The Sum and Product of Finite Sequences of Complex Numbers

Keiichi Miyajima
Ibaraki University
Faculty of Engineering
Hitachi, Japan

Takahiro Kato
Graduate School of Ibaraki University
Faculty of Engineering
Hitachi, Japan

Abstract

Summary. This article extends the [10]. We define the sum and the product of the sequence of complex numbers, and formalize these theorems. Our method refers to the [11].

MML identifier: RVSUM_2, version: 7.11.07 4.156.1112

The notation and terminology used in this paper have been introduced in the following papers: [5], [7], [6], [4], [8], [13], [9], [2], [3], [15], [10], [12], and [14].

1. Auxiliary Theorems

Let F be a complex-valued binary relation. Then $\mathrm{rng} F$ is a subset of \mathbb{C}.
Let D be a non empty set, let F be a function from \mathbb{C} into D, and let F_{1} be a complex-valued finite sequence. Note that $F \cdot F_{1}$ is finite sequence-like.

For simplicity, we adopt the following rules: i, j denote natural numbers, x, x_{1} denote elements of \mathbb{C}, c denotes a complex number, F, F_{1}, F_{2} denote complex-valued finite sequences, and R, R_{1} denote i-element finite sequences of elements of \mathbb{C}.

The unary operation sqrcomplex on \mathbb{C} is defined as follows:
(Def. 1) For every c holds (sqrcomplex) $(c)=c^{2}$.
Next we state two propositions:
(1) sqrcomplex is distributive w.r.t. $\cdot \mathbb{C}$.
(2) $\cdot{ }_{\mathbb{C}}^{c}$ is distributive w.r.t. $+\mathbb{C}$.

2. Some Functors on the i-Tuples of Complex Numbers

Let us consider F_{1}, F_{2}. Then $F_{1}+F_{2}$ is a finite sequence of elements of \mathbb{C} and it can be characterized by the condition:
(Def. 2) $\quad F_{1}+F_{2}=(+\mathbb{C})^{\circ}\left(F_{1}, F_{2}\right)$.
Let us observe that the functor $F_{1}+F_{2}$ is commutative.
Let us consider i, R_{1}, R_{2}. Then $R_{1}+R_{2}$ is an element of \mathbb{C}^{i}.
The following propositions are true:
(3) $\left(R_{1}+R_{2}\right)(s)=R_{1}(s)+R_{2}(s)$.
(4) $\varepsilon_{\mathbb{C}}+F=\varepsilon_{\mathbb{C}}$.
(5) $\left\langle c_{1}\right\rangle+\left\langle c_{2}\right\rangle=\left\langle c_{1}+c_{2}\right\rangle$.
(6) $i \mapsto c_{1}+i \mapsto c_{2}=i \mapsto\left(c_{1}+c_{2}\right)$.

Let us consider F. Then $-F$ is a finite sequence of elements of \mathbb{C} and it can be characterized by the condition:
(Def. 3) $-F=-\mathbb{C} \cdot F$.
Let us consider i, R. Then $-R$ is an element of \mathbb{C}^{i}.
The following propositions are true:
(7) $-\langle c\rangle=\langle-c\rangle$.
(8) $-i \mapsto c=i \mapsto(-c)$.
(9) If $R_{1}+R=R_{2}+R$, then $R_{1}=R_{2}$.
(10) $-\left(F_{1}+F_{2}\right)=-F_{1}+-F_{2}$.

Let us consider F_{1}, F_{2}. Then $F_{1}-F_{2}$ is a finite sequence of elements of \mathbb{C} and it can be characterized by the condition:
(Def. 4) $\quad F_{1}-F_{2}=(-\mathbb{C})^{\circ}\left(F_{1}, F_{2}\right)$.
Let us consider i, R_{1}, R_{2}. Then $R_{1}-R_{2}$ is an element of \mathbb{C}^{i}.
The following propositions are true:
(11) $\left(R_{1}-R_{2}\right)(s)=R_{1}(s)-R_{2}(s)$.
(12) $\varepsilon_{\mathbb{C}}-F=\varepsilon_{\mathbb{C}}$ and $F-\varepsilon_{\mathbb{C}}=\varepsilon_{\mathbb{C}}$.
(13) $\left\langle c_{1}\right\rangle-\left\langle c_{2}\right\rangle=\left\langle c_{1}-c_{2}\right\rangle$.
(14) $i \mapsto c_{1}-i \mapsto c_{2}=i \mapsto\left(c_{1}-c_{2}\right)$.
(15) $R-i \mapsto 0_{\mathbb{C}}=R$.
(16) $-\left(F_{1}-F_{2}\right)=F_{2}-F_{1}$.
(17) $-\left(F_{1}-F_{2}\right)=-F_{1}+F_{2}$.
(18) If $R_{1}-R_{2}=i \mapsto 0_{\mathbb{C}}$, then $R_{1}=R_{2}$.
(19) $\quad R_{1}=\left(R_{1}+R\right)-R$.
(20) $\quad R_{1}=\left(R_{1}-R\right)+R$.

Let us consider F, c. We introduce $c \cdot F$ as a synonym of $c F$.

