Partial Differentiation of Real Ternary Functions

Takao Inoué
Inaba 2205, Wing-Minamikan
Nagano, Nagano, Japan

Bing Xie
Qingdao University of Science
and Technology
China

Xiquan Liang
Qingdao University of Science
and Technology
China

Summary. In this article, we shall extend the result of [19] to discuss partial differentiation of real ternary functions (refer to [8] and [16] for partial differentiation).

MML identifier: PDIFF_4, version: $\underline{7.11 .044 .130 .1076}$

The notation and terminology used here have been introduced in the following papers: [7], [12], [13], [14], [1], [2], [3], [4], [5], [8], [19], [15], [9], [18], [6], [11], [10], and [17].

1. Preliminaries

For simplicity, we use the following convention: D denotes a set, x, x_{0}, y, y_{0}, z, z_{0}, r, s, t denote real numbers, p, a, u, u_{0} denote elements of $\mathcal{R}^{3}, f, f_{1}, f_{2}$, f_{3}, g denote partial functions from \mathcal{R}^{3} to \mathbb{R}, R denotes a rest, and L denotes a linear function.

One can prove the following three propositions:
(1) $\operatorname{dom} \operatorname{proj}(1,3)=\mathcal{R}^{3}$ and $\operatorname{rng} \operatorname{proj}(1,3)=\mathbb{R}$ and for all elements x, y, z of \mathbb{R} holds $(\operatorname{proj}(1,3))(\langle x, y, z\rangle)=x$.
(2) $\quad \operatorname{dom} \operatorname{proj}(2,3)=\mathcal{R}^{3}$ and $\operatorname{rng} \operatorname{proj}(2,3)=\mathbb{R}$ and for all elements x, y, z of \mathbb{R} holds $(\operatorname{proj}(2,3))(\langle x, y, z\rangle)=y$.
(3) $\operatorname{dom} \operatorname{proj}(3,3)=\mathcal{R}^{3}$ and $\operatorname{rng} \operatorname{proj}(3,3)=\mathbb{R}$ and for all elements x, y, z of \mathbb{R} holds $(\operatorname{proj}(3,3))(\langle x, y, z\rangle)=z$.

