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formulas of composite trigonometric function.
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The papers [9], [10], [15], [2], [3], [1], [6], [11], [4], [16], [7], [8], [5], [17], [13], [14],
and [12] provide the terminology and notation for this paper.

1. Differentiation Formulas

For simplicity, we adopt the following convention: a, x denote real numbers,
n denotes a natural number, A denotes a closed-interval subset of R, f , f1 denote
partial functions from R to R, and Z denotes an open subset of R.

One can prove the following propositions:

(1) Suppose Z ⊆ dom((the function sec) · 1idZ ). Then
(i) −(the function sec) · 1idZ is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function sec) · 1idZ )′�Z(x) =

(the function sin)( 1
x
)

x2·(the function cos)( 1
x
)2
.

(2) Suppose Z ⊆ dom((the function cosec) · (the function exp)). Then
(i) −(the function cosec) · (the function exp) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function cosec) · (the function

exp))′�Z(x) = (the function exp)(x)·(the function cos)((the function exp)(x))
(the function sin)((the function exp)(x))2 .

(3) Suppose Z ⊆ dom((the function cosec) · (the function ln)). Then
(i) −(the function cosec) · (the function ln) is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds (−(the function cosec) · (the function
ln))′�Z(x) = (the function cos)((the function ln)(x))

x·(the function sin)((the function ln)(x))2 .

(4) Suppose Z ⊆ dom((the function exp) ·(the function cosec)). Then
(i) −(the function exp) · (the function cosec) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function exp) · (the function

cosec))′�Z(x) = (the function exp)((the function cosec)(x))·(the function cos)(x)
(the function sin)(x)2 .

(5) Suppose Z ⊆ dom((the function ln) ·(the function cosec)). Then
(i) −(the function ln) · (the function cosec) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function ln) · (the function

cosec))′�Z(x) = (the function cot)(x).

(6) Suppose Z ⊆ dom((�n) · the function cosec) and 1 ≤ n. Then
(i) −(�n) · the function cosec is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(�n) · the function

cosec)′�Z(x) = n·(the function cos)(x)
(the function sin)(x)n+1 .

(7) Suppose Z ⊆ dom( 1idZ the function sec). Then
(i) − 1

idZ
the function sec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (− 1
idZ

the function

sec)′�Z(x) =
1

(the function cos)(x)
x2

−
(the function sin)(x)

x
(the function cos)(x)2 .

(8) Suppose Z ⊆ dom( 1idZ the function cosec). Then
(i) − 1

idZ
the function cosec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (− 1
idZ

the function

cosec)′�Z(x) =
1

(the function sin)(x)
x2

+
(the function cos)(x)

x
(the function sin)(x)2 .

(9) Suppose Z ⊆ dom((the function cosec) ·(the function sin)). Then
(i) −(the function cosec) · (the function sin) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function cosec) · (the function

sin))′�Z(x) = (the function cos)(x)·(the function cos)((the function sin)(x))
(the function sin)((the function sin)(x))2 .

(10) Suppose Z ⊆ dom((the function sec) ·(the function cot)). Then
(i) −(the function sec) · (the function cot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function sec) · (the function

cot))′�Z(x) =
(the function sin)((the function cot)(x))

(the function sin)(x)2

(the function cos)((the function cot)(x))2 .

(11) Suppose Z ⊆ dom((the function cosec) ·(the function tan)). Then
(i) −(the function cosec) · (the function tan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function cosec) · (the function

tan))′�Z(x) =
(the function cos)((the function tan)(x))

(the function cos)(x)2

(the function sin)((the function tan)(x))2 .

(12) Suppose Z ⊆ dom((the function cot) (the function sec)). Then
(i) −(the function cot) (the function sec) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function cot) (the function
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sec))′�Z(x) =
1

(the function sin)(x)2

(the function cos)(x) −
(the function cot)(x)·(the function sin)(x)

(the function cos)(x)2 .

(13) Suppose Z ⊆ dom((the function cot) (the function cosec)). Then
(i) −(the function cot) (the function cosec) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (−(the function cot) (the function

cosec))′�Z(x) =
1

(the function sin)(x)2

(the function sin)(x) + (the function cot)(x)·(the function cos)(x)
(the function sin)(x)2 .

(14) Suppose Z ⊆ dom((the function cos) (the function cot)). Then
(i) −(the function cos) (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (−(the function cos) (the function
cot))′�Z(x) = (the function cos)(x) + (the function cos)(x)

(the function sin)(x)2 .

