Representation of the Fibonacci and Lucas Numbers in Terms of Floor and Ceiling

Magdalena Jastrzębska
Institute of Mathematics
University of Białystok
Akademicka 2, 15-267 Białystok, Poland

Abstract

Summary. In the paper we show how to express the Fibonacci numbers and Lucas numbers using the floor and ceiling operations.

MML identifier: FIB_NUM4, version: $\underline{7.11 .054 .134 .1080}$

The notation and terminology used here have been introduced in the following papers: [7], [3], [8], [11], [10], [1], [4], [6], [2], [5], and [9].

1. Preliminaries

One can prove the following propositions:
(1) For all real numbers a, b and for every natural number c holds $\left(\frac{a}{b}\right)^{c}=\frac{a^{c}}{b^{c}}$.
(2) For every real number a and for all integer numbers b, c such that $a \neq 0$ holds $a^{b+c}=a^{b} \cdot a^{c}$.
(3) For every natural number n and for every real number a such that n is even and $a \neq 0$ holds $(-a)^{n}=a^{n}$.
(4) For every natural number n and for every real number a such that n is odd and $a \neq 0$ holds $(-a)^{n}=-a^{n}$.
(5) $|\bar{\tau}|<1$.
(6) For every natural number n and for every non empty real number r such that n is even holds $r^{n}>0$.
(7) For every natural number n and for every real number r such that n is odd and $r<0$ holds $r^{n}<0$.
(8) For every natural number n such that $n \neq 0$ holds $\bar{\tau}^{n}<\frac{1}{2}$.
(9) For all natural numbers n, m and for every real number r such that m is odd and $n \geq m$ and $r<0$ and $r>-1$ holds $r^{n} \geq r^{m}$.
(10) For all natural numbers n, m such that m is odd and $n \geq m$ holds $\bar{\tau}^{n} \geq \bar{\tau}^{m}$.
(11) For all natural numbers n, m such that n is even and m is even and $n \geq m$ holds $\bar{\tau}^{n} \leq \bar{\tau}^{m}$.
(12) For all non empty natural numbers m, n such that $m \geq n$ holds $\operatorname{Luc}(m) \geq \operatorname{Luc}(n)$.
(13) For every non empty natural number n holds $\tau^{n}>\bar{\tau}^{n}$.
(14) For every natural number n such that $n>1$ holds $-\frac{1}{2}<\bar{\tau}^{n}$.
(15) For every natural number n such that $n>2$ holds $\bar{\tau}^{n} \geq-\frac{1}{\sqrt{5}}$.
(16) For every natural number n such that $n \geq 2$ holds $\bar{\tau}^{n} \leq \frac{1}{\sqrt{5}}$.
(17) For every natural number n holds $\frac{\bar{\tau}^{n}}{\sqrt{5}}+\frac{1}{2}>0$ and $\frac{\bar{\tau}^{n}}{\sqrt{5}}+\frac{1}{2}<1$.

2. Formulas for the Fibonacci Numbers

Next we state two propositions:
(18) For every natural number n holds $\left\lfloor\frac{\tau^{n}}{\sqrt{5}}+\frac{1}{2}\right\rfloor=\operatorname{Fib}(n)$.
(19) For every natural number n such that $n \neq 0$ holds $\left\lceil\frac{\tau^{n}}{\sqrt{5}}-\frac{1}{2}\right\rceil=\operatorname{Fib}(n)$.

