Integrability Formulas. Part I

Bo Li
Qingdao University of Science
and Technology
China

Na Ma
Qingdao University of Science
and Technology
China

Summary. In this article, we give several differentiation and integrability formulas of special and composite functions including the trigonometric function, and the polynomial function.

MML identifier: INTEGR12, version: $\underline{7.11 .044 .130 .1076}$

The papers [12], [2], [3], [1], [7], [11], [13], [4], [17], [8], [9], [6], [18], [5], [10], [15], [16], and [14] provide the terminology and notation for this paper.

One can check that there exists a subset of \mathbb{R} which is closed-interval.
For simplicity, we use the following convention: a, b, x, r are real numbers, n is an element of \mathbb{N}, A is a closed-interval subset of $\mathbb{R}, f, g, f_{1}, f_{2}, g_{1}, g_{2}$ are partial functions from \mathbb{R} to \mathbb{R}, and Z is an open subset of \mathbb{R}.

We now state a number of propositions:
(1) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{f_{1}+f_{2}}\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $f_{2}=\square^{2}$. Then $\frac{1}{f_{1}+f_{2}}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{1}{f_{1}+f_{2}}\right)^{\prime} Z(x)=-\frac{2 \cdot x}{\left(1+x^{2}\right)^{2}}$.
(2) Suppose that $A \subseteq Z$ and $f=\frac{\frac{1}{g_{1}+g_{2}}}{f_{2}}$ and $f_{2}=$ the function arccot and $Z \subseteq]-1,1\left[\right.$ and $g_{2}=\square^{2}$ and for every x such that $x \in Z$ holds $g_{1}(x)=1$ and $f_{2}(x)>0$ and $Z=\operatorname{dom} f$. Then $\int_{A} f(x) d x=(-($ the function $\ln) \cdot($ the function $\operatorname{arccot}))(\sup A)-$ $(-($ the function $\ln) \cdot($ the function arccot) $)(\inf A)$.
(3) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds (the function $\exp)(x)<1$ and $f_{1}(x)=1$,
(iii) $Z \subseteq \operatorname{dom}(($ the function arctan $) \cdot($ the function $\exp))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f=\frac{\text { the function } \exp }{f_{1}+(\text { the function } \exp)^{2}}$.

Then $\int_{A} f(x) d x=(($ the function arctan $) \cdot($ the function $\exp))(\sup A)-$ $(($ the function $\arctan) \cdot($ the function $\exp))(\inf A)$.
(4) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds (the function $\exp)(x)<1$ and $f_{1}(x)=1$,
(iii) $Z \subseteq \operatorname{dom}(($ the function arccot $) \cdot($ the function $\exp))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f=\frac{- \text { the function } \exp }{f_{1}+(\text { the function } \exp)^{2}}$.

Then $\int_{A} f(x) d x=(($ the function arccot $) \cdot($ the function $\exp))(\sup A)-(($ the function arccot) $\cdot($ the function $\exp))(\inf A)$.
(5) Suppose that
(i) $A \subseteq Z$,
(ii) $Z=\operatorname{dom} f$, and
(iii) $f=($ the function $\exp) \frac{\text { the function } \sin }{\text { the function cos }}+\frac{\text { the function } \exp }{(\text { the function } \cos)^{2}}$.

Then $\int_{A} f(x) d x=(($ the function $\exp) \quad($ the function $\tan))(\sup A)-(($ the function $\exp)($ the function $\tan))(\inf A)$.
(6) Suppose that
(i) $A \subseteq Z$,
(ii) $Z=\operatorname{dom} f$, and
(iii) $f=($ the function $\exp) \frac{\text { the function cos }}{\text { the function sin }}-\frac{\text { the function } \exp }{(\text { the function } \sin)^{2}}$.

Then $\int_{A} f(x) d x=(($ the function $\exp) \quad$ (the function $\left.\cot)\right)(\sup A)-(($ the function $\exp)($ the function $\cot)(\inf A)$.
(7) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f_{1}(x)=1$,
(iii) $Z \subseteq]-1,1[$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f=($ the function $\exp)$ (the function $\arctan)+\frac{\text { the function } \exp }{f_{1}+\square^{2}}$.