2. Integrability Formulas

We now state a number of propositions:

(15) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) =

(the function sin)( 1
x
)

x2·(the function cos)( 1
x
)2
,

(iii) Z ⊆ dom((the function sec) · 1idZ ),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function sec) · 1
idZ

)(supA)− (−(the function

sec) · 1idZ )(inf A).

(16) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
(the function cos)( 1

x
)

x2·(the function sin)( 1
x
)2
,

(iii) Z ⊆ dom((the function cosec) · 1idZ ),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function cosec) · 1idZ )(supA)− ((the function

cosec) · 1idZ )(inf A).

(17) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds
f(x) = (the function exp)(x)·(the function sin)((the function exp)(x))

(the function cos)((the function exp)(x))2 ,

(iii) Z ⊆ dom((the function sec) ·(the function exp)),
(iv) Z = dom f, and
(v) f�A is continuous.
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Then
∫
A

f(x)dx = ((the function sec) ·(the function exp))(supA)−((the function

sec) ·(the function exp))(inf A).

(18) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds

f(x) = (the function exp)(x)·(the function cos)((the function exp)(x))
(the function sin)((the function exp)(x))2 ,

(iii) Z ⊆ dom((the function cosec) ·(the function exp)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cosec) · (the function exp))(supA) −

(−(the function cosec) · (the function exp))(inf A).

(19) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds

f(x) = (the function sin)((the function ln)(x))
x·(the function cos)((the function ln)(x))2 ,

(iii) Z ⊆ dom((the function sec) ·(the function ln)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function sec) ·(the function ln))(supA)− ((the function

sec) ·(the function ln))(inf A).

(20) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds

f(x) = (the function cos)((the function ln)(x))
x·(the function sin)((the function ln)(x))2 ,

(iii) Z ⊆ dom((the function cosec) ·(the function ln)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cosec) · (the function ln))(supA)− (−(the

function cosec) · (the function ln))(inf A).

(21) Suppose that
(i) A ⊆ Z,
(ii) f = ((the function exp) ·(the function sec)) the function sin

(the function cos)2
,

(iii) Z = dom f, and
(iv) f�A is continuous.
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Then
∫
A

f(x)dx = ((the function exp) ·(the function sec))(supA)−((the function

exp) ·(the function sec))(inf A).

(22) Suppose that
(i) A ⊆ Z,

(ii) f = ((the function exp) ·(the function cosec)) the function cos
(the function sin)2

,

(iii) Z = dom f, and
(iv) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function exp) · (the function cosec))(supA) −

(−(the function exp) · (the function cosec))(inf A).

(23) Suppose that
(i) A ⊆ Z,

(ii) Z ⊆ dom((the function ln) ·(the function sec)),
(iii) Z = dom (the function tan), and
(iv) (the function tan)�A is continuous.

Then
∫
A

(the function tan)(x)dx = ((the function ln) ·(the function

sec))(supA)− ((the function ln) ·(the function sec))(inf A).

(24) Suppose that
(i) A ⊆ Z,

(ii) Z ⊆ dom((the function ln) ·(the function cosec)),
(iii) Z = dom (the function cot), and
(iv) (−the function cot)�A is continuous.

Then
∫
A

(−the function cot)(x)dx = ((the function ln) ·(the function

cosec))(supA)− ((the function ln) ·(the function cosec))(inf A).

(25) Suppose that
(i) A ⊆ Z,

(ii) Z ⊆ dom((the function ln) ·(the function cosec)),
(iii) Z = dom (the function cot), and
(iv) (the function cot)�A is continuous.

Then
∫
A

(the function cot)(x)dx = (−(the function ln) · (the function

cosec))(supA)− (−(the function ln) · (the function cosec))(inf A).

(26) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = n·(the function sin)(x)
(the function cos)(x)n+1 ,

(iii) Z ⊆ dom((�n) · the function sec),
(iv) 1 ≤ n,
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(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = ((�n) · the function sec)(supA) − ((�n) · the function

sec)(inf A).

(27) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = n·(the function cos)(x)

(the function sin)(x)n+1 ,

(iii) Z ⊆ dom((�n) · the function cosec),
(iv) 1 ≤ n,
(v) Z = dom f, and

(vi) f�A is continuous.

Then
∫
A

f(x)dx = (−(�n) · the function cosec)(supA)− (−(�n) · the

function cosec)(inf A).

