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Summary. In this article, we defined complex curve and complex integral.
Then we have proved the linearity for the complex integral. Furthermore, we have
proved complex integral of complex curve’s connection is the sum of each complex
integral of individual complex curve.
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The terminology and notation used here are introduced in the following articles:
[10], [2], [14], [11], [12], [3], [4], [1], [7], [15], [5], [13], [8], [17], [9], [16], and [6].

1. The Definition of Complex Curve and Complex Integral

In this paper t is an element of R.
The function R2 → C from R× R into C is defined as follows:

(Def. 1) For every element p of R × R and for all elements a, b of R such that
a = p1 and b = p2 holds (R2 → C)(〈〈a, b〉〉) = a+ b · i.

Let a, b be real numbers, let x, y be partial functions from R to R, let Z
be a subset of R, and let f be a partial function from C to C. The functor∫

(f, x, y, a, b, Z) yielding a complex number is defined by the condition (Def. 2).

1This work has been partially supported by the MEXT grant Grant-in-Aid for Young
Scientists (B)16700156.

233
c© 2009 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://fm.mizar.org/miz/integr1c.miz
http://ftp.mizar.org/


234 masahiko yamazaki et al.

(Def. 2) There exist partial functions u0, v0 from R to R such that u0 = <(f) ·
(R2 → C) · 〈x, y〉 and v0 = =(f) · (R2 → C) · 〈x, y〉 and

∫
(f, x, y, a, b, Z) =

b∫
a

(u0 x′�Z − v0 y′�Z)(x)dx+
b∫
a

(v0 x′�Z + u0 y
′
�Z)(x)dx · i.

Let C be a partial function from R to C. We say that C is C1-curve-like if
and only if the condition (Def. 3) is satisfied.

(Def. 3) There exist real numbers a, b and there exist partial functions x, y from
R to R and there exists a subset Z of R such that
a ≤ b and [a, b] = domC and [a, b] ⊆ domx and [a, b] ⊆ dom y and Z is
open and [a, b] ⊆ Z and x is differentiable on Z and y is differentiable on Z
and x is continuous on Z and y is continuous on Z and C = (x+ i y)�[a, b].

Let us observe that there exists a partial function from R to C which is
C1-curve-like.

A C1-curve is a C1-curve-like partial function from R to C.
Let f be a partial function from C to C and let C be a C1-curve. Let us

assume that rngC ⊆ dom f. The functor
∫
C

f(x)dx yields a complex number

and is defined by the condition (Def. 4).

(Def. 4) There exist real numbers a, b and there exist partial functions x, y from
R to R and there exists a subset Z of R such that
a ≤ b and [a, b] = domC and [a, b] ⊆ domx and [a, b] ⊆ dom y and Z is
open and [a, b] ⊆ Z and x is differentiable on Z and y is differentiable on Z
and x is continuous on Z and y is continuous on Z and C = (x+ i y)�[a, b]

and
∫
C

f(x)dx =
∫

(f, x, y, a, b, Z).

Let f be a partial function from C to C and let C be a C1-curve. We say
that f is integrable on C if and only if the condition (Def. 5) is satisfied.

(Def. 5) Let a, b be real numbers, x, y be partial functions from R to R, Z be
a subset of R, and u0, v0 be partial functions from R to R. Suppose that
a ≤ b and [a, b] = domC and [a, b] ⊆ domx and [a, b] ⊆ dom y and Z is
open and [a, b] ⊆ Z and x is differentiable on Z and y is differentiable on Z
and x is continuous on Z and y is continuous on Z and C = (x+ i y)�[a, b].
Then u0 x′�Z−v0 y′�Z is integrable on [a, b] and v0 x′�Z +u0 y

′
�Z is integrable

on [a, b].

Let f be a partial function from C to C and let C be a C1-curve. We say
that f is bounded on C if and only if the condition (Def. 6) is satisfied.

(Def. 6) Let a, b be real numbers, x, y be partial functions from R to R, Z be a
subset of R, and u0, v0 be partial functions from R to R. Suppose that a ≤ b
and [a, b] = domC and [a, b] ⊆ domx and [a, b] ⊆ dom y and Z is open and
[a, b] ⊆ Z and x is differentiable on Z and y is differentiable on Z and x is



complex integral 235

continuous on Z and y is continuous on Z and C = (x + i y)�[a, b]. Then
(u0 x′�Z − v0 y′�Z)�[a, b] is bounded and (v0 x′�Z + u0 y

′
�Z)�[a, b] is bounded.

2. Linearity of Complex Intergal

Next we state two propositions:

(1) Let f , g be partial functions from C to C and C be a C1-curve. Suppose
rngC ⊆ dom f and rngC ⊆ dom g and f is integrable on C and g is
integrable on C and f is bounded on C and g is bounded on C. Then∫
C

(f + g)(x)dx =
∫
C

f(x)dx+
∫
C

g(x)dx.

(2) Let f be a partial function from C to C and C be a C1-curve. Suppose
rngC ⊆ dom f and f is integrable on C and f is bounded on C. Let r be

a real number. Then
∫
C

(r f)(x)dx = r ·
∫
C

f(x)dx.

3. Complex Integral of Complex Curve’s Connection

We now state the proposition

(3) Let f be a partial function from C to C, C, C1, C2 be C1-curves, and a,
b, d be real numbers. Suppose that rngC ⊆ dom f and f is integrable on
C and f is bounded on C and a ≤ b and domC = [a, b] and d ∈ [a, b] and
domC1 = [a, d] and domC2 = [d, b] and for every t such that t ∈ domC1
holds C(t) = C1(t) and for every t such that t ∈ domC2 holds C(t) =

C2(t). Then
∫
C

f(x)dx =
∫
C1

f(x)dx+
∫
C2

f(x)dx.
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