Then $\int_{A} f(x) d x=(($ the function $\exp))($ the function $\left.\arctan)\right)(\sup A)-(($ the function $\exp)($ the function $\arctan)(\inf A)$.
(8) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f_{1}(x)=1$,
(iii) $Z \subseteq]-1,1[$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f=$ (the function \exp) (the function arccot) $-\frac{\text { the function } \exp }{f_{1}+\square^{2}}$.

Then $\int_{A} f(x) d x=(($ the function $\exp)($ the function arccot $))(\sup A)-(($ the function $\exp)($ the function arccot)) (inf $A)$.
(9) \quad Suppose $A \subseteq Z=\operatorname{dom} f$ and $f=(($ the function $\exp) \cdot($ the function sin $))$ (the function cos). Then $\int_{A} f(x) d x=(($ the function $\exp) \cdot($ the function $\sin))(\sup A)-(($ the function $\exp) \cdot($ the function $\sin))(\inf A)$.
(10) Suppose $A \subseteq Z=\operatorname{dom} f$ and $f=$ ((the function $\exp) \cdot$ (the function $\cos)$) (the function \sin).
Then $\int_{A} f(x) d x=(-($ the function $\exp) \cdot($ the function $\cos))(\sup A)-$ $(-($ the function $\exp) \cdot($ the function $\cos))(\inf A)$.
(11) Suppose $A \subseteq Z$ and for every x such that $x \in Z$ holds $x>0$ and $Z=\operatorname{dom} f$ and $f=\left((\right.$ the function cos) $\cdot($ the function $\ln)) \frac{1}{\mathrm{id} Z}$. Then $\int_{A} f(x) d x=(($ the function $\sin) \cdot($ the function $\ln))(\sup A)-(($ the function sin) $\cdot($ the function $\ln))(\inf A)$.
(12) Suppose $A \subseteq Z$ and for every x such that $x \in Z$ holds $x>0$ and $Z=\operatorname{dom} f$ and $f=(($ the function $\sin) \cdot($ (the function $\ln))$ $\frac{1}{\mathrm{id} Z}$. Then $\int_{A} f(x) d x=(-($ the function $\cos) \cdot($ the function $\ln))(\sup A)-$ $(-($ the function cos) $\cdot($ the function $\ln))(\inf A)$.
(13) Suppose $A \subseteq Z=\operatorname{dom} f$ and $f=$ (the function \exp) ((the function cos) $\cdot($ the function $\exp))$. Then $\int_{A} f(x) d x=(($ the function $\sin) \cdot$ (the function $\exp))(\sup A)-(($ the function $\sin) \cdot($ the function $\exp))(\inf A)$.
(14) Suppose $A \subseteq Z=\operatorname{dom} f$ and $f=$ (the function \exp) ((the function sin) -(the function \exp)).
Then $\int_{A} f(x) d x=(-($ the function $\cos) \cdot($ the function $\exp))(\sup A)-$ $(-($ the function $\cos) \cdot($ the function $\exp))(\inf A)$.
(15) Suppose that $A \subseteq Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)$ and $r \neq 0$ and for every x such that $x \in Z$ holds $g(x)=\frac{x}{r}$ and $g(x)>-1$ and $g(x)<1$ and $f_{1}(x)=1$ and $f_{2}=\left(\square^{2}\right) \cdot g$ and $Z=\operatorname{dom} f$ and $f=$ (the function arctan) $\cdot g$. Then $\int_{A} f(x) d x=\left(\operatorname{id}_{Z}((\right.$ the function arctan $) \cdot g)-\frac{r}{2}(($ the function $\ln)$ $\left.\left.\cdot\left(f_{1}+f_{2}\right)\right)\right)(\sup A)-\left(\operatorname{id}_{Z}((\right.$ the function arctan $) \cdot g)-\frac{r}{2}(($ the function $\ln)$ $\left.\left.\cdot\left(f_{1}+f_{2}\right)\right)\right)(\inf A)$.
