Abstract Simplicial Complexes

Karol Pąk
Institute of Informatics
University of Białystok Poland

Abstract

Summary. In this article we define the notion of abstract simplicial complexes and operations on them. We introduce the following basic notions: simplex, face, vertex, degree, skeleton, subdivision and substructure, and prove some of their properties.

MML identifier: SIMPLEXO, version: 7.11.05 4.134.1080

The articles [2], [5], [6], [10], [8], [14], [1], [7], [3], [4], [11], [13], [16], [12], [15], and [9] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: x, y, X, Y, Z are sets, D is a non empty set, n, k are natural numbers, and i, i_{1}, i_{2} are integers.

Let us consider X. We introduce X has empty element as an antonym of X has non empty elements.

Note that there exists a set which is empty and finite-membered and every set which is empty is also finite-membered. Let X be a finite set. Note that $\{X\}$ is finite-membered and 2^{X} is finite-membered. Let Y be a finite set. Observe that $\{X, Y\}$ is finite-membered.

Let X be a finite-membered set. Observe that every subset of X is finitemembered. Let Y be a finite-membered set. One can check that $X \cup Y$ is finitemembered.

Let X be a finite finite-membered set. Note that $\cup X$ is finite.
One can verify the following observations:

* every set which is empty is also subset-closed,
* every set which has empty element is also non empty,
* every set which is non empty and subset-closed has also empty element, and
* there exists a set which has empty element.

Let us consider X. Observe that $\operatorname{SubFin}(X)$ is finite-membered and there exists a family of subsets of X which is subset-closed, finite, and finite-membered.

Let X be a subset-closed set. One can check that $\operatorname{SubFin}(X)$ is subset-closed.
Next we state the proposition
(1) Y is subset-closed iff for every X such that $X \in Y$ holds $2^{X} \subseteq Y$.

Let A, B be subset-closed sets. Note that $A \cup B$ is subset-closed and $A \cap B$ is subset-closed.

Let us consider X. The subset-closure of X yields a subset-closed set and is defined by the conditions (Def. 1).
(Def. 1)(i) $\quad X \subseteq$ the subset-closure of X, and
(ii) for every Y such that $X \subseteq Y$ and Y is subset-closed holds the subsetclosure of $X \subseteq Y$.
The following proposition is true
(2) $\quad x \in$ the subset-closure of X iff there exists y such that $x \subseteq y$ and $y \in X$.

Let us consider X and let F be a family of subsets of X. Then the subsetclosure of F is a subset-closed family of subsets of X.

Observe that the subset-closure of \emptyset is empty. Let X be a non empty set. Note that the subset-closure of X is non empty.

Let X be a set with a non-empty element. One can check that the subsetclosure of X has a non-empty element.

Let X be a finite-membered set. Note that the subset-closure of X is finitemembered.

The following propositions are true:
(3) If $X \subseteq Y$ and Y is subset-closed, then the subset-closure of $X \subseteq Y$.
(4) The subset-closure of $\{X\}=2^{X}$.
(5) The subset-closure of $X \cup Y=($ the subset-closure of $X) \cup$ (the subsetclosure of Y).
(6) X is finer than Y iff the subset-closure of $X \subseteq$ the subset-closure of Y.
(7) If X is subset-closed, then the subset-closure of $X=X$.
(8) If the subset-closure of $X \subseteq X$, then X is subset-closed.

Let us consider Y, X and let n be a set. The subsets of X and Y with cardinality limited by n yields a family of subsets of Y and is defined by the condition (Def. 2).
(Def. 2) Let A be a subset of Y. Then $A \in$ the subsets of X and Y with cardinality limited by n if and only if $A \in X$ and $\operatorname{Card} A \subseteq \operatorname{Card} n$.

Let us consider D. One can verify that there exists a family of subsets of D which is finite, subset-closed, and finite-membered and has a non-empty element.

