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Summary. This text includes the definition of chain-complete poset, fix-
point theorem on it, and the definition of the function space of continuous func-
tions on chain-complete posets [10].

MML identifier: POSET_1, version: 7.11.04 4.130.1076

The papers (8], [4], [5], (3], [1], (9], [7], [11], (18], (12], [2], [14], and [6] provide
the notation and terminology for this paper.

1. MONOTONE FUNCTIONS, CHAIN AND CHAIN-COMPLETE POSETS

Let P be a non empty poset. Observe that there exists a chain of P which
is non empty.
Let I; be a relational structure. We say that I is chain-complete if and only
if:
(Def. 1) I is lower-bounded and for every chain L of I; such that L is non empty
holds sup L exists in I7.

One can prove the following proposition
(1) Let Py, P, be non empty posets, K be a non empty chain of P, and h
be a monotone function from P; into P,. Then A°K is a non empty chain
of PQ.
Let us note that there exists a poset which is strict, chain-complete, and non
empty.
Let us mention that every relational structure which is chain-complete is
also lower-bounded.
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For simplicity, we adopt the following rules: x, y denote sets, P, ) denote
strict chain-complete non empty posets, L denotes a non empty chain of P,
M denotes a non empty chain of @, p denotes an element of P, f denotes a
monotone function from P into ), and g, g1, go denote monotone functions
from P into P.

We now state the proposition

(2) sup(f°L) < f(supL).

2. FIXPOINT THEOREM FOR CONTINUOUS FUNCTIONS ON CHAIN-COMPLETE
PoOsETS

Let P be a non empty poset, let g be a monotone function from P into P,
and let p be an element of P. The functor iterSet(g,p) yields a non empty set
and is defined by:

(Def. 2) iterSet(g,p) = {z € P:

Next we state the proposition

n:natural number © — gn (p)}
(3) iterSet(g, Lp) is a non empty chain of P.

Let us consider P and let g be a monotone function from P into P. The
functor iter-min g yields a non empty chain of P and is defined by:

(Def. 3) iter-min g = iterSet(g, Lp).
The following propositions are true:
(4) supiter-min g = sup(g° iter-min g).
(5) If g1 < go, then supiter-min g; < sup iter-min go.
Let P, @@ be non empty posets and let f be a function from P into (). We
say that f is continuous if and only if:

(Def. 4)  f is monotone and for every non empty chain L of P holds f preserves
sup of L.
We now state two propositions:
(6) For every function f from P into @ holds f is continuous iff f is monotone
and for every L holds f(sup L) = sup(f°L).
(7) For every element z of @ holds P — z is continuous.
Let us consider P, Q. Observe that there exists a function from P into @
which is continuous.
Let us consider P, (). One can verify that every function from P into @
which is continuous is also monotone.
The following proposition is true

(8) For every monotone function f from P into @ such that for every L
holds f(sup L) < sup(f°L) holds f is continuous.
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Let us consider P and let g be a monotone function from P into P. Let us
assume that g is continuous. The least fixpoint of g yields an element of P and
is defined by the conditions (Def. 5).
(Def. 5)(i)  The least fixpoint of g is a fixpoint of g, and
(ii)  for every p such that p is a fixpoint of g holds the least fixpoint of g < p.
One can prove the following propositions:
(9) For every continuous function g from P into P holds the least fixpoint
of g = supiter-min g.
(10) Let g1, g2 be continuous functions from P into P. If g; < g9, then the
least fixpoint of g; < the least fixpoint of go.

3. FUNCTION SPACE OF CONTINUOUS FUNCTIONS ON CHAIN-COMPLETE
POsSETS

Let us consider P, @. The functor ConFuncs(P, @) yields a non empty set
and is defined by the condition (Def. 6).

(Def. 6) ConFuncs(P,Q) = {x;z ranges over elements of (the carrier of
Q)the carrier of P: \/f: continuous function from P into Q f = ZL‘}
Let us consider P, (). The functor ConRelat(P, @) yielding a binary relation
on ConFuncs(P, Q) is defined by the condition (Def. 7).
(Def. 7) Let given z, y. Then (z, y) € ConRelat(P, Q) if and only if the following
conditions are satisfied:
(i) =z € ConFuncs(P,Q),
(i) y € ConFuncs(P, @), and
(iii)  there exist functions f, g from P into @ such that z = f and y = ¢
and f <g.
Let us consider P, ). One can verify the following observations:
x ConRelat(P, @) is reflexive,
x ConRelat(P, Q) is transitive, and
x ConRelat(P, Q) is antisymmetric.

Let us consider P, @. The functor ConPoset(P, Q) yielding a strict non
empty poset is defined as follows:

(Def. 8) ConPoset(P, Q) = (ConFuncs(P, @), ConRelat(P, Q)).

In the sequel F' is a non empty chain of ConPoset(P, Q).
Let us consider P, @, F, p. The functor F-image(p) yielding a non empty
chain of () is defined as follows:

(Def 9) F_image(p) = {$ € Q: Vf: continuous function from P into Q (f €EF N x=
f(0)}-
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Let us consider P, @, F. The functor sup-func F' yields a function from P
into @ and is defined as follows:
(Def. 10) For all p, M such that M = F-image(p) holds (sup-func F')(p) = sup M.
Let us consider P, @, F'. One can check that sup-func F' is continuous.
The following proposition is true
(11) Sup F exists in ConPoset(P, Q) and sup-func F' = [ oonposet(p,q) F-
Let us consider P, Q. The functor min-func(P, Q) yielding a function from
P into @ is defined as follows:
(Def. 11)  min-func(P,Q) = P — Lg.
Let us consider P, (). One can check that min-func(P, @) is continuous.
The following proposition is true
(12) For every element f of ConPoset(P, Q) such that f = min-func(P,Q)
holds f < the carrier of ConPoset(P, Q).
Let us consider P, Q). Note that ConPoset(P, Q) is chain-complete.

4. CONTINUITY OF FIXPOINT FUNCTION FROM CONPOSET(P, P) INTO P

Let us consider P. The functor fix-func P yielding a function
from ConPoset(P, P) into P is defined by the condition (Def. 12).

(Def. 12) Let g be an element of ConPoset(P, P) and h be a continuous function
from P into P. If g = h, then (fix-func P)(g) = the least fixpoint of h.

Let us consider P. One can check that fix-func P is continuous.
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