2. Partial Differentiation of Real Ternary Functions

One can prove the following propositions:
(4) If $u=\langle x, y, z\rangle$ and f is partially differentiable in u w.r.t. coordinate number 1, then $\operatorname{SVF} 1(1, f, u)$ is differentiable in x.
(5) If $u=\langle x, y, z\rangle$ and f is partially differentiable in u w.r.t. coordinate number 2 , then $\operatorname{SVF} 1(2, f, u)$ is differentiable in y.
(6) If $u=\langle x, y, z\rangle$ and f is partially differentiable in u w.r.t. coordinate number 3 , then $\operatorname{SVF} 1(3, f, u)$ is differentiable in z.
(7) Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and u be an element of \mathcal{R}^{3}. Then the following statements are equivalent
(i) there exist real numbers x_{0}, y_{0}, z_{0} such that $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and $\operatorname{SVF} 1(1, f, u)$ is differentiable in x_{0},
(ii) $\quad f$ is partially differentiable in u w.r.t. coordinate number 1 .
(8) Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and u be an element of \mathcal{R}^{3}. Then the following statements are equivalent
(i) there exist real numbers x_{0}, y_{0}, z_{0} such that $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and $\operatorname{SVF} 1(2, f, u)$ is differentiable in y_{0},
(ii) $\quad f$ is partially differentiable in u w.r.t. coordinate number 2 .
(9) Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and u be an element of \mathcal{R}^{3}. Then the following statements are equivalent
(i) there exist real numbers x_{0}, y_{0}, z_{0} such that $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and $\operatorname{SVF} 1(3, f, u)$ is differentiable in z_{0},
(ii) $\quad f$ is partially differentiable in u w.r.t. coordinate number 3 .
(10) Suppose $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partially differentiable in u w.r.t. coordinate number 1 . Then there exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} \operatorname{SVF} 1(1, f, u)$ and there exist L, R such that for every x such that $x \in N$ holds $(\operatorname{SVF} 1(1, f, u))(x)-(\operatorname{SVF} 1(1, f, u))\left(x_{0}\right)=$ $L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
(11) Suppose $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partially differentiable in u w.r.t. coordinate number 2 . Then there exists a neighbourhood N of y_{0} such that $N \subseteq \operatorname{dom} \operatorname{SVF} 1(2, f, u)$ and there exist L, R such that for every y such that $y \in N$ holds $(\operatorname{SVF} 1(2, f, u))(y)-(\operatorname{SVF} 1(2, f, u))\left(y_{0}\right)=$ $L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
(12) Suppose $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partially differentiable in u w.r.t. coordinate number 3 . Then there exists a neighbourhood N of z_{0} such that $N \subseteq \operatorname{dom} \operatorname{SVF} 1(3, f, u)$ and there exist L, R such that for every z such that $z \in N$ holds $(\operatorname{SVF} 1(3, f, u))(z)-(\operatorname{SVF} 1(3, f, u))\left(z_{0}\right)=L\left(z-z_{0}\right)+R\left(z-z_{0}\right)$.
(13) Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and u be an element of \mathcal{R}^{3}. Then the following statements are equivalent
(i) f is partially differentiable in u w.r.t. coordinate number 1 ,
(ii) there exist real numbers x_{0}, y_{0}, z_{0} such that $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1 $(1, f, u)$ and there exist L, R such that for every x such that $x \in N$ holds $(\operatorname{SVF} 1(1, f, u))(x)-$ $(\operatorname{SVF} 1(1, f, u))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
(14) Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and u be an element of \mathcal{R}^{3}. Then the following statements are equivalent
(i) $\quad f$ is partially differentiable in u w.r.t. coordinate number 2 ,
(ii) there exist real numbers x_{0}, y_{0}, z_{0} such that $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and there exists a neighbourhood N of y_{0} such that $N \subseteq \operatorname{domSVF} 1(2, f, u)$ and there exist L, R such that for every y such that $y \in N$ holds $(\operatorname{SVF} 1(2, f, u))(y)-$ $(\operatorname{SVF} 1(2, f, u))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
(15) Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and u be an element of \mathcal{R}^{3}. Then the following statements are equivalent
(i) f is partially differentiable in u w.r.t. coordinate number 3 ,
(ii) there exist real numbers x_{0}, y_{0}, z_{0} such that $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and there exists a neighbourhood N of z_{0} such that $N \subseteq \operatorname{dom} \operatorname{SVF} 1(3, f, u)$ and there exist L, R such that for every z such that $z \in N$ holds $(\operatorname{SVF}(3, f, u))(z)-$ $(\operatorname{SVF} 1(3, f, u))\left(z_{0}\right)=L\left(z-z_{0}\right)+R\left(z-z_{0}\right)$.
(16) Suppose $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partially differentiable in u w.r.t. coordinate number 1 . Then $r=\operatorname{partdiff}(f, u, 1)$ if and only if there exist real numbers x_{0}, y_{0}, z_{0} such that $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and there exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{domSVF}(1, f, u)$ and there exist L, R such that $r=L(1)$ and for every x such that $x \in N$ holds $(\operatorname{SVF} 1(1, f, u))(x)-(\operatorname{SVF} 1(1, f, u))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
(17) Suppose $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partially differentiable in u w.r.t. coordinate number 2 . Then $r=\operatorname{partdiff}(f, u, 2)$ if and only if there exist real numbers x_{0}, y_{0}, z_{0} such that $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and there exists a neighbourhood N of y_{0} such that $N \subseteq \operatorname{domSVF}(2, f, u)$ and there exist L, R such that $r=L(1)$ and for every y such that $y \in N$ holds $(\operatorname{SVF} 1(2, f, u))(y)-(\operatorname{SVF} 1(2, f, u))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
(18) Suppose $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partially differentiable in u w.r.t. coordinate number 3. Then $r=\operatorname{partdiff}(f, u, 3)$ if and only if there exist real numbers x_{0}, y_{0}, z_{0} such that $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and there exists a neighbourhood N of z_{0} such that $N \subseteq \operatorname{domSVF}(3, f, u)$ and there
exist L, R such that $r=L(1)$ and for every z such that $z \in N$ holds $(\operatorname{SVF} 1(3, f, u))(z)-(\operatorname{SVF} 1(3, f, u))\left(z_{0}\right)=L\left(z-z_{0}\right)+R\left(z-z_{0}\right)$.
(19) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, then partdiff $(f, u, 1)=(\operatorname{SVF} 1(1, f, u))^{\prime}\left(x_{0}\right)$.
(20) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, then partdiff $(f, u, 2)=(\operatorname{SVF} 1(2, f, u))^{\prime}\left(y_{0}\right)$.
(21) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, then partdiff $(f, u, 3)=(\operatorname{SVF} 1(3, f, u))^{\prime}\left(z_{0}\right)$.

Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. We say that f is partially differentiable w.r.t. 1st coordinate on D if and only if the conditions (Def. 1) are satisfied.
(Def. 1)(i) $D \subseteq \operatorname{dom} f$, and
(ii) for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f \upharpoonright D$ is partially differentiable in u w.r.t. coordinate number 1.
We say that f is partially differentiable w.r.t. 2 nd coordinate on D if and only if the conditions (Def. 2) are satisfied.
(Def. 2)(i) $\quad D \subseteq \operatorname{dom} f$, and
(ii) for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f \upharpoonright D$ is partially differentiable in u w.r.t. coordinate number 2.
We say that f is partially differentiable w.r.t. 3rd coordinate on D if and only if the conditions (Def. 3) are satisfied.
(Def. 3)(i) $D \subseteq \operatorname{dom} f$, and
(ii) for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f \upharpoonright D$ is partially differentiable in u w.r.t. coordinate number 3 .
The following three propositions are true:
(22) Suppose f is partially differentiable w.r.t. 1st coordinate on D. Then $D \subseteq$ dom f and for every u such that $u \in D$ holds f is partially differentiable in u w.r.t. coordinate number 1 .
(23) Suppose f is partially differentiable w.r.t. 2 nd coordinate on D. Then $D \subseteq \operatorname{dom} f$ and for every u such that $u \in D$ holds f is partially differentiable in u w.r.t. coordinate number 2 .
(24) Suppose f is partially differentiable w.r.t. 3rd coordinate on D. Then $D \subseteq \operatorname{dom} f$ and for every u such that $u \in D$ holds f is partially differentiable in u w.r.t. coordinate number 3 .
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partially differentiable w.r.t. 1 st coordinate on D. The functor $f_{\Gamma D}^{1 \text { st }}$ yielding a partial function from \mathcal{R}^{3} to \mathbb{R} is defined as follows:
(Def. 4) $\operatorname{dom}\left(f_{\uparrow D}^{1 \mathrm{st}}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\mid D}^{1 \text { st }}(u)=\operatorname{partdiff}(f, u, 1)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partially differentiable w.r.t. 2 nd coordinate on D. The functor $f_{\mid D}^{2 \text { nd }}$ yields a partial function from \mathcal{R}^{3} to \mathbb{R} and is defined as follows:
(Def. 5) $\operatorname{dom}\left(f_{\lceil D}^{2 \text { nd }}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\lceil D}^{2 \text { nd }}(u)=\operatorname{partdiff}(f, u, 2)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partially differentiable w.r.t. 3 rd coordinate on D. The functor $f_{\Gamma D}^{3 \text { rd }}$ yielding a partial function from \mathcal{R}^{3} to \mathbb{R} is defined as follows:
(Def. 6) $\operatorname{dom}\left(f_{\mid D}^{3 \mathrm{rd}}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\lceil D}^{3 \mathrm{rd}}(u)=\operatorname{partdiff}(f, u, 3)$.