Let us consider F, c. Then $c \cdot F$ is a finite sequence of elements of \mathbb{C} and it can be characterized by the condition:
(Def. 5) $c \cdot F=\cdot{ }_{\mathbb{C}}^{c} \cdot F$.
Let us consider i, R, c. Then $c \cdot R$ is an element of \mathbb{C}^{i}.
One can prove the following four propositions:
(21) $c \cdot\left\langle c_{1}\right\rangle=\left\langle c \cdot c_{1}\right\rangle$.
(22) $\quad c_{1} \cdot\left(i \mapsto c_{2}\right)=i \mapsto\left(c_{1} \cdot c_{2}\right)$.
(23) $\left(c_{1}+c_{2}\right) \cdot F=c_{1} \cdot F+c_{2} \cdot F$.
(24) $\quad 0_{\mathbb{C}} \cdot R=i \mapsto 0_{\mathbb{C}}$.

Let us consider F_{1}, F_{2}. We introduce $F_{1} \bullet F_{2}$ as a synonym of $F_{1} F_{2}$.
Let us consider F_{1}, F_{2}. Then $F_{1} \bullet F_{2}$ is a finite sequence of elements of \mathbb{C} and it can be characterized by the condition:
(Def. 6) $\quad F_{1} \bullet F_{2}=(\cdot \mathbb{C})^{\circ}\left(F_{1}, F_{2}\right)$.
Let us note that the functor $F_{1} \bullet F_{2}$ is commutative.
Let us consider i, R_{1}, R_{2}. Then $R_{1} \bullet R_{2}$ is an element of \mathbb{C}^{i}.
Next we state four propositions:
(25) $\varepsilon_{\mathbb{C}} \bullet F=\varepsilon_{\mathbb{C}}$.
(26) $\left\langle c_{1}\right\rangle \bullet\left\langle c_{2}\right\rangle=\left\langle c_{1} \cdot c_{2}\right\rangle$.
(27) $i \mapsto c \bullet R=c \cdot R$.
(28) $\quad i \mapsto c_{1} \bullet i \mapsto c_{2}=i \mapsto\left(c_{1} \cdot c_{2}\right)$.

3. Finite Sum of Finite Sequence of Complex Numbers

One can prove the following propositions:
(29) $\sum\left(\varepsilon_{\mathbb{C}}\right)=0_{\mathbb{C}}$.
(30) $\sum\langle c\rangle=c$.
(31) $\sum\left(F^{\wedge}\langle c\rangle\right)=\sum F+c$.
(32) $\sum\left(F_{1} \wedge F_{2}\right)=\sum F_{1}+\sum F_{2}$.
(33) $\sum\left(\langle c\rangle^{\wedge} F\right)=c+\sum F$.
(34) $\sum\left\langle c_{1}, c_{2}\right\rangle=c_{1}+c_{2}$.
(35) $\sum\left\langle c_{1}, c_{2}, c_{3}\right\rangle=c_{1}+c_{2}+c_{3}$.
(36) $\quad \sum(i \mapsto c)=i \cdot c$.
(37) $\quad \sum\left(i \mapsto 0_{\mathbb{C}}\right)=0_{\mathbb{C}}$.
(38) $\sum(c \cdot F)=c \cdot \sum F$.
(39) $\quad \sum(-F)=-\sum F$.
(40) $\sum\left(R_{1}+R_{2}\right)=\sum R_{1}+\sum R_{2}$.
(41) $\quad \sum\left(R_{1}-R_{2}\right)=\sum R_{1}-\sum R_{2}$.

4. The Product of Finite Sequences of Complex Numbers

One can prove the following propositions:
(42) $\quad \Pi\left(\varepsilon_{\mathbb{C}}\right)=1$.
(43) $\Pi(\langle c\rangle \sim F)=c \cdot \Pi F$.
(44) For every element R of \mathbb{C}^{0} holds $\Pi R=1$.
(45) $\quad \Pi((i+j) \mapsto c)=\Pi(i \mapsto c) \cdot \Pi(j \mapsto c)$.
(46) $\quad \Pi((i \cdot j) \mapsto c)=\Pi(j \mapsto \Pi(i \mapsto c))$.
(47) $\quad \Pi\left(i \mapsto\left(c_{1} \cdot c_{2}\right)\right)=\Pi\left(i \mapsto c_{1}\right) \cdot \Pi\left(i \mapsto c_{2}\right)$.
(48) $\Pi\left(R_{1} \bullet R_{2}\right)=\Pi R_{1} \cdot \Pi R_{2}$.
(49) $\Pi(c \cdot R)=\Pi(i \mapsto c) \cdot \Pi R$.

5. Modified Part of [1]

We now state several propositions:
(50) For every complex-valued finite sequence x holds $\operatorname{len}(-x)=\operatorname{len} x$.
(51) For all complex-valued finite sequences x_{1}, x_{2} such that len $x_{1}=\operatorname{len} x_{2}$ holds len $\left(x_{1}+x_{2}\right)=\operatorname{len} x_{1}$.
(52) For all complex-valued finite sequences x_{1}, x_{2} such that len $x_{1}=\operatorname{len} x_{2}$ holds len $\left(x_{1}-x_{2}\right)=\operatorname{len} x_{1}$.
(53) For every real number a and for every complex-valued finite sequence x holds len $(a \cdot x)=\operatorname{len} x$.
(54) For all complex-valued finite sequences x, y, z such that $\operatorname{len} x=\operatorname{len} y=$ len z holds $(x+y) \bullet z=x \bullet z+y \bullet z$.

References

[1] Kanchun and Yatsuka Nakamura. The inner product of finite sequences and of points of n-dimensional topological space. Formalized Mathematics, 11(2):179-183, 2003.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[7] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[9] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55$65,1990$.
[10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[11] Keith E. Hirst. Numbers, Sequences and Series. Butterworth-Heinemann, 1984.
[12] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[13] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[15] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received January 12, 2010