(28) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = (the function exp)(x)

(the function cos)(x) +
(the function exp)(x)·(the function sin)(x)

(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function exp) (the function sec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function exp) (the function sec))(supA)−((the function

exp) (the function sec))(inf A).

(29) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = (the function exp)(x)

(the function sin)(x) −
(the function exp)(x)·(the function cos)(x)

(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function exp) (the function cosec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function exp) (the function cosec))(supA)− ((the func-

tion exp) (the function cosec))(inf A).

(30) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds

f(x) = (the function sin)(a·x)−(the function cos)(a·x)2
(the function cos)(a·x)2 ,
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(iii) Z ⊆ dom( 1a ((the function sec) ·f1)− idZ),
(iv) for every x such that x ∈ Z holds f1(x) = a · x and a 6= 0,
(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = (
1
a

((the function sec) ·f1) − idZ)(supA) − ( 1a ((the function

sec) ·f1)− idZ)(inf A).

(31) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds

f(x) = (the function cos)(a·x)−(the function sin)(a·x)2
(the function sin)(a·x)2 ,

(iii) Z ⊆ dom((− 1a) ((the function cosec) ·f1)− idZ),
(iv) for every x such that x ∈ Z holds f1(x) = a · x and a 6= 0,
(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = ((−1
a

) ((the function cosec) ·f1) − idZ)(supA) − ((− 1a) ((the

function cosec) ·f1)− idZ)(inf A).

(32) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function cos)(x)
x +

(the function ln)(x)·(the function sin)(x)
(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function ln) (the function sec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function ln) (the function sec))(supA)− ((the function

ln) (the function sec))(inf A).

(33) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function sin)(x)
x −

(the function ln)(x)·(the function cos)(x)
(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function ln) (the function cosec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function ln) (the function cosec))(supA)− ((the func-

tion ln) (the function cosec))(inf A).

(34) Suppose that
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(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function cos)(x)
x2

−
(the function sin)(x)

x
(the function cos)(x)2 ,

(iii) Z ⊆ dom( 1idZ the function sec),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (− 1
idZ

the function sec)(supA)− (− 1
idZ

the function

sec)(inf A).

(35) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function sin)(x)
x2

+
(the function cos)(x)

x
(the function sin)(x)2 ,

(iii) Z ⊆ dom( 1idZ the function cosec),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (− 1
idZ

the function cosec)(supA)− (− 1
idZ

the function

cosec)(inf A).

(36) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds
f(x) = (the function cos)(x)·(the function sin)((the function sin)(x))

(the function cos)((the function sin)(x))2 ,

(iii) Z ⊆ dom((the function sec) ·(the function sin)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function sec) ·(the function sin))(supA)−((the function

sec) ·(the function sin))(inf A).

(37) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds
f(x) = (the function sin)(x)·(the function sin)((the function cos)(x))

(the function cos)((the function cos)(x))2 ,

(iii) Z ⊆ dom((the function sec) ·(the function cos)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function sec) · (the function cos))(supA)− (−(the

function sec) · (the function cos))(inf A).

(38) Suppose that
(i) A ⊆ Z,
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(ii) for every x such that x ∈ Z holds
f(x) = (the function cos)(x)·(the function cos)((the function sin)(x))

(the function sin)((the function sin)(x))2 ,

(iii) Z ⊆ dom((the function cosec) ·(the function sin)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cosec) · (the function

sin))(supA)− (−(the function cosec) · (the function sin))(inf A).

(39) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds
f(x) = (the function sin)(x)·(the function cos)((the function cos)(x))

(the function sin)((the function cos)(x))2 ,

(iii) Z ⊆ dom((the function cosec) ·(the function cos)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function cosec) ·(the function cos))(supA)− ((the func-

tion cosec) ·(the function cos))(inf A).

(40) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds

f(x) =
(the function sin)((the function tan)(x))

(the function cos)(x)2

(the function cos)((the function tan)(x))2 ,

(iii) Z ⊆ dom((the function sec) ·(the function tan)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function sec) ·(the function tan))(supA)−((the function

sec) ·(the function tan))(inf A).

(41) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds

f(x) =
(the function sin)((the function cot)(x))

(the function sin)(x)2

(the function cos)((the function cot)(x))2 ,

(iii) Z ⊆ dom((the function sec) ·(the function cot)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function sec) · (the function cot))(supA)− (−(the

function sec) · (the function cot))(inf A).