(16) Suppose that $A \subseteq Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)$ and $r \neq 0$ and for every x such that $x \in Z$ holds $g(x)=\frac{x}{r}$ and $g(x)>-1$ and $g(x)<1$ and $f_{1}(x)=1$ and $f_{2}=\left(\square^{2}\right) \cdot g$ and $Z=\operatorname{dom} f$ and $f=$ (the function arccot) $\cdot g$. Then $\int_{A} f(x) d x=\left(\right.$ id $_{Z}(($ the function arccot $) \cdot g)+\frac{r}{2}(($ the function $\ln)$ $\left.\left.\cdot\left(f_{1}+f_{2}\right)\right)\right)(\sup A)-\left(\operatorname{id}_{Z}((\right.$ the function arccot $) \cdot g)+\frac{r}{2}(($ the function $\ln)$ $\left.\left.\cdot\left(f_{1}+f_{2}\right)\right)\right)(\inf A)$.
(17) Suppose that
(i) $A \subseteq Z$,
(ii) $f=$ (the function arctan) $\cdot f_{1}+\frac{\mathrm{id} z}{r\left(g+f_{1}{ }^{2}\right)}$,
(iii) for every x such that $x \in Z$ holds $g(x)=1$ and $f_{1}(x)=\frac{x}{r}$ and $f_{1}(x)>-1$ and $f_{1}(x)<1$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=\left(\operatorname{id}_{Z}\left((\right.\right.$ the function $\left.\left.\arctan) \cdot f_{1}\right)\right)(\sup A)-\left(\mathrm{id}_{Z}((\right.$ the function arctan) $\left.\left.\cdot f_{1}\right)\right)(\inf A)$.
(18) Suppose that
(i) $A \subseteq Z$,
(ii) $f=$ (the function arccot) $\cdot f_{1}-\frac{\mathrm{id}_{Z}}{r\left(g+f_{1}{ }^{2}\right)}$,
(iii) for every x such that $x \in Z$ holds $g(x)=1$ and $f_{1}(x)=\frac{x}{r}$ and $f_{1}(x)>-1$ and $f_{1}(x)<1$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=\left(\mathrm{id}_{Z}\left((\right.\right.$ the function arccot $\left.\left.) \cdot f_{1}\right)\right)(\sup A)-\left(\mathrm{id}_{Z}((\right.$ the function arccot) $\left.\left.\cdot f_{1}\right)\right)(\inf A)$.
(19) Suppose that $A \subseteq Z \subseteq]-1,1[$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $Z=\operatorname{dom} f$ and $Z \subseteq \operatorname{dom}\left(\left(\square^{n}\right) \cdot(\right.$ the function $\left.\arcsin)\right)$ and $1<n$ and $f=\frac{n\left(\left(\square^{n-1}\right) \cdot(\text { (the function arcsin })\right)}{\left(\square^{\frac{1}{2}}\right) \cdot\left(f_{1}-\square^{2}\right)}$. Then $\int_{A} f(x) d x=\left(\left(\square^{n}\right) \cdot\right.$ (the function $\arcsin))(\sup A)-\left(\left(\square^{n}\right) \cdot(\right.$ the function $\left.\arcsin)\right)(\inf A)$.
(20) Suppose that $A \subseteq Z \subseteq]-1,1[$ and for every x such that $x \in Z$ holds

