Fixpoint Theorem for Continuous Functions on Chain-Complete Posets

Kazuhisa Ishida
Neyagawa-shi
Osaka, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. This text includes the definition of chain-complete poset, fixpoint theorem on it, and the definition of the function space of continuous functions on chain-complete posets [10].

MML identifier: POSET_1, version: $\underline{7.11 .04 \text { 4.130.1076 }}$

The papers [8], [4], [5], [3], [1], [9], [7], [11], [13], [12], [2], [14], and [6] provide the notation and terminology for this paper.

1. Monotone Functions, Chain and Chain-complete Posets

Let P be a non empty poset. Observe that there exists a chain of P which is non empty.

Let I_{1} be a relational structure. We say that I_{1} is chain-complete if and only if:
(Def. 1) $\quad I_{1}$ is lower-bounded and for every chain L of I_{1} such that L is non empty holds $\sup L$ exists in I_{1}.
One can prove the following proposition
(1) Let P_{1}, P_{2} be non empty posets, K be a non empty chain of P_{1}, and h be a monotone function from P_{1} into P_{2}. Then $h^{\circ} K$ is a non empty chain of P_{2}.
Let us note that there exists a poset which is strict, chain-complete, and non empty.

Let us mention that every relational structure which is chain-complete is also lower-bounded.

For simplicity, we adopt the following rules: x, y denote sets, P, Q denote strict chain-complete non empty posets, L denotes a non empty chain of P, M denotes a non empty chain of Q, p denotes an element of P, f denotes a monotone function from P into Q, and g, g_{1}, g_{2} denote monotone functions from P into P.

We now state the proposition
(2) $\sup \left(f^{\circ} L\right) \leq f(\sup L)$.

2. Fixpoint Theorem for Continuous Functions on Chain-complete Posets

Let P be a non empty poset, let g be a monotone function from P into P, and let p be an element of P. The functor $\operatorname{iterSet}(g, p)$ yields a non empty set and is defined by:
(Def. 2) \quad iterSet $(g, p)=\left\{x \in P: \bigvee_{n: \text { natural number }} x=g^{n}(p)\right\}$.
Next we state the proposition
(3) $\operatorname{iter} \operatorname{Set}\left(g, \perp_{P}\right)$ is a non empty chain of P.

Let us consider P and let g be a monotone function from P into P. The functor iter-min g yields a non empty chain of P and is defined by:
(Def. 3) iter-min $g=\operatorname{iterSet}\left(g, \perp_{P}\right)$.
The following propositions are true:
(4) \sup iter-min $g=\sup \left(g^{\circ}\right.$ iter-min $\left.g\right)$.
(5) If $g_{1} \leq g_{2}$, then sup iter-min $g_{1} \leq \sup$ iter-min g_{2}.

Let P, Q be non empty posets and let f be a function from P into Q. We say that f is continuous if and only if:
(Def. 4) $\quad f$ is monotone and for every non empty chain L of P holds f preserves sup of L.
We now state two propositions:
(6) For every function f from P into Q holds f is continuous iff f is monotone and for every L holds $f(\sup L)=\sup \left(f^{\circ} L\right)$.
(7) For every element z of Q holds $P \longmapsto z$ is continuous.

Let us consider P, Q. Observe that there exists a function from P into Q which is continuous.

Let us consider P, Q. One can verify that every function from P into Q which is continuous is also monotone.

The following proposition is true
(8) For every monotone function f from P into Q such that for every L holds $f(\sup L) \leq \sup \left(f^{\circ} L\right)$ holds f is continuous.

Let us consider P and let g be a monotone function from P into P. Let us assume that g is continuous. The least fixpoint of g yields an element of P and is defined by the conditions (Def. 5).
(Def. 5)(i) The least fixpoint of g is a fixpoint of g, and
(ii) for every p such that p is a fixpoint of g holds the least fixpoint of $g \leq p$.

One can prove the following propositions:
(9) For every continuous function g from P into P holds the least fixpoint of $g=$ sup iter-min g.
(10) Let g_{1}, g_{2} be continuous functions from P into P. If $g_{1} \leq g_{2}$, then the least fixpoint of $g_{1} \leq$ the least fixpoint of g_{2}.

