1T
, r).

Let us consider m, let r be a non negative real number, and let X be an
open subset of Tcircle(0Em+1T

, r). One can verify that (−)X is open.
The following proposition is true

(62) Let r be a non negative real number and f be a continuous function
from Tcircle(0Em+1T

, r) into EmT . Then f ◦ − is a continuous function from
Tcircle(0Em+1T

, r) into EmT .

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[6] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
[7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[12] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized
Mathematics, 1(4):661–668, 1990.

[13] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[14] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces – funda-

mental concepts. Formalized Mathematics, 2(4):605–608, 1991.
[15] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets.
Formalized Mathematics, 17(1):43–60, 2009, doi:10.2478/v10037-009-0005-y.

[16] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in EnT.
Formalized Mathematics, 12(3):301–306, 2004.

[17] Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. For-
malized Mathematics, 13(1):117–124, 2005.

[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329–334, 1990.

[20] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,
2(4):535–545, 1991.

[21] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341–
347, 2003.

[22] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized
Mathematics, 1(3):445–449, 1990.



On the continuity of some functions 183

[23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,
1990.

[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[26] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received February 9, 2010