$$
\begin{aligned}
& f_{1}(x)=1 \text { and } Z \subseteq \operatorname{dom}\left(\left(\square^{n}\right) \cdot(\text { the function arccos })\right) \text { and } Z=\operatorname{dom} f \\
& \text { and } 1<n \text { and } f=\frac{n\left(\left(\square^{n-1}\right) \cdot(\text { the function arccos) })\right.}{\left(\square^{\frac{1}{2}}\right) \cdot\left(f_{1}-\square^{2}\right)} \text {. Then } \int_{A} f(x) d x= \\
& \left(-\left(\square^{n}\right) \cdot(\text { the function arccos })\right)(\sup A)-\left(-\left(\square^{n}\right) \cdot(\text { the function } \arccos)\right) \\
& (\inf A) \text {. }
\end{aligned}
$$

(21) Suppose $A \subseteq Z$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $Z \subseteq]-1,1[$ and $Z=\operatorname{dom} f$ and $f=$ (the function $\arcsin)+\frac{\mathrm{id}_{Z}}{\left(\square^{\frac{1}{2}}\right) \cdot\left(f_{1}-\square^{2}\right)}$. Then $\int_{A} f(x) d x=\left(\mathrm{id}_{Z}(\right.$ the function $\left.\arcsin)\right)(\sup A)-\left(\mathrm{id}_{Z}\right.$ (the function $\arcsin))(\inf A)$.
(22) Suppose $A \subseteq Z$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $Z \subseteq]-1,1[$ and $Z=\operatorname{dom} f$ and $f=$ (the function $\arccos)-\frac{\mathrm{id} Z}{\left(\square^{\frac{1}{2}}\right) \cdot\left(f_{1}-\square^{2}\right)}$. Then $\int_{A} f(x) d x=\left(\operatorname{id}_{Z}(\right.$ the function $\left.\arccos)\right)(\sup A)-\left(\operatorname{id}_{Z}\right.$ (the function $\arccos))(\inf A)$.
(23) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq]-1,1[$,
(iii) for every x such that $x \in Z$ holds $f_{1}(x)=a \cdot x+b$ and $f_{2}(x)=1$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f=a$ (the function $\arcsin)+\frac{f_{1}}{\left(\square^{\frac{1}{2}}\right) \cdot\left(f_{2}-\square^{2}\right)}$.

Then $\int_{A} f(x) d x=\left(f_{1}\right.$ (the function $\left.\left.\arcsin \right)\right)(\sup A)-\left(f_{1}\right.$ (the function $\arcsin)(\inf A)$.
(24) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq]-1,1[$,
(iii) for every x such that $x \in Z$ holds $f_{1}(x)=a \cdot x+b$ and $f_{2}(x)=1$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f=a$ (the function $\arccos)-\frac{f_{1}}{\left(\square^{\frac{1}{2}}\right) \cdot\left(f_{2}-\square^{2}\right)}$.

Then $\int_{A} f(x) d x=\left(f_{1}\right.$ (the function $\left.\left.\arccos \right)\right)(\sup A)-\left(f_{1}\right.$ (the function $\arccos))(\inf A)$.
(25) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $g(x)=1$ and $f_{1}(x)=\frac{x}{a}$ and $f_{1}(x)>-1$ and $f_{1}(x)<1$,
(iii) $Z=\operatorname{dom} f$,
(iv) f is continuous on A, and
(v) $\quad f=($ the function $\arcsin) \cdot f_{1}+\frac{\mathrm{id}_{Z}}{a\left(\left(\square^{\frac{1}{2}}\right) \cdot\left(g-f_{1}{ }^{2}\right)\right)}$.

Then $\int_{A} f(x) d x=\left(\operatorname{id}_{Z}\left((\right.\right.$ the function $\left.\left.\arcsin) \cdot f_{1}\right)\right)(\sup A)-\left(\mathrm{id}_{Z}((\right.$ the function $\left.\arcsin) \cdot f_{1}\right)(\inf A)$.
(26) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $g(x)=1$ and $f_{1}(x)=\frac{x}{a}$ and $f_{1}(x)>-1$ and $f_{1}(x)<1$,
(iii) $Z=\operatorname{dom} f$,
(iv) f is continuous on A, and
(v) $f=($ the function $\arccos) \cdot f_{1}-\frac{\mathrm{id}_{Z}}{a\left(\left(\square^{\frac{1}{2}}\right) \cdot\left(g-f_{1}{ }^{2}\right)\right)}$.