3. Main Properties of Partial Differentiation of Real Ternary Functions

We now state a number of propositions:
(25) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(1,3))\left(u_{0}\right)$. Suppose f is partially differentiable in u_{0} w.r.t. coordinate number 1 and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(1, f, u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(1,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\operatorname{SVF} 1\left(1, f, u_{0}\right)\right.$. $\left.(h+c)-\operatorname{SVF} 1\left(1, f, u_{0}\right) \cdot c\right)$ is convergent and $\operatorname{partdiff}\left(f, u_{0}, 1\right)=$ $\lim \left(h^{-1}\left(\operatorname{SVF} 1\left(1, f, u_{0}\right) \cdot(h+c)-\operatorname{SVF} 1\left(1, f, u_{0}\right) \cdot c\right)\right)$.
(26) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(2,3))\left(u_{0}\right)$. Suppose f is partially differentiable in u_{0} w.r.t. coordinate number 2 and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(2, f, u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(2,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\operatorname{SVF} 1\left(2, f, u_{0}\right)\right.$. $\left.(h+c)-\operatorname{SVF} 1\left(2, f, u_{0}\right) \cdot c\right)$ is convergent and $\operatorname{partdiff}\left(f, u_{0}, 2\right)=$ $\lim \left(h^{-1}\left(\operatorname{SVF} 1\left(2, f, u_{0}\right) \cdot(h+c)-\operatorname{SVF} 1\left(2, f, u_{0}\right) \cdot c\right)\right)$.
(27) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(3,3))\left(u_{0}\right)$. Suppose f is partially differentiable in u_{0} w.r.t. coordinate number 3 and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(3, f, u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(3,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\operatorname{SVF} 1\left(3, f, u_{0}\right)\right.$. $\left.(h+c)-\operatorname{SVF} 1\left(3, f, u_{0}\right) \cdot c\right)$ is convergent and $\operatorname{partdiff}\left(f, u_{0}, 3\right)=$ $\lim \left(h^{-1}\left(\operatorname{SVF} 1\left(3, f, u_{0}\right) \cdot(h+c)-\operatorname{SVF} 1\left(3, f, u_{0}\right) \cdot c\right)\right)$.
(28) Suppose that
(i) $\quad f_{1}$ is partially differentiable in u_{0} w.r.t. coordinate number 1 , and
(ii) $\quad f_{2}$ is partially differentiable in u_{0} w.r.t. coordinate number 1 .

Then $f_{1} f_{2}$ is partially differentiable in u_{0} w.r.t. coordinate number 1 .
(29) Suppose that
(i) $\quad f_{1}$ is partially differentiable in u_{0} w.r.t. coordinate number 2 , and
(ii) $\quad f_{2}$ is partially differentiable in u_{0} w.r.t. coordinate number 2 .

Then $f_{1} f_{2}$ is partially differentiable in u_{0} w.r.t. coordinate number 2 .
(30) Suppose that
(i) $\quad f_{1}$ is partially differentiable in u_{0} w.r.t. coordinate number 3 , and
(ii) $\quad f_{2}$ is partially differentiable in u_{0} w.r.t. coordinate number 3.

Then $f_{1} f_{2}$ is partially differentiable in u_{0} w.r.t. coordinate number 3 .
(31) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partially differentiable in u_{0} w.r.t. coordinate number 1 . Then $\operatorname{SVF} 1\left(1, f, u_{0}\right)$ is continuous in $(\operatorname{proj}(1,3))\left(u_{0}\right)$.
(32) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partially differentiable in u_{0} w.r.t. coordinate number 2 . Then $\operatorname{SVF} 1\left(2, f, u_{0}\right)$ is continuous in $(\operatorname{proj}(2,3))\left(u_{0}\right)$.
(33) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partially differentiable in u_{0} w.r.t. coordinate number 3 . Then $\operatorname{SVF} 1\left(3, f, u_{0}\right)$ is continuous in $(\operatorname{proj}(3,3))\left(u_{0}\right)$.
(34) Suppose f is partially differentiable in u_{0} w.r.t. coordinate number 1. Then there exists R such that $R(0)=0$ and R is continuous in 0 .
(35) Suppose f is partially differentiable in u_{0} w.r.t. coordinate number 2. Then there exists R such that $R(0)=0$ and R is continuous in 0 .
(36) Suppose f is partially differentiable in u_{0} w.r.t. coordinate number 3 . Then there exists R such that $R(0)=0$ and R is continuous in 0 .

