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Summary. This article introduces the free magma M (X) constructed on a
set X [6]. Then, we formalize some theorems about M (X): if f is a function from
the set X to a magma N, the free magma M (X) has a unique extension of f to a
morphism of M (X) into N and every magma is isomorphic to a magma generated
by a set X under a set of relators on M(X). In doing it, the article defines the
stable subset under the law of composition of a magma, the submagma, the
equivalence relation compatible with the law of composition and the equivalence
kernel of a function. We also introduce some schemes on the recursive function.

MML identifier: ALGSTR_4, version: 7.11.04 4.130.1076

The terminology and notation used here have been introduced in the following
articles: [19], [12], [7], [2], [14], [4], [8], [9], [17], [15], [1], [3], [10], [5], [20], [21],
[13], [18], [16], and [11].

1. PRELIMINARIES

Let X be a set, let f be a function from N into X, and let n be a natural
number. Observe that f[n is transfinite sequence-like.
Let X, x be sets. The 0-sequence x(x) yielding a finite 0-sequence of X is
defined as follows:
(Def. 1) The O-sequence x (z) = { x, if = is a finite O-sequence of X,
() x, otherwise.
Let X be a non empty set, let f be a function from X% into X, and let ¢ be
a finite 0-sequence of X. Then f(c) is an element of X.
One can prove the following proposition
(1) For all sets X, Y, Z such that Y C the universe of X and Z C the
universe of X holds Y x Z C the universe of X.
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In this article we present several logical schemes. The scheme FuncRecur-
stveUniq deals with a unary functor F yielding a set and functions A, B, and
states that:

A=B
provided the parameters satisfy the following conditions:
e dom A = N and for every natural number n holds A(n) = F(Aln),
and
e dom B = N and for every natural number n holds B(n) = F(B[n).

The scheme FuncRecursiveFxist deals with a unary functor F yielding a set,
and states that:

There exists a function f such that dom f = N and for every
natural number n holds f(n) = F(fIn)
for all values of the parameter.

The scheme FuncRecursiveUniqu2 deals with a non empty set A, a unary
functor F yielding an element of A, and functions B, C from N into A, and
states that:

B=C
provided the parameters meet the following requirements:
e For every element n of N holds B(n) = F(B[n), and
e For every element n of N holds C(n) = F(C|n).

The scheme FuncRecursiveEzist2 deals with a non empty set A and a unary

functor F yielding an element of A, and states that:
There exists a function f from N into A such that for every natural
number n holds f(n) = F(f[n)
for all values of the parameters.
Let f, g be functions. We say that f extends g if and only if:

(Def. 2) domg C dom f and f ~ g.

Let us note that there exists a multiplicative magma which is empty.

2. EQUIVALENCE RELATIONS AND RELATORS

Let M be a multiplicative magma and let R be an equivalence relation of

M. We say that R is compatible if and only if:
(Def. 3) For all elements v, v/, w, w’ of M such that v € [v/]; and w € [w'],
holds v - w € [v" - '] .

Let M be a multiplicative magma. Observe that Vine carrier of M 1S compa-
tible.

Let M be a multiplicative magma. Observe that there exists an equivalence
relation of M which is compatible.

One can prove the following proposition
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(2) Let M be a multiplicative magma and R be an equivalence relation of
M. Then R is compatible if and only if for all elements v, v/, w, w’ of M
such that [v], = [V']g and [w]z = [W]z holds [v - w]p = [V - W']p.
Let M be a multiplicative magma and let R be a compatible equivalence
relation of M. The functor op yielding a binary operation on Classes R is defined
as follows:

(Def. 4)(i)  For all elements x, y of Classes R and for all elements v, w of M such
that © = [v]p and y = [w]p holds (og)(z, y) = [v - w]p if M is non empty,
(ii) or =0, otherwise.
Let M be a multiplicative magma and let R be a compatible equivalence
relation of M. The functor ™/ yielding a multiplicative magma is defined as
follows:

(Def. 5) M /p = (Classes R, oR).

Let M be a multiplicative magma and let R be a compatible equivalence
relation of M. Observe that M /g is strict.

Let M be a non empty multiplicative magma and let R be a compatible
equivalence relation of M. One can check that M /R is non empty.