Then $\int_{A} f(x) d x=\left(\operatorname{id}_{Z}\left((\right.\right.$ the function arccos $\left.\left.) \cdot f_{1}\right)\right)(\sup A)-\left(\operatorname{id}_{Z}((\right.$ the function $\left.\left.\arccos) \cdot f_{1}\right)\right)(\inf A)$.
(27) Suppose $A \subseteq Z$ and $f=\frac{n\left(\left(\square^{n-1}\right) \cdot(\text { the function } \sin)\right)}{\left(\square^{n+1}\right) \cdot(\text { the function } \cos)}$ and $1 \leq n$ and $Z \subseteq$ $\operatorname{dom}\left(\left(\square^{n}\right) \cdot(\right.$ the function $\left.\tan)\right)$ and $Z=\operatorname{dom} f$. Then $\int_{A} f(x) d x=\left(\left(\square^{n}\right) \cdot\right.$ (the function $\tan))(\sup A)-\left(\left(\square^{n}\right) \cdot(\right.$ the function $\left.\tan)\right)(\inf A)$.
(28) Suppose $A \subseteq Z$ and $f=\frac{n\left(\left(\square^{n-1}\right) \cdot(\text { the function } \cos)\right)}{\left(\square^{n+1}\right) \cdot(\text { the function } \sin)}$ and $1 \leq n$ and $Z \subseteq \operatorname{dom}\left(\left(\square^{n}\right) \cdot(\right.$ the function $\left.\cot)\right)$ and $Z=\operatorname{dom} f$. Then $\int_{A} f(x) d x=$ $\left(-\left(\square^{n}\right) \cdot(\right.$ the function $\left.\cot)\right)(\sup A)-\left(-\left(\square^{n}\right) \cdot(\right.$ the function $\left.\cot)\right)(\inf A)$.
(29) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\tan) \cdot f_{1}\right)$,
(iii) $f=\frac{\left((\text { the function } \sin) \cdot f_{1}\right)^{2}}{\left((\text { the function } \cos) \cdot f_{1}\right)^{2}}$,
(iv) for every x such that $x \in Z$ holds $f_{1}(x)=a \cdot x$ and $a \neq 0$, and
(v) $Z=\operatorname{dom} f$.

Then $\int_{A} f(x) d x=\left(\frac{1}{a}\left((\right.\right.$ the function $\left.\left.\tan) \cdot f_{1}\right)-\mathrm{id}_{Z}\right)(\sup A)-\left(\frac{1}{a}((\right.$ the function $\left.\left.\tan) \cdot f_{1}\right)-\operatorname{id}_{Z}\right)(\inf A)$.
(30) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq \operatorname{dom}\left((\right.$ the function cot $\left.) \cdot f_{1}\right)$,
(iii) $f=\frac{\left((\text { the function } \cos) \cdot f_{1}\right)^{2}}{\left.(\text { (the function } \sin) \cdot f_{1}\right)^{2}}$,
(iv) for every x such that $x \in Z$ holds $f_{1}(x)=a \cdot x$ and $a \neq 0$, and
(v) $Z=\operatorname{dom} f$.

Then $\int_{A} f(x) d x=\left(\left(-\frac{1}{a}\right)\left((\right.\right.$ the function $\left.\left.\cot) \cdot f_{1}\right)-\operatorname{id}_{Z}\right)(\sup A)-\left(\left(-\frac{1}{a}\right)((\right.$ the function $\left.\left.\cot) \cdot f_{1}\right)-\operatorname{id}_{Z}\right)(\inf A)$.
(31) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f_{1}(x)=a \cdot x+b$,
(iii) $Z=\operatorname{dom} f$, and
(iv) $f=a \frac{\text { the function } \sin }{\text { the function } \cos }+\frac{f_{1}}{(\text { the function } \cos)^{2}}$.

Then $\int_{A} f(x) d x=\left(f_{1}(\right.$ the function tan $\left.)\right)(\sup A)-\left(f_{1}(\right.$ the function $\left.\tan)\right)(\inf A)$.
(32) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f_{1}(x)=a \cdot x+b$,
(iii) $Z=\operatorname{dom} f$, and
(iv) $f=a \frac{\text { the function } \cos }{\text { the function } \sin }-\frac{f_{1}}{(\text { the function } \sin)^{2}}$.