4. Grads and Curl

Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let p be an element of \mathcal{R}^{3}. The functor $\operatorname{grad}(f, p)$ yields an element of \mathcal{R}^{3} and is defined as follows:
(Def. 7) $\operatorname{grad}(f, p)=\operatorname{partdiff}(f, p, 1) \cdot e_{1}+\operatorname{partdiff}(f, p, 2) \cdot e_{2}+\operatorname{partdiff}(f, p, 3) \cdot e_{3}$. We now state several propositions:
(37) $\operatorname{grad}(f, p)=[\operatorname{partdiff}(f, p, 1), \operatorname{partdiff}(f, p, 2), \operatorname{partdiff}(f, p, 3)]$.
(38) Suppose that
(i) $\quad f$ is partially differentiable in p w.r.t. coordinate number 1 , partially differentiable in p w.r.t. coordinate number 2 , and partially differentiable in p w.r.t. coordinate number 3 , and
(ii) $\quad g$ is partially differentiable in p w.r.t. coordinate number 1 , partially differentiable in p w.r.t. coordinate number 2 , and partially differentiable in p w.r.t. coordinate number 3 .
Then $\operatorname{grad}(f+g, p)=\operatorname{grad}(f, p)+\operatorname{grad}(g, p)$.
(39) Suppose that
(i) $\quad f$ is partially differentiable in p w.r.t. coordinate number 1 , partially differentiable in p w.r.t. coordinate number 2 , and partially differentiable in p w.r.t. coordinate number 3 , and
(ii) g is partially differentiable in p w.r.t. coordinate number 1 , partially differentiable in p w.r.t. coordinate number 2 , and partially differentiable in p w.r.t. coordinate number 3.
Then $\operatorname{grad}(f-g, p)=\operatorname{grad}(f, p)-\operatorname{grad}(g, p)$.
(40) Suppose that
(i) f is partially differentiable in p w.r.t. coordinate number 1 ,
(ii) f is partially differentiable in p w.r.t. coordinate number 2 , and
(iii) f is partially differentiable in p w.r.t. coordinate number 3 .
$\operatorname{Then} \operatorname{grad}(r f, p)=r \cdot \operatorname{grad}(f, p)$.
(41) Suppose that
(i) f is partially differentiable in p w.r.t. coordinate number 1 , partially differentiable in p w.r.t. coordinate number 2 , and partially differentiable in p w.r.t. coordinate number 3 , and
(ii) g is partially differentiable in p w.r.t. coordinate number 1 , partially differentiable in p w.r.t. coordinate number 2 , and partially differentiable in p w.r.t. coordinate number 3 .
Then $\operatorname{grad}(s f+t g, p)=s \cdot \operatorname{grad}(f, p)+t \cdot \operatorname{grad}(g, p)$.
(42) Suppose that
(i) $\quad f$ is partially differentiable in p w.r.t. coordinate number 1 , partially differentiable in p w.r.t. coordinate number 2 , and partially differentiable in p w.r.t. coordinate number 3 , and
(ii) g is partially differentiable in p w.r.t. coordinate number 1, partially differentiable in p w.r.t. coordinate number 2 , and partially differentiable in p w.r.t. coordinate number 3 .
Then $\operatorname{grad}(s f-t g, p)=s \cdot \operatorname{grad}(f, p)-t \cdot \operatorname{grad}(g, p)$.
(43) If f is total and constant, then $\operatorname{grad}(f, p)=0_{\mathcal{E}_{T}^{3}}$.