Let us consider Y, X and let n be a finite set. One can check that the subsets of X and Y with cardinality limited by n is finite-membered.

Let us consider Y, let X be a subset-closed set, and let n be a set. Note that the subsets of X and Y with cardinality limited by n is subset-closed.

Let us consider Y, let X be a set with empty element, and let n be a set. One can check that the subsets of X and Y with cardinality limited by n has empty element.

Let us consider D, let X be a subset-closed family of subsets of D with a non-empty element, and let n be a non empty set. Note that the subsets of X and D with cardinality limited by n has a non-empty element.

Let us consider X, let Y be a family of subsets of X, and let n be a set. We introduce the subsets of Y with cardinality limited by n as a synonym of the subsets of Y and X with cardinality limited by n.

Let us observe that every set which is empty is also \subseteq-linear and there exists a set which is empty and \subseteq-linear.

Let X be a \subseteq-linear set. Note that every subset of X is \subseteq-linear.
The following propositions are true:
(9) If X is non empty, finite, and \subseteq-linear, then $\bigcup X \in X$.
(10) For every finite \subseteq-linear set X such that X has non empty elements holds Card $X \subseteq \operatorname{Card} \bigcup X$.
(11) If X is \subseteq-linear and $\cup X$ misses x, then $X \cup\{\bigcup X \cup x\}$ is \subseteq-linear.
(12) Let X be a non empty set. Then there exists a family Y of subsets of X such that
(i) Y is \subseteq-linear and has non empty elements,
(ii) $X \in Y$,
(iii) $\operatorname{Card} X=\operatorname{Card} Y$, and
(iv) for every Z such that $Z \in Y$ and $\operatorname{Card} Z \neq 1$ there exists x such that $x \in Z$ and $Z \backslash\{x\} \in Y$.
(13) Let Y be a family of subsets of X. Suppose Y is finite and \subseteq-linear and has non empty elements and $X \in Y$. Then there exists a family Y^{\prime} of subsets of X such that
(i) $Y \subseteq Y^{\prime}$,
(ii) Y^{\prime} is \subseteq-linear and has non empty elements,
(iii) $\operatorname{Card} X=\operatorname{Card} Y^{\prime}$, and
(iv) for every Z such that $Z \in Y^{\prime}$ and Card $Z \neq 1$ there exists x such that $x \in Z$ and $Z \backslash\{x\} \in Y^{\prime}$.

2. Simplicial Complexes

A simplicial complex structure is a topological structure.
In the sequel K denotes a simplicial complex structure.
Let us consider K and let A be a subset of K. We introduce A is simplex-like as a synonym of A is open.

Let us consider K and let S be a family of subsets of K. We introduce S is simplex-like as a synonym of S is open.

Let us consider K. One can check that there exists a family of subsets of K which is empty and simplex-like.

The following proposition is true
(14) For every family S of subsets of K holds S is simplex-like iff $S \subseteq$ the topology of K.
Let us consider K and let v be an element of K. We say that v is vertex-like if and only if:
(Def. 3) There exists a subset S of K such that S is simplex-like and $v \in S$.
Let us consider K. The functor Vertices K yielding a subset of K is defined by:
(Def. 4) For every element v of K holds $v \in \operatorname{Vertices} K$ iff v is vertex-like.
Let K be a simplicial complex structure. A vertex of K is an element of Vertices K.

Let K be a simplicial complex structure. We say that K is finite-vertices if and only if:
(Def. 5) Vertices K is finite.
Let us consider K. We say that K is locally-finite if and only if:
(Def. 6) For every vertex v of K holds $\{S \subseteq K: S$ is simplex-like $\wedge v \in S\}$ is finite.

Let us consider K. We say that K is empty-membered if and only if:
(Def. 7) The topology of K is empty-membered.
We say that K has non empty elements if and only if:
(Def. 8) The topology of K has non empty elements.
Let us consider K. We introduce K has a non-empty element as an antonym of K is empty-membered. We introduce K has empty element as an antonym of K has non empty elements.