Let M be a non empty multiplicative magma and let R be a compatible
equivalence relation of M. The canonical homomorphism onto cosets of R yields
a function from M into ™ /g and is defined by:

(Def. 6) For every element v of M holds (the canonical homomorphism onto
cosets of R)(v) = [v]p.

Let M be a non empty multiplicative magma and let R be a compatible
equivalence relation of M. Note that the canonical homomorphism onto cosets
of R is multiplicative.

Let M be a non empty multiplicative magma and let R be a compatible
equivalence relation of M. Note that the canonical homomorphism onto cosets
of R is onto.

Let M be a multiplicative magma. A function is called a relators of M if:

(Def. 7) rngit C (the carrier of M) x (the carrier of M).

Let M be a multiplicative magma and let r be a relators of M. The equ-
ivalence relation of r yielding an equivalence relation of M is defined by the
condition (Def. 8).

(Def. 8) The equivalence relation of r = ({R; R ranges over compatible equiva-
lence relations of M: A;..t A i € domr A r(i) = (v,
w) = v € wlp)}

Next we state the proposition

v,w: element of M (

(3) Let M be a multiplicative magma, r be a relators of M, and R be a
compatible equivalence relation of M. Suppose that for every set i and
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for all elements v, w of M such that i € domr and r(i) = (v, w) holds
v € [w]p. Then the equivalence relation of r C R.
Let M be a multiplicative magma and let r» be a relators of M. Note that
the equivalence relation of r is compatible.
Let X, Y be sets and let f be a function from X into Y. The equivalence
kernel of f yielding an equivalence relation of X is defined as follows:
(Def. 9) For all sets x, y holds (z, y) € the equivalence kernel of f iff x, y € X
and f(z) = f(y).
In the sequel M, N are non empty multiplicative magmas and f is a function
from M into N.
The following propositions are true:
(4) If f is multiplicative, then the equivalence kernel of f is compatible.
(5) Suppose f is multiplicative. Then there exists a relators r of M such
that the equivalence kernel of f = the equivalence relation of r.

3. SUBMAGMAS AND STABLE SUBSETS

Let M be a multiplicative magma. A multiplicative magma is said to be a
submagma of M if it satisfies the conditions (Def. 10).

(Def. 10)(i)  The carrier of it C the carrier of M, and
(ii)  the multiplication of it = (the multiplication of M) [ (the carrier of it).
Let M be a multiplicative magma. One can check that there exists a sub-
magma of M which is strict.
Let M be a non empty multiplicative magma. Note that there exists a sub-
magma of M which is non empty.
In the sequel M denotes a multiplicative magma and N, K denote submag-
mas of M.
One can prove the following propositions:
(6) Suppose N is a submagma of K and K is a submagma of N. Then the
multiplicative magma of N = the multiplicative magma of K.
(7) Suppose the carrier of N = the carrier of M. Then the multiplicative
magma of N = the multiplicative magma of M.

Let M be a multiplicative magma and let A be a subset of M. We say that
A is stable if and only if:

(Def. 11) For all elements v, w of M such that v, w € A holds v - w € A.

Let M be a multiplicative magma. One can check that there exists a subset
of M which is stable.
We now state the proposition

(8) The carrier of N is a stable subset of M.
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Let M be a multiplicative magma and let N be a submagma of M. Note
that the carrier of N is stable.

We now state the proposition

(9) Let F be a function. Suppose that for every set i such that i € dom F
holds F'(i) is a stable subset of M. Then () F' is a stable subset of M.

For simplicity, we adopt the following convention: M, N are non empty
multiplicative magmas, A is a subset of M, f, g are functions from M into N,
X is a stable subset of M, and Y is a stable subset of V.

Next we state four propositions:

(10) Aisstableiff A- A C A.

(11) If f is multiplicative, then f°X is a stable subset of N.

(12) If f is multiplicative, then f~1(Y) is a stable subset of M.

(13) If f is multiplicative and ¢ is multiplicative, then {v € M: f(v) = g(v)}
is a stable subset of M.

Let M be a multiplicative magma and let A be a stable subset of M. The
multiplication induced by A yields a binary operation on A and is defined by:

(Def. 12) The multiplication induced by A = (the multiplication of M) | A.

Let M be a multiplicative magma and let A be a subset of M. The submagma,
generated by A yielding a strict submagma of M is defined by the conditions
(Def. 13).