We now state a number of propositions:
(20) For every natural number n such that $n \neq 0$ holds $\left\lfloor\frac{\tau^{2 \cdot n}}{\sqrt{5}}\right\rfloor=\operatorname{Fib}(2 \cdot n)$.
(21) For every natural number n holds $\left\lceil\frac{\tau^{2 \cdot n+1}}{\sqrt{5}}\right\rceil=\operatorname{Fib}(2 \cdot n+1)$.
(22) For every natural number n such that $n \geq 2$ and n is even holds Fib($n+$ 1) $=\lfloor\tau \cdot \operatorname{Fib}(n)+1\rfloor$.
(23) For every natural number n such that $n \geq 2$ and n is odd holds $\operatorname{Fib}(n+$ 1) $=\lceil\tau \cdot \operatorname{Fib}(n)-1\rceil$.
(24) For every natural number n such that $n \geq 2$ holds $\operatorname{Fib}(n+1)=$ $\left\lfloor\frac{\operatorname{Fib}(n)+\sqrt{5} \cdot \operatorname{Fib}(n)+1}{2}\right\rfloor$.
(25) For every natural number n such that $n \geq 2$ holds $\operatorname{Fib}(n+1)=$ $\left\lceil\frac{(\operatorname{Fib}(n)+\sqrt{5} \cdot \operatorname{Fib}(n))-1}{2}\right\rceil$.
(26) For every natural number n holds $\operatorname{Fib}(n+1)=\frac{\operatorname{Fib}(n)+\sqrt{5 \cdot \operatorname{Fib}(n)^{2}+4 \cdot(-1)^{n}}}{2}$.
(27) For every natural number n such that $n \geq 2$ holds $\operatorname{Fib}(n+1)=$ $\left\lfloor\frac{\operatorname{Fib}(n)+1+\sqrt{\left(5 \cdot \operatorname{Fib}(n)^{2}-2 \cdot \operatorname{Fib}(n)\right)+1}}{2}\right\rfloor$.
(28) For every natural number n such that $n \geq 2$ holds $\operatorname{Fib}(n)=\left\lfloor\frac{1}{\tau} \cdot(\operatorname{Fib}(n+\right.$ 1) $\left.\left.+\frac{1}{2}\right)\right\rfloor$.
(29) For all natural numbers n, k such that $n \geq k>1$ or $k=1$ and $n>k$ holds $\left\lfloor\tau^{k} \cdot \operatorname{Fib}(n)+\frac{1}{2}\right\rfloor=\operatorname{Fib}(n+k)$.

3. Formulas for the Lucas Numbers

Next we state a number of propositions:
(30) For every natural number n such that $n \geq 2$ holds $\operatorname{Luc}(n)=\left\lfloor\tau^{n}+\frac{1}{2}\right\rfloor$.
(31) For every natural number n such that $n \geq 2 \operatorname{holds} \operatorname{Luc}(n)=\left\lceil\tau^{n}-\frac{1}{2}\right\rceil$.
(32) For every natural number n such that $n \geq 2$ holds $\operatorname{Luc}(2 \cdot n)=\left\lceil\tau^{2 \cdot n}\right\rceil$.
(33) For every natural number n such that $n \geq 2$ holds $\operatorname{Luc}(2 \cdot n+1)=$ $\left\lfloor\tau^{2 \cdot n+1}\right\rfloor$.
(34) For every natural number n such that $n \geq 2$ and n is odd holds Luc $(n+$ 1) $=\lfloor\tau \cdot \operatorname{Luc}(n)+1\rfloor$.
(35) For every natural number n such that $n \geq 2$ and n is even holds Luc $(n+$ 1) $=\lceil\tau \cdot \operatorname{Luc}(n)-1\rceil$.
(36) For every natural number n such that $n \neq 1$ holds $\operatorname{Luc}(n+1)=$ $\frac{\operatorname{Luc}(n)+\sqrt{5 \cdot\left(\operatorname{Luc}(n)^{2}-4 \cdot(-1)^{n}\right)}}{2}$.
(37) For every natural number n such that $n \geq 4$ holds $\operatorname{Luc}(n+1)=$ $\left\lfloor\frac{\operatorname{Luc}(n)+1+\sqrt{\left(5 \cdot \operatorname{Luc}(n)^{2}-2 \cdot \operatorname{Luc}(n)\right)+1}}{2}\right\rfloor$.
(38) For every natural number n such that $n>2 \operatorname{holds} \operatorname{Luc}(n)=\left\lfloor\frac{1}{\tau} \cdot(\operatorname{Luc}(n+\right.$ 1) $\left.\left.+\frac{1}{2}\right)\right\rfloor$.
(39) For all natural numbers n, k such that $n \geq 4$ and $k \geq 1$ and $n>k$ and n is odd holds $\operatorname{Luc}(n+k)=\left\lfloor\tau^{k} \cdot \operatorname{Luc}(n)+1\right\rfloor$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Piotr Rudnicki. Two programs for SCM. Part I - preliminaries. Formalized Mathematics, 4(1):69-72, 1993.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[7] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[8] Robert M. Solovay. Fibonacci numbers. Formalized Mathematics, 10(2):81-83, 2002.
[9] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[10] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[11] Piotr Wojtecki and Adam Grabowski. Lucas numbers and generalized Fibonacci numbers. Formalized Mathematics, 12(3):329-333, 2004.

Received November 30, 2009