Let a be an element of \mathcal{R}^{3}. The functor unitvector a yields an element of \mathcal{R}^{3} and is defined as follows:
(Def. 8) unitvector $a=\left[\frac{a(1)}{\sqrt{a(1)^{2}+a(2)^{2}+a(3)^{2}}}, \frac{a(2)}{\sqrt{a(1)^{2}+a(2)^{2}+a(3)^{2}}}, \frac{a(3)}{\sqrt{a(1)^{2}+a(2)^{2}+a(3)^{2}}}\right]$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let p, a be elements of \mathcal{R}^{3}. The functor Directiondiff (f, p, a) yielding a real number is defined by:
(Def. 9) Directiondiff $(f, p, a)=\operatorname{partdiff}(f, p, 1) \cdot($ unitvector $a)(1)+\operatorname{partdiff}(f, p, 2)$. (unitvector $a)(2)+\operatorname{partdiff}(f, p, 3) \cdot($ unitvector $a)(3)$.
The following propositions are true:
(44) If $a=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, then Directiondiff $(f, p, a)=\frac{\operatorname{partdiff}(f, p, 1) \cdot x_{0}}{\sqrt{x_{0}{ }^{2}+y_{0}{ }^{2}+z_{0}{ }^{2}}}+$ $\frac{\text { partdiff }(f, p, 2) \cdot y_{0}}{\sqrt{x_{0}^{2}+y_{0}{ }^{2}+z_{0}{ }^{2}}}+\frac{\text { partdif }(f, p, 3) \cdot z_{0}}{\sqrt{x_{0}{ }^{2}+y_{0}{ }^{2}+z_{0}}}$.
(45) $\operatorname{Directiondiff}(f, p, a)=\mid(\operatorname{grad}(f, p)$, unitvector $a) \mid$.

Let f_{1}, f_{2}, f_{3} be partial functions from \mathcal{R}^{3} to \mathbb{R} and let p be an element of \mathcal{R}^{3}. The functor $\operatorname{curl}\left(f_{1}, f_{2}, f_{3}, p\right)$ yields an element of \mathcal{R}^{3} and is defined by:
(Def. 10) $\operatorname{curl}\left(f_{1}, f_{2}, f_{3}, p\right)=\left(\operatorname{partdiff}\left(f_{3}, p, 2\right)-\operatorname{partdiff}\left(f_{2}, p, 3\right)\right) \cdot e_{1}+$ (partdiff $\left.\left(f_{1}, p, 3\right)-\operatorname{partdiff}\left(f_{3}, p, 1\right)\right) \cdot e_{2}+\left(\operatorname{partdiff}\left(f_{2}, p, 1\right)-\right.$ $\left.\operatorname{partdiff}\left(f_{1}, p, 2\right)\right) \cdot e_{3}$.
Next we state the proposition
(46) $\operatorname{curl}\left(f_{1}, f_{2}, f_{3}, p\right)=\left[\operatorname{partdiff}\left(f_{3}, p, 2\right)-\operatorname{partdiff}\left(f_{2}, p, 3\right), \operatorname{partdiff}\left(f_{1}, p, 3\right)-\right.$ $\left.\operatorname{partdiff}\left(f_{3}, p, 1\right), \operatorname{partdiff}\left(f_{2}, p, 1\right)-\operatorname{partdiff}\left(f_{1}, p, 2\right)\right]$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[3] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[8] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces \mathcal{R}^{n}. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[12] Xiquan Liang, Piqing Zhao, and Ou Bai. Vector functions and their differentiation formulas in 3-dimensional Euclidean spaces. Formalized Mathematics, 18(1):1-10, 2010, doi: 10.2478/v10037-010-0001-2.
[13] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[14] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[15] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[16] Walter Rudin. Principles of Mathematical Analysis. MacGraw-Hill, 1976.
[17] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[19] Bing Xie, Xiquan Liang, and Hongwei Li. Partial differentiation of real binary functions. Formalized Mathematics, 16(4):333-338, 2008, doi:10.2478/v10037-008-0041-z.