Let us consider X. A simplicial complex structure is said to be a simplicial complex structure of X if:
(Def. 9) $\quad \Omega_{\mathrm{it}} \subseteq X$.
Let us consider X and let K_{1} be a simplicial complex structure of X. We say that K_{1} is total if and only if:
(Def. 10) $\Omega_{\left(K_{1}\right)}=X$.
One can check the following observations:

* every simplicial complex structure which has empty element is also non void,
* every simplicial complex structure which has a non-empty element is also non void,
* every simplicial complex structure which is non void and empty-membered has also empty element,
* every simplicial complex structure which is non void and subset-closed has also empty element,
* every simplicial complex structure which is empty-membered is also subset-closed and finite-vertices,
* every simplicial complex structure which is finite-vertices is also locallyfinite and finite-degree, and
* every simplicial complex structure which is locally-finite and subsetclosed is also finite-membered.
Let us consider X. Observe that there exists a simplicial complex structure of X which is empty, void, empty-membered, and strict.

Let us consider D. Note that there exists a simplicial complex structure of D which is non empty, non void, total, empty-membered, and strict and there exists a simplicial complex structure of D which is non empty, total, finite-vertices, subset-closed, and strict and has empty element and a non-empty element.

Let us observe that there exists a simplicial complex structure which is non empty, finite-vertices, subset-closed, and strict and has empty element and a non-empty element.

Let K be a simplicial complex structure with a non-empty element. Observe that Vertices K is non empty.

Let K be a finite-vertices simplicial complex structure. Note that every family of subsets of K which is simplex-like is also finite.

Let K be a finite-membered simplicial complex structure. Note that every family of subsets of K which is simplex-like is also finite-membered.

Next we state several propositions:
(15) Vertices K is empty iff K is empty-membered.
(16) Vertices $K=\bigcup$ (the topology of K).
(17) For every subset S of K such that S is simplex-like holds $S \subseteq$ Vertices K.
(18) If K is finite-vertices, then the topology of K is finite.
(19) If the topology of K is finite and K is non finite-vertices, then K is non finite-membered.
(20) If K is subset-closed and the topology of K is finite, then K is finitevertices.

3. The Simplicial Complex Generated on the Set

Let us consider X and let Y be a family of subsets of X. The complex of Y yielding a strict simplicial complex structure of X is defined as follows:
(Def. 11) The complex of $Y=\langle X$, the subset-closure of $Y\rangle$.
Let us consider X and let Y be a family of subsets of X. One can verify that the complex of Y is total and subset-closed.

Let us consider X and let Y be a non empty family of subsets of X. Note that the complex of Y has empty element.

Let us consider X and let Y be a finite-membered family of subsets of X. Note that the complex of Y is finite-membered.

Let us consider X and let Y be a finite finite-membered family of subsets of X. Observe that the complex of Y is finite-vertices.

One can prove the following proposition
(21) If K is subset-closed, then the topological structure of $K=$ the complex of the topology of K.
Let us consider X. A simplicial complex of X is a finite-membered subsetclosed simplicial complex structure of X.

Let K be a non void simplicial complex structure. A simplex of K is a simplex-like subset of K.

Let K be a simplicial complex structure with empty element. One can check that every subset of K which is empty is also simplex-like and there exists a simplex of K which is empty.

Let K be a non void finite-membered simplicial complex structure. Note that there exists a simplex of K which is finite.

4. The Degree of Simplicial Complexes

Let us consider K. The functor degree (K) yields an extended real number and is defined as follows:
(Def. 12)(i) For every finite subset S of K such that S is simplex-like holds $\overline{\bar{S}} \leq$ degree $(K)+1$ and there exists a subset S of K such that S is simplex-like and $\operatorname{Card} S=\operatorname{degree}(K)+1$ if K is non void and finite-degree,
(ii) degree $(K)=-1$ if K is void,
(iii) $\operatorname{degree}(K)=+\infty$, otherwise.