(Def. 13)(i) A C the carrier of the submagma generated by A, and
(ii)  for every strict submagma N of M such that A C the carrier of N
holds the submagma generated by A is a submagma of N.
We now state the proposition
(14) Let M be a multiplicative magma and A be a subset of M. Then A is
empty if and only if the submagma generated by A is empty.

Let M be a multiplicative magma and let A be an empty subset of M. Note
that the submagma generated by A is empty.

The following proposition is true

(15) Let M, N be non empty multiplicative magmas, f be a function from M
into N, and X be a subset of M. Suppose f is multiplicative. Then f°(the

carrier of the submagma generated by X) = the carrier of the submagma
generated by f°X.
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4. FREE MAGMAS

Let X be a set. The free magma sequence of X yielding a function from N
into 2the universe of XUN g defined by the conditions (Def. 14).

(Def. 14)(i)  (The free magma sequence of X)(0) = (),
(ii)  (the free magma sequence of X)(1) = X, and
(iii)  for every natural number n such that n > 2 there exists a finite sequence
f1 such that len fi = n — 1 and for every natural number p such that
p>1and p <n—1holds fi(p) = (the free magma sequence of X)(p) x
(the free magma sequence of X )(n — p) and (the free magma sequence of
X)(n) = Udisjoint fi.
Let X be a set and let n be a natural number. The functor M,,(X) is defined
by:
(Def. 15) My(X) = (the free magma sequence of X)(n).

Let X be a non empty set and let n be a non zero natural number. Observe
that My, (X) is non empty.

In the sequel X is a set.

We now state four propositions:

16) Mp(X) = 0.
17) My(X) = X.
18) Ma(X) =X x X x {1}.
19) M3g(X) =X x (X x X x{1}) x {1} UX x X x {1} x X x {2}.
We adopt the following convention: z, y, Y are sets and n, m, p are elements

of N.
One can prove the following propositions:

(20) Suppose n > 2. Then there exists a finite sequence f; such that len f; =
n—1 and for every p such that p > 1 and p < n—1 holds fi(p) = Mp(X) x
M, _rp(X) and M, (X) = Jdisjoint fi.

(21) Suppose n > 2 and x € M,(X). Then there exist p, m such that z2 =p
and 1 <p <n—1and (z1)1 € Mp(X) and (z1)2 € Mn(X) and n = p+m
and z € Mp(X) x My, (X) x {p}.

(22) If x € My(X) and y € My, (X), then ({x, y), n) € Mptm(X).
(23) If X CY, then M,(X) C M,(Y).
Let X be a set. The carrier of free magma on X is defined as follows:
(Def. 16) The carrier of free magma on X = Jdisjoint((the free magma sequence
of X)INT).
One can prove the following proposition
(24) X = 0 iff the carrier of free magma on X = ().
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Let X be an empty set. Observe that the carrier of free magma on X is
empty.
Let X be a non empty set. One can verify that the carrier of free magma
on X is non empty. Let w be an element of the carrier of free magma on X.
Observe that ws is non zero and natural.
We now state four propositions:
(25) For every non empty set X and for every element w of the carrier of free
magma on X holds w € My, (X) x {wz}.
(26) Let X be a non empty set and v, w be elements of the carrier of free
magma on X. Then (({v1, w1), v2), va + wsz) is an element of the carrier
of free magma on X.
(27) If X C Y, then the carrier of free magma on X C the carrier of free
magma on Y.

(28) If n >0, then M,(X) x {n} C the carrier of free magma on X.

Let X be a set. The multiplication of free magma on X yields a binary
operation on the carrier of free magma on X and is defined as follows:

(Def. 17)(i)  For all elements v, w of the carrier of free magma on X and for all n,
m such that n = vg and m = wa holds (the multiplication of free magma
on X)(v, w) = ({{v1, w1), v2), n+m) if X is non empty,

(ii)  the multiplication of free magma on X = (), otherwise.
Let X be a set. The functor M(X) yields a multiplicative magma and is
defined by:

(Def. 18) M(X) = (the carrier of free magma on X, the multiplication of free
magma on X).

Let X be a set. Note that M(X) is strict.

Let X be an empty set. One can verify that M(X) is empty.

Let X be a non empty set. Note that M(X) is non empty. Let w be an
element of M(X). One can verify that wg is non zero and natural.

The following proposition is true

(29) For every set X and for every subset S of X holds M(S) is a submagma
of M(X).