Then $\int_{A} f(x) d x=\left(f_{1}(\right.$ the function $\left.\cot)\right)(\sup A)-\left(f_{1}(\right.$ the function $\left.\cot)\right)(\inf A)$.
(33) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{(\text { the function } \sin)(x)^{2}}{(\text { the function } \cos)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\tan)-\mathrm{id}_{Z}\right)$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=\left((\right.$ the function $\left.\tan)-\mathrm{id}_{Z}\right)(\sup A)-(($ the function $\left.\tan)-\mathrm{id}_{Z}\right)(\inf A)$.
(34) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{(\text { the function } \cos)(x)^{2}}{(\text { the function } \sin)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}\left(-\right.$ the function $\left.\cot -\mathrm{id}_{Z}\right)$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=\left(-\right.$ the function $\left.\cot -\mathrm{id}_{Z}\right)(\sup A)-(-$ the function $\cot -$ $\left.\operatorname{id}_{Z}\right)(\inf A)$.
(35) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{1}{x \cdot\left(1+(\text { the function } \ln)(x)^{2}\right)}$ and (the function $\ln)(x)>-1$ and (the function $\ln)(x)<1$,
(iii) $\quad Z \subseteq \operatorname{dom}(($ the function arctan $) \cdot($ the function $\ln))$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function arctan $) \cdot($ the function $\ln))(\sup A)-(($ the function $\arctan) \cdot($ the function $\ln))(\inf A)$.
(36) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=-\frac{1}{x \cdot\left(1+(\text { the function } \ln)(x)^{2}\right)}$ and (the function $\ln)(x)>-1$ and (the function $\ln)(x)<1$,
(iii) $\quad Z \subseteq \operatorname{dom}(($ the function arccot $) \cdot($ the function $\ln))$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function arccot $) \cdot($ the function $\ln))(\sup A)-(($ the function arccot) $\cdot($ the function $\ln))(\inf A)$.
(37) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{a}{\sqrt{1-(a \cdot x+b)^{2}}}$ and $f_{1}(x)=a \cdot x+b$ and $f_{1}(x)>-1$ and $f_{1}(x)<1$,
(iii) $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\arcsin) \cdot f_{1}\right)$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=\left((\right.$ the function $\left.\arcsin) \cdot f_{1}\right)(\sup A)-(($ the function arcsin $)$ - $\left.f_{1}\right)(\inf A)$.
(38) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{a}{\sqrt{1-(a \cdot x+b)^{2}}}$ and $f_{1}(x)=a \cdot x+b$ and $f_{1}(x)>-1$ and $f_{1}(x)<1$,
(iii) $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\arccos) \cdot f_{1}\right)$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=\left(-(\right.$ the function $\left.\arccos) \cdot f_{1}\right)(\sup A)-(-($ the function $\left.\arccos) \cdot f_{1}\right)(\inf A)$.
(39) Suppose that $A \subseteq Z$ and $f_{1}=g-f_{2}$ and $f_{2}=\square^{2}$ and for every x such that $x \in Z$ holds $f(x)=x \cdot\left(1-x^{2}\right)^{-\frac{1}{2}}$ and $g(x)=1$ and $f_{1}(x)>0$ and $Z \subseteq \operatorname{dom}\left(\left(\square^{\frac{1}{2}}\right) \cdot f_{1}\right)$ and $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=$
$\left(-\left(\square^{\frac{1}{2}}\right) \cdot f_{1}\right)(\sup A)-\left(-\left(\square^{\frac{1}{2}}\right) \cdot f_{1}\right)(\inf A)$.
(40) Suppose that $A \subseteq Z$ and $g=f_{1}-f_{2}$ and $f_{2}=\square^{2}$ and for every x such that $x \in Z$ holds $f(x)=x \cdot\left(a^{2}-x^{2}\right)^{-\frac{1}{2}}$ and $f_{1}(x)=a^{2}$ and $g(x)>0$ and $Z \subseteq \operatorname{dom}\left(\left(\square^{\frac{1}{2}}\right) \cdot g\right)$ and $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=$ $\left(-\left(\square^{\frac{1}{2}}\right) \cdot g\right)(\sup A)-\left(-\left(\square^{\frac{1}{2}}\right) \cdot g\right)(\inf A)$.
(41) Suppose that
(i) $A \subseteq Z$,
(ii) $n>0$,
(iii) for every x such that $x \in Z$ holds $f(x)=\frac{(\text { the function } \cos)(x)}{(\text { the function } \sin)(x)^{n+1}}$ and (the function $\sin)(x) \neq 0$,
(iv) $Z \subseteq \operatorname{dom}\left(\left(\square^{n}\right) \cdot \frac{1}{\text { the function sin }}\right)$,
(v) $Z=\operatorname{dom} f$, and
(vi) f is continuous on A.