Let K be a finite-degree simplicial complex structure. Note that degree $(K)+$ 1 is natural and degree (K) is integer.

The following propositions are true:
(22) degree $(K)=-1$ iff K is empty-membered.
(23) $-1 \leq$ degree (K).
(24) For every finite subset S of K such that S is simplex-like holds $\overline{\bar{S}} \leq$ degree $(K)+1$.
(25) Suppose K is non void or $i \geq-1$. Then degree $(K) \leq i$ if and only if the following conditions are satisfied:
(i) K is finite-membered, and
(ii) for every finite subset S of K such that S is simplex-like holds $\overline{\bar{S}} \leq i+1$.
(26) For every finite subset A of X holds degree(the complex of $\{A\})=\overline{\bar{A}}-1$.

5. Subcomplexes

Let us consider X and let K_{1} be a simplicial complex structure of X. A simplicial complex of X is said to be a subsimplicial complex of K_{1} if:
(Def. 13) $\quad \Omega_{\mathrm{it}} \subseteq \Omega_{\left(K_{1}\right)}$ and the topology of it \subseteq the topology of K_{1}.
In the sequel K_{1} denotes a simplicial complex structure of X and S_{1} denotes a subsimplicial complex of K_{1}.

Let us consider X, K_{1}. One can check that there exists a subsimplicial complex of K_{1} which is empty, void, and strict.

Let us consider X and let K_{1} be a void simplicial complex structure of X. Observe that every subsimplicial complex of K_{1} is void.

Let us consider D and let K_{2} be a non void subset-closed simplicial complex structure of D. Note that there exists a subsimplicial complex of K_{2} which is non void.

Let us consider X and let K_{1} be a finite-vertices simplicial complex structure of X. One can check that every subsimplicial complex of K_{1} is finite-vertices.

Let us consider X and let K_{1} be a finite-degree simplicial complex structure of X. Note that every subsimplicial complex of K_{1} is finite-degree.

Next we state several propositions:
(27) Every subsimplicial complex of S_{1} is a subsimplicial complex of K_{1}.
(28) Let A be a subset of K_{1} and S be a finite-membered family of subsets of A. Suppose the subset-closure of $S \subseteq$ the topology of K_{1}. Then the complex of S is a strict subsimplicial complex of K_{1}.
(29) Let K_{1} be a subset-closed simplicial complex structure of X, A be a subset of K_{1}, and S be a finite-membered family of subsets of A. Suppose $S \subseteq$ the topology of K_{1}. Then the complex of S is a strict subsimplicial complex of K_{1}.
(30) Let Y_{1}, Y_{2} be families of subsets of X. Suppose Y_{1} is finite-membered and finer than Y_{2}. Then the complex of Y_{1} is a subsimplicial complex of the complex of Y_{2}.
(31) Vertices $S_{1} \subseteq$ Vertices K_{1}.
(32) degree $\left(S_{1}\right) \leq \operatorname{degree}\left(K_{1}\right)$.

Let us consider X, K_{1}, S_{1}. We say that S_{1} is maximal if and only if:
(Def. 14) For every subset A of S_{1} such that $A \in$ the topology of K_{1} holds A is simplex-like.
We now state the proposition
(33) $\quad S_{1}$ is maximal iff $2^{\Omega\left(S_{1}\right)} \cap$ the topology of $K_{1} \subseteq$ the topology of S_{1}.

Let us consider X, K_{1}. Note that there exists a subsimplicial complex of K_{1} which is maximal and strict.

We now state three propositions:
(34) Let S_{2} be a subsimplicial complex of S_{1}. Suppose S_{1} is maximal and S_{2} is maximal. Then S_{2} is a maximal subsimplicial complex of K_{1}.
(35) Let S_{2} be a subsimplicial complex of S_{1}. If S_{2} is a maximal subsimplicial complex of K_{1}, then S_{2} is maximal.
(36) Let K_{3}, K_{4} be maximal subsimplicial complexes of K_{1}.