Let X be a set and let w be an element of M(X). The functor length w yields

a natural number and is defined by:

e 19) 1= f 2 X0 o et
One can prove the following proposition

(30) X = {w1;w ranges over elements of M(X): lengthw = 1}.
In the sequel v, v1, ve, w, wi, we denote elements of M(X).
One can prove the following propositions:
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(31) If X is non empty, then v - w = ({{v1, w1), va), length v + length w).
(32) If X is non empty, then v = (v1, v2) and lengthv > 1.

(33) length(v - w) = length v + length w.

(34) If lengthw > 2, then there exist wi, wy such that w = wy - we and

length w; < lengthw and length wy < length w.
(35) If v1 - v9 = wy - wa, then v1 = wy and vy = wo.
Let X be a set and let n be a natural number. The n-canonical image of X
yields a function from M, (X) into M(X) and is defined as follows:

(Def. 20)(i)  For every z such that z € dom (the n-canonical image of X) holds
(the m-canonical image of X)(z) = (z, n) if n > 0,
(i)  the n-canonical image of X = (), otherwise.
Let X be a set and let n be a natural number. Observe that the n-canonical
image of X is one-to-one.
Let X be a non empty set. Observe that the 1-canonical image of X
In the sequel X, Y, Z are non empty sets.
Next we state three propositions:

(36) For every subset A of M(X) such that A = (the 1-canonical image of
X)°X holds M(X) = the submagma generated by A.

(37) Let R be a compatible equivalence relation of M(X). Then M(X)/ R =
the submagma generated by (the canonical homomorphism onto cosets of
R)°(the 1-canonical image of X)°X.

(38) For every function f from X into Y holds (the 1-canonical image of Y)- f
is a function from X into M(Y).

Let X be a non empty set, let M be a non empty multiplicative magma, let
n, m be non zero natural numbers, let f be a function from M, (X) into M, and
let g be a function from M, (X) into M. The functor f x g yielding a function
from My (X) X My (X) x {n} into M is defined by the condition (Def. 21).

(Def. 21) Let x be an element of My (X) x My (X) x {n}, y be an element of
M, (X), and z be an element of My, (X). If y = (1)1 and z = (x1)2, then
(f xg)(x) = fy) - 9(2).
In the sequel M is a non empty multiplicative magma.
One can prove the following propositions:

(39) Let f be a function from X into M. Then there exists a function h
from M(X) into M such that h is multiplicative and h extends f - (the
I-canonical image of X)~!.

(40) Let f be a function from X into M and h, g be functions from M(X)
into M. Suppose that

(i) h is multiplicative,
(i)  h extends f - (the 1-canonical image of X)~!,

(iii) ¢ is multiplicative, and
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(iv) g extends f - (the 1-canonical image of X)~!.
Then h = g.

For simplicity, we adopt the following rules: M, N are non empty multipli-
cative magmas, f is a function from M into N, H is a non empty submagma of
N, and R is a compatible equivalence relation of M.

We now state three propositions:

(41) Suppose f is multiplicative and the carrier of H = rng f and R = the
equivalence kernel of f. Then there exists a function g from ™ /g into H
such that f = g - the canonical homomorphism onto cosets of R and g is
bijective and multiplicative.

(42) Let g1, g2 be functions from ™/ into N. Suppose g; - the canonical
homomorphism onto cosets of R = go - the canonical homomorphism onto
cosets of R. Then g1 = go.

(43) Let M be a non empty multiplicative magma. Then there exists a non
empty set X and there exists a relators r of M(X) such that there exists a
function from M(X) /the equivalence relation of » ilto M which is bijective and
multiplicative.

Let X, Y be non empty sets and let f be a function from X into Y. The
functor M(f) yields a function from M(X) into M(Y") and is defined by:

(Def. 22) M(f) is multiplicative and M(f) extends (the 1-canonical image of Y) -
f - (the 1-canonical image of X)~ 1.

Let X, Y be non empty sets and let f be a function from X into Y. One
can verify that M(f) is multiplicative.

In the sequel f denotes a function from X into Y and ¢ denotes a function
from Y into Z.

Next we state several propositions:

(44) Mg - f) = M(g) - M(/)-

(45) For every function g from X into Z such that Y C Z and f = g holds
M(f) = M(9)-

(46) M(idx) = iddom m(s)-

(47) If f is one-to-one, then M(f) is one-to-one.

(48) If f is onto, then M(f) is onto.
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