Then $\int_{A} f(x) d x=\left(\left(-\frac{1}{n}\right)\left(\left(\square^{n}\right) \cdot \frac{1}{\text { the function } \sin }\right)\right)(\sup A)-\left(\left(-\frac{1}{n}\right)\left(\left(\square^{n}\right)\right.\right.$. $\left.\left.\frac{1}{\text { the function } \sin }\right)\right)(\inf A)$.
(42) Suppose that
(i) $A \subseteq Z$,
(ii) $n>0$,
(iii) for every x such that $x \in Z$ holds $f(x)=\frac{(\text { the function } \sin)(x)}{\left(\text { the function cos) }(x)^{n+1}\right.}$ and (the function $\cos)(x) \neq 0$,
(iv) $Z \subseteq \operatorname{dom}\left(\left(\square^{n}\right) \cdot \frac{1}{\text { the function cos }}\right)$,
(v) $Z=\operatorname{dom} f$, and
(vi) f is continuous on A.

Then $\int_{A} f(x) d x=\left(\frac{1}{n}\left(\left(\square^{n}\right) \cdot \frac{1}{\text { the function } \cos }\right)\right)(\sup A)-\left(\frac{1}{n}\left(\left(\square^{n}\right)\right.\right.$. $\left.\frac{1}{\text { the function } \cos }\right)(\inf A)$.
(43) Suppose that $A \subseteq Z$ and $f=\frac{\frac{1}{g_{1}+g_{2}}}{f_{2}}$ and $f_{2}=$ the function arccot and $Z \subseteq]-1,1\left[\right.$ and $g_{2}=\square^{2}$ and for every x such that $x \in Z$ holds $f(x)=\frac{1}{\left(1+x^{2}\right) \cdot(\text { the function arccot)(x) }}$ and $g_{1}(x)=1$ and $f_{2}(x)>0$ and $Z=$ $\operatorname{dom} f$. Then $\int_{A} f(x) d x=(-($ the function $\ln) \cdot($ the function $\operatorname{arccot}))(\sup A)-$ $(-($ the function $\ln) \cdot($ the function arccot $))(\inf A)$.
(44) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq]-1,1[$,
(iii) for every x such that $x \in Z$ holds (the function \arcsin) $(x)>0$ and $f_{1}(x)=1$,
(iv) $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot($ the function $\arcsin))$,
(v) $Z=\operatorname{dom} f$, and
(vi) $\quad f=\frac{1}{\left(\left(\square^{\frac{1}{2}}\right) \cdot\left(f_{1}-\square^{2}\right)\right) \text { (the function arcsin) }}$.

Then $\int_{A} f(x) d x=(($ the function $\ln) \cdot($ the function $\arcsin))(\sup A)-(($ the function $\ln) \cdot($ the function $\arcsin))(\inf A)$.
(45) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq]-1,1[$,
(iii) for every x such that $x \in Z$ holds $f_{1}(x)=1$ and (the function $\left.\arccos \right)(x)>0$,
(iv) $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot($ the function arccos $))$,
(v) $Z=\operatorname{dom} f$, and
(vi) $\quad f=\frac{1}{\left(\left(\square^{\frac{1}{2}}\right) \cdot\left(f_{1}-\square^{2}\right)\right) \text { (the function arccos) }}$.

Then $\int_{A} f(x) d x=(-($ the function $\ln) \cdot($ the function $\arccos))(\sup A)-$
$(-($ the function $\ln) \cdot($ the function $\arccos))(\inf A)$.

References

[1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[2] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
[3] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from \mathbb{R} to \mathbb{R} and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and arccos. Formalized Mathematics, 13(1):73-79, 2005.
[6] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[7] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[8] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot. Formalized Mathematics, 16(2):147-158, 2008, doi:10.2478/v10037-008-0021-3.
[11] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[12] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[14] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
[15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, [18] 1990.
[18] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received November 7, 2009