Suppose $\Omega_{\left(K_{3}\right)}=\Omega_{\left(K_{4}\right)}$. Then the topological structure of $K_{3}=$ the topological structure of K_{4}.
Let us consider X, let K_{1} be a subset-closed simplicial complex structure of X, and let A be a subset of K_{1}. Let us assume that $2^{A} \cap$ the topology of K_{1} is finite-membered. The functor $K_{1} \upharpoonright A$ yields a maximal strict subsimplicial complex of K_{1} and is defined as follows:
(Def. 15) $\quad \Omega_{K_{1} \upharpoonright A}=A$.
In the sequel S_{3} denotes a simplicial complex of X.
Let us consider X, S_{3} and let A be a subset of S_{3}. Then $S_{3} \upharpoonright A$ is a maximal strict subsimplicial complex of S_{3} and it can be characterized by the condition:
(Def. 16) $\quad \Omega_{S_{3} \upharpoonright A}=A$.
The following four propositions are true:
(37) For every subset A of S_{3} holds the topology of $S_{3} \upharpoonright A=2^{A} \cap$ the topology of S_{3}.
(38) For all subsets A, B of S_{3} and for every subset B^{\prime} of $S_{3} \upharpoonright A$ such that $B^{\prime}=B$ holds $S_{3} \upharpoonright A \upharpoonright B^{\prime}=S_{3} \upharpoonright B$.
(39) $\quad S_{3} \upharpoonright \Omega_{\left(S_{3}\right)}=$ the topological structure of S_{3}.
(40) For all subsets A, B of S_{3} such that $A \subseteq B$ holds $S_{3} \upharpoonright A$ is a subsimplicial complex of $S_{3} \upharpoonright B$.
Let us observe that every integer is finite.

6. The Skeleton of a Simplicial Complex

Let us consider X, K_{1} and let i be a real number. The skeleton of K_{1} and i yielding a simplicial complex structure of X is defined by the condition (Def. 17).
(Def. 17) The skeleton of K_{1} and $i=$ the complex of the subsets of the topology of K_{1} with cardinality limited by $i+1$.
Let us consider X, K_{1}. Observe that the skeleton of K_{1} and -1 is emptymembered. Let us consider i. Note that the skeleton of K_{1} and i is finite-degree.

Let us consider X, let K_{1} be an empty-membered simplicial complex structure of X, and let us consider i. One can check that the skeleton of K_{1} and i is empty-membered.

Let us consider D, let K_{2} be a non void subset-closed simplicial complex structure of D, and let us consider i. One can check that the skeleton of K_{2} and i is non void.

One can prove the following proposition
(41) If $-1 \leq i_{1} \leq i_{2}$, then the skeleton of K_{1} and i_{1} is a subsimplicial complex of the skeleton of K_{1} and i_{2}.
Let us consider X, let K_{1} be a subset-closed simplicial complex structure of X, and let us consider i. Then the skeleton of K_{1} and i is a subsimplicial complex of K_{1}.

We now state several propositions:
(42) If K_{1} is subset-closed and the skeleton of K_{1} and i is empty-membered, then K_{1} is empty-membered or $i=-1$.
(43) degree(the skeleton of K_{1} and $\left.i\right) \leq \operatorname{degree}\left(K_{1}\right)$.
(44) If $-1 \leq i$, then degree(the skeleton of K_{1} and $\left.i\right) \leq i$.
(45) If $-1 \leq i$ and the skeleton of K_{1} and $i=$ the topological structure of K_{1}, then degree $\left(K_{1}\right) \leq i$.
(46) If K_{1} is subset-closed and degree $\left(K_{1}\right) \leq i$, then the skeleton of K_{1} and $i=$ the topological structure of K_{1}.
In the sequel K is a non void subset-closed simplicial complex structure.
Let us consider K and let i be a real number. Let us assume that i is integer. A finite simplex of K is said to be a simplex of i and K if:
(Def. 18)(i) $\overline{\overline{\mathrm{it}}}=i+1$ if $-1 \leq i \leq \operatorname{degree}(K)$,
(ii) it is empty, otherwise.