(42) Suppose that
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(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds

f(x) =
(the function cos)((the function tan)(x))

(the function cos)(x)2

(the function sin)((the function tan)(x))2 ,

(iii) Z ⊆ dom((the function cosec) ·(the function tan)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cosec) · (the function tan))(supA) −

(−(the function cosec) · (the function tan))(inf A).

(43) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds

f(x) =
(the function cos)((the function cot)(x))

(the function sin)(x)2

(the function sin)((the function cot)(x))2 ,

(iii) Z ⊆ dom((the function cosec) ·(the function cot)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function cosec) ·(the function cot))(supA)− ((the func-

tion cosec) ·(the function cot))(inf A).

(44) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function cos)(x)2

(the function cos)(x) +
(the function tan)(x)·(the function sin)(x)

(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function tan) (the function sec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function tan) (the function sec))(supA)−((the function

tan) (the function sec))(inf A).

(45) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function sin)(x)2

(the function cos)(x) −
(the function cot)(x)·(the function sin)(x)

(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function cot) (the function sec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cot) (the function sec))(supA)− (−(the
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function cot) (the function sec))(inf A).

(46) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function cos)(x)2

(the function sin)(x) −
(the function tan)(x)·(the function cos)(x)

(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function tan) (the function cosec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function tan) (the function cosec))(supA)− ((the func-

tion tan) (the function cosec))(inf A).

(47) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function sin)(x)2

(the function sin)(x) +
(the function cot)(x)·(the function cos)(x)

(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function cot) (the function cosec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cot) (the function cosec))(supA)− (−(the

function cot) (the function cosec))(inf A).

(48) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds
f(x) = 1

(the function cos)((the function cot)(x))2 ·
1

(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function tan) ·(the function cot)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function tan) · (the function cot))(supA)− (−(the

function tan) · (the function cot))(inf A).

(49) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds
f(x) = 1

(the function cos)((the function tan)(x))2 ·
1

(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function tan) ·(the function tan)),
(iv) Z = dom f, and
(v) f�A is continuous.
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Then
∫
A

f(x)dx = ((the function tan) ·(the function tan))(supA)−((the function

tan) ·(the function tan))(inf A).

(50) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds
f(x) = 1

(the function sin)((the function cot)(x))2 ·
1

(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function cot) ·(the function cot)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function cot) ·(the function cot))(supA)−((the function

cot) ·(the function cot))(inf A).

(51) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds
f(x) = 1

(the function sin)((the function tan)(x))2 ·
1

(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function cot) ·(the function tan)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cot) · (the function tan))(supA)− (−(the

function cot) · (the function tan))(inf A).

(52) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = 1

(the function cos)(x)2 +
1

(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function tan)−(the function cot)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function tan)−(the function cot))(supA)− ((the func-

tion tan)−(the function cot))(inf A).

(53) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = 1

(the function cos)(x)2 −
1

(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function tan)+(the function cot)),
(iv) Z = dom f, and
(v) f�A is continuous.
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Then
∫
A

f(x)dx = ((the function tan)+(the function cot))(supA)− ((the func-

tion tan)+(the function cot))(inf A).

(54) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = (the function cos)((the function
sin)(x)) · (the function cos)(x),

(iii) Z = dom f, and
(iv) f�A is continuous.

Then
∫
A

f(x)dx = ((the function sin) ·(the function sin))(supA)−((the function

sin) ·(the function sin))(inf A).

(55) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = (the function cos)((the function
cos)(x)) · (the function sin)(x),

(iii) Z = dom f, and
(iv) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function sin) · (the function cos))(supA)− (−(the

function sin) · (the function cos))(inf A).

(56) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = (the function sin)((the function
sin)(x)) · (the function cos)(x),

(iii) Z = dom f, and
(iv) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cos) · (the function sin))(supA)− (−(the

function cos) · (the function sin))(inf A).

(57) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = (the function sin)((the function
cos)(x)) · (the function sin)(x),

(iii) Z = dom f, and
(iv) f�A is continuous.

Then
∫
A

f(x)dx = ((the function cos) ·(the function cos))(supA)−((the function

cos) ·(the function cos))(inf A).

(58) Suppose that
(i) A ⊆ Z,
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(ii) for every x such that x ∈ Z holds f(x) = (the function cos)(x) +
(the function cos)(x)
(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function cos) (the function cot)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cos) (the function cot))(supA)− (−(the

function cos) (the function cot))(inf A).

(59) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = (the function sin)(x) +

(the function sin)(x)
(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function sin) (the function tan)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function sin) (the function tan))(supA)−((the function

sin) (the function tan))(inf A).
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