3. Function Space of Continuous Functions on Chain-complete Posets

Let us consider P, Q. The functor $\operatorname{ConFuncs}(P, Q)$ yields a non empty set and is defined by the condition (Def. 6).
(Def. 6) ConFuncs $(P, Q)=\{x ; x$ ranges over elements of the carrier of $Q)^{\text {the carrier of } P}: \bigvee_{f}$: continuous function from P into $\left.Q f=x\right\}$.
Let us consider P, Q. The functor $\operatorname{ConRelat}(P, Q)$ yielding a binary relation on ConFuncs (P, Q) is defined by the condition (Def. 7).
(Def. 7) Let given x, y. Then $\langle x, y\rangle \in \operatorname{ConRelat}(P, Q)$ if and only if the following conditions are satisfied:
(i) $\quad x \in \operatorname{ConFuncs}(P, Q)$,
(ii) $y \in \operatorname{ConFuncs}(P, Q)$, and
(iii) there exist functions f, g from P into Q such that $x=f$ and $y=g$ and $f \leq g$.
Let us consider P, Q. One can verify the following observations:

* ConRelat (P, Q) is reflexive,
* ConRelat (P, Q) is transitive, and
* ConRelat (P, Q) is antisymmetric.

Let us consider P, Q. The functor $\operatorname{ConPoset}(P, Q)$ yielding a strict non empty poset is defined as follows:
(Def. 8) $\operatorname{ConPoset}(P, Q)=\langle\operatorname{ConFuncs}(P, Q), \operatorname{ConRelat}(P, Q)\rangle$.
In the sequel F is a non empty chain of $\operatorname{ConPoset}(P, Q)$.
Let us consider P, Q, F, p. The functor F-image (p) yielding a non empty chain of Q is defined as follows:
(Def. 9) F-image $(p)=\left\{x \in Q: \bigvee_{f: \text { continuous function from } P \text { into } Q}(f \in F \wedge x=\right.$ $f(p))\}$.

Let us consider P, Q, F. The functor sup-func F yields a function from P into Q and is defined as follows:
(Def. 10) For all p, M such that $M=F$-image (p) holds $(\sup -f u n c F)(p)=\sup M$.
Let us consider P, Q, F. One can check that sup-func F is continuous. The following proposition is true
(11) \quad Sup F exists in $\operatorname{ConPoset}(P, Q)$ and sup-func $F=\bigsqcup_{\operatorname{ConPoset}(P, Q)} F$.

Let us consider P, Q. The functor min-func (P, Q) yielding a function from P into Q is defined as follows:
(Def. 11) min-func $(P, Q)=P \longmapsto \perp_{Q}$.
Let us consider P, Q. One can check that $\min -\operatorname{func}(P, Q)$ is continuous. The following proposition is true
(12) For every element f of $\operatorname{ConPoset}(P, Q)$ such that $f=\min -\mathrm{func}(P, Q)$ holds $f \leq$ the carrier of $\operatorname{ConPoset}(P, Q)$.
Let us consider P, Q. Note that $\operatorname{ConPoset}(P, Q)$ is chain-complete.

4. Continuity of Fixpoint Function from ConPoset (P, P) into P

Let us consider P. The functor fix-func P yielding a function from ConPoset (P, P) into P is defined by the condition (Def. 12).
(Def. 12) Let g be an element of $\operatorname{ConPoset}(P, P)$ and h be a continuous function from P into P. If $g=h$, then $($ fix-func $P)(g)=$ the least fixpoint of h.
Let us consider P. One can check that fix-func P is continuous.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathematics, 6(1):81-91, 1997.
[3] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Adam Grabowski. On the category of posets. Formalized Mathematics, 5(4):501-505, 1996.
[8] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[9] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski - Zorn lemma. Formalized Mathematics, 1(2):387-393, 1990.
[10] Glynn Winskel. The Formal Semantics of Programming Languages. The MIT Press, 1993.
[11] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[12] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[13] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.
[14] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. Formalized Mathematics, 6(1):123-130, 1997.

Received November 10, 2009