Let us consider K. Note that every simplex of -1 and K is empty.
The following three propositions are true:
(47) For every simplex S of i and K such that S is non empty holds i is natural.
(48) Every finite simplex S of K is a simplex of $\overline{\bar{S}}-1$ and K.
(49) Let K be a non void subset-closed simplicial complex structure of D, S be a non void subsimplicial complex of K, i be an integer, and A be a simplex of i and S. If A is non empty or $i \leq \operatorname{degree}(S)$ or degree $(S)=\operatorname{degree}(K)$, then A is a simplex of i and K.

Let us consider K and let i be a real number. Let us assume that i is integer and $i \leq \operatorname{degree}(K)$. Let S be a simplex of i and K. A simplex of $\max (i-1,-1)$ and K is said to be a face of S if:
(Def. 19) \quad It $\subseteq S$.
One can prove the following proposition
(50) Let S be a simplex of n and K. Suppose $n \leq \operatorname{degree}(K)$. Then X is a face of S if and only if there exists x such that $x \in S$ and $S \backslash\{x\}=X$.

7. The Subdivision of a Simplicial Complex

In the sequel P is a function.
Let us consider X, K_{1}, P. The functor subdivision $\left(P, K_{1}\right)$ yields a strict simplicial complex structure of X and is defined by the conditions (Def. 20).
(Def. 20)(i) $\quad \Omega_{\text {subdivision }\left(P, K_{1}\right)}=\Omega_{\left(K_{1}\right)}$, and
(ii) for every subset A of subdivision $\left(P, K_{1}\right)$ holds A is simplex-like iff there exists a \subseteq-linear finite simplex-like family S of subsets of K_{1} such that $A=P^{\circ} S$.
Let us consider X, K_{1}, P. One can verify that $\operatorname{subdivision}\left(P, K_{1}\right)$ is subsetclosed and finite-membered and has empty element.

Let us consider X, let K_{1} be a void simplicial complex structure of X, and let us consider P. Observe that subdivision $\left(P, K_{1}\right)$ is empty-membered.

The following propositions are true:
(51) \quad degree(subdivision $\left.\left(P, K_{1}\right)\right) \leq \operatorname{degree}\left(K_{1}\right)+1$.
(52) If $\operatorname{dom} P$ has non empty elements, then degree(subdivision $\left.\left(P, K_{1}\right)\right) \leq$ degree $\left(K_{1}\right)$.
Let us consider X, let K_{1} be a finite-degree simplicial complex structure of X, and let us consider P. Note that subdivision $\left(P, K_{1}\right)$ is finite-degree.

Let us consider X, let K_{1} be a finite-vertices simplicial complex structure of X, and let us consider P. One can check that subdivision $\left(P, K_{1}\right)$ is finitevertices.

