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Summary. This article extends the [10]. We define the sum and the pro-
duct of the sequence of complex numbers, and formalize these theorems. Our
method refers to the [11].
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The notation and terminology used in this paper have been introduced in the
following papers: [5], [7], [6], [4], [8], [13], [9], [2], [3], [15], [10], [12], and [14].

1. Auxiliary Theorems

Let F be a complex-valued binary relation. Then rngF is a subset of C.
Let D be a non empty set, let F be a function from C into D, and let F1 be

a complex-valued finite sequence. Note that F · F1 is finite sequence-like.
For simplicity, we adopt the following rules: i, j denote natural numbers,

x, x1 denote elements of C, c denotes a complex number, F , F1, F2 denote
complex-valued finite sequences, and R, R1 denote i-element finite sequences of
elements of C.

The unary operation sqrcomplex on C is defined as follows:

(Def. 1) For every c holds (sqrcomplex)(c) = c2.

Next we state two propositions:

(1) sqrcomplex is distributive w.r.t. ·C.

(2) ·cC is distributive w.r.t. +C.
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2. Some Functors on the i-Tuples of Complex Numbers

Let us consider F1, F2. Then F1 + F2 is a finite sequence of elements of C
and it can be characterized by the condition:

(Def. 2) F1 + F2 = (+C)◦(F1, F2).

Let us observe that the functor F1 + F2 is commutative.
Let us consider i, R1, R2. Then R1 +R2 is an element of Ci.
The following propositions are true:

(3) (R1 +R2)(s) = R1(s) +R2(s).

(4) εC + F = εC.

(5) 〈c1〉+ 〈c2〉 = 〈c1 + c2〉.
(6) i 7→ c1 + i 7→ c2 = i 7→ (c1 + c2).

Let us consider F . Then −F is a finite sequence of elements of C and it can
be characterized by the condition:

(Def. 3) −F = −C · F.
Let us consider i, R. Then −R is an element of Ci.
The following propositions are true:

(7) −〈c〉 = 〈−c〉.
(8) −i 7→ c = i 7→ (−c).
(9) If R1 +R = R2 +R, then R1 = R2.

(10) −(F1 + F2) = −F1 +−F2.
Let us consider F1, F2. Then F1 − F2 is a finite sequence of elements of C

and it can be characterized by the condition:

(Def. 4) F1 − F2 = (−C)◦(F1, F2).

Let us consider i, R1, R2. Then R1 −R2 is an element of Ci.
The following propositions are true:

(11) (R1 −R2)(s) = R1(s)−R2(s).
(12) εC − F = εC and F − εC = εC.

(13) 〈c1〉 − 〈c2〉 = 〈c1 − c2〉.
(14) i 7→ c1 − i 7→ c2 = i 7→ (c1 − c2).
(15) R− i 7→ 0C = R.

(16) −(F1 − F2) = F2 − F1.
(17) −(F1 − F2) = −F1 + F2.

(18) If R1 −R2 = i 7→ 0C, then R1 = R2.

(19) R1 = (R1 +R)−R.
(20) R1 = (R1 −R) +R.

Let us consider F , c. We introduce c · F as a synonym of c F.
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Let us consider F , c. Then c · F is a finite sequence of elements of C and it
can be characterized by the condition:

(Def. 5) c · F = ·cC ·F.
Let us consider i, R, c. Then c ·R is an element of Ci.
One can prove the following four propositions:

(21) c · 〈c1〉 = 〈c · c1〉.
(22) c1 · (i 7→ c2) = i 7→ (c1 · c2).
(23) (c1 + c2) · F = c1 · F + c2 · F.
(24) 0C ·R = i 7→ 0C.

Let us consider F1, F2. We introduce F1 • F2 as a synonym of F1 F2.
Let us consider F1, F2. Then F1 • F2 is a finite sequence of elements of C

and it can be characterized by the condition:

(Def. 6) F1 • F2 = (·C)◦(F1, F2).

Let us note that the functor F1 • F2 is commutative.
Let us consider i, R1, R2. Then R1 •R2 is an element of Ci.
Next we state four propositions:

(25) εC • F = εC.

(26) 〈c1〉 • 〈c2〉 = 〈c1 · c2〉.
(27) i 7→ c •R = c ·R.
(28) i 7→ c1 • i 7→ c2 = i 7→ (c1 · c2).

3. Finite Sum of Finite Sequence of Complex Numbers

One can prove the following propositions:

(29)
∑

(εC) = 0C.

(30)
∑
〈c〉 = c.

(31)
∑

(F a 〈c〉) =
∑
F + c.

(32)
∑

(F1 a F2) =
∑
F1 +

∑
F2.

(33)
∑

(〈c〉 a F ) = c+
∑
F.

(34)
∑
〈c1, c2〉 = c1 + c2.

(35)
∑
〈c1, c2, c3〉 = c1 + c2 + c3.

(36)
∑

(i 7→ c) = i · c.
(37)

∑
(i 7→ 0C) = 0C.

(38)
∑

(c · F ) = c ·
∑
F.

(39)
∑

(−F ) = −
∑
F .

(40)
∑

(R1 +R2) =
∑
R1 +

∑
R2.

(41)
∑

(R1 −R2) =
∑
R1 −

∑
R2.
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4. The Product of Finite Sequences of Complex Numbers

One can prove the following propositions:

(42)
∏

(εC) = 1.

(43)
∏

(〈c〉 a F ) = c ·
∏
F.

(44) For every element R of C0 holds
∏
R = 1.

(45)
∏

((i+ j) 7→ c) =
∏

(i 7→ c) ·
∏

(j 7→ c).
(46)

∏
((i · j) 7→ c) =

∏
(j 7→

∏
(i 7→ c)).

(47)
∏

(i 7→ (c1 · c2)) =
∏

(i 7→ c1) ·
∏

(i 7→ c2).
(48)

∏
(R1 •R2) =

∏
R1 ·
∏
R2.

(49)
∏

(c ·R) =
∏

(i 7→ c) ·
∏
R.

5. Modified Part of [1]

We now state several propositions:

(50) For every complex-valued finite sequence x holds len(−x) = lenx.

(51) For all complex-valued finite sequences x1, x2 such that lenx1 = lenx2
holds len(x1 + x2) = lenx1.

(52) For all complex-valued finite sequences x1, x2 such that lenx1 = lenx2
holds len(x1 − x2) = lenx1.

(53) For every real number a and for every complex-valued finite sequence x
holds len(a · x) = lenx.

(54) For all complex-valued finite sequences x, y, z such that lenx = len y =
len z holds (x+ y) • z = x • z + y • z.
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