One can prove the following propositions:
(53) Let K_{1} be a subset-closed simplicial complex structure of X and given P. Suppose that
(i) $\operatorname{dom} P$ has non empty elements, and
(ii) for every n such that $n \leq \operatorname{degree}\left(K_{1}\right)$ there exists a subset S of K_{1} such that S is simplex-like and Card $S=n+1$ and $2_{+}^{S} \subseteq \operatorname{dom} P$ and $P^{\circ} 2_{+}^{S}$ is a subset of K_{1} and $P \upharpoonright 2_{+}^{S}$ is one-to-one. Then degree $\left(\operatorname{subdivision}\left(P, K_{1}\right)\right)=\operatorname{degree}\left(K_{1}\right)$.
(54) If $Y \subseteq Z$, then subdivision $\left(P \upharpoonright Y, K_{1}\right)$ is a subsimplicial complex of subdivision $\left(P \upharpoonright Z, K_{1}\right)$.
(55) If $\operatorname{dom} P \cap$ the topology of $K_{1} \subseteq Y$, then $\operatorname{subdivision~}\left(P \upharpoonright Y, K_{1}\right)=$ subdivision $\left(P, K_{1}\right)$.
(56) If $Y \subseteq Z$, then subdivision $\left(Y \upharpoonright P, K_{1}\right)$ is a subsimplicial complex of subdivision $\left(Z \upharpoonright P, K_{1}\right)$.
(57) If $P^{\circ}\left(\right.$ the topology of $\left.K_{1}\right) \subseteq Y$, then $\operatorname{subdivision}\left(Y \upharpoonright P, K_{1}\right)=$ subdivision $\left(P, K_{1}\right)$.
(58) subdivision $\left(P, S_{1}\right)$ is a subsimplicial complex of $\operatorname{subdivision}\left(P, K_{1}\right)$.
(59) For every subset A of subdivision $\left(P, K_{1}\right)$ such that dom $P \subseteq$ the topology of S_{1} and $A=\Omega_{\left(S_{1}\right)}$ holds subdivision $\left(P, S_{1}\right)=\operatorname{subdivision}\left(P, K_{1}\right) \upharpoonright A$.
(60) Let K_{3}, K_{4} be simplicial complex structures of X. Suppose the topological structure of $K_{3}=$ the topological structure of K_{4}. Then $\operatorname{subdivision}\left(P, K_{3}\right)=\operatorname{subdivision}\left(P, K_{4}\right)$.
Let us consider X, K_{1}, P, n. The functor $\operatorname{subdivision}\left(n, P, K_{1}\right)$ yielding a simplicial complex structure of X is defined by the condition (Def. 21).
(Def. 21) There exists a function F such that
(i) $F(0)=K_{1}$,
(ii) $\quad F(n)=\operatorname{subdivision}\left(n, P, K_{1}\right)$,
(iii) $\operatorname{dom} F=\mathbb{N}$, and
(iv) for every k and for every simplicial complex structure K_{1}^{\prime} of X such that $K_{1}^{\prime}=F(k)$ holds $F(k+1)=\operatorname{subdivision}\left(P, K_{1}^{\prime}\right)$.
Next we state several propositions:
(61) $\operatorname{subdivision}\left(0, P, K_{1}\right)=K_{1}$.
(62) $\operatorname{subdivision}\left(1, P, K_{1}\right)=\operatorname{subdivision}\left(P, K_{1}\right)$.
(63) For every natural number n_{1} such that $n_{1}=n+k$ holds $\operatorname{subdivision}\left(n_{1}, P, K_{1}\right)=\operatorname{subdivision}\left(n, P, \operatorname{subdivision}\left(k, P, K_{1}\right)\right)$.
(64) $\Omega_{\text {subdivision }\left(n, P, K_{1}\right)}=\Omega_{\left(K_{1}\right)}$.
(65) $\operatorname{subdivision}\left(n, P, S_{1}\right)$ is a subsimplicial complex of $\operatorname{subdivision}\left(n, P, K_{1}\right)$.

References

[1] Broderick Arneson and Piotr Rudnicki. Recognizing chordal graphs: Lex BFS and MCS. Formalized Mathematics, 14(4):187-205, 2006, doi:10.2478/v10037-006-0022-z.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563-567, 1990.
[6] Grzegorz Bancerek. Continuous, stable, and linear maps of coherence spaces. Formalized Mathematics, 5(3):381-393, 1996.
[7] Grzegorz Bancerek and Yasunari Shidama. Introduction to matroids. Formalized Mathematics, 16(4):325-332, 2008, doi:10.2478/v10037-008-0040-0.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Adam Naumowicz. On Segre's product of partial line spaces. Formalized Mathematics, 9(2):383-390, 2001.
[12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[14] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received December 18, 2009

