Small Inductive Dimension of Topological Spaces

Karol Pąk
Institute of Computer Science
University of Białystok
Poland

Abstract

Summary. We present the concept and basic properties of the MengerUrysohn small inductive dimension of topological spaces according to the books [7]. Namely, the paper includes the formalization of main theorems from Sections 1.1 and 1.2.

MML identifier: TOPDIM_1, version: $\underline{7.11 .044 .130 .1076}$

The terminology and notation used here are introduced in the following articles: [17], [8], [15], [5], [16], [6], [18], [14], [1], [2], [3], [13], [11], [9], [12], [19], [20], [10], and [4].

1. Preliminaries

For simplicity, we adopt the following rules: T, T_{1}, T_{2} denote topological spaces, A, B denote subsets of T, F denotes a subset of $T \upharpoonright A, G, G_{1}, G_{2}$ denote families of subsets of T, U, W denote open subsets of $T\lceil A, p$ denotes a point of $T \upharpoonright A, n$ denotes a natural number, and I denotes an integer.

One can prove the following propositions:
(1) $\operatorname{Fr}(B \cap A) \subseteq \operatorname{Fr} B \cap A$.
(2) $\quad T$ is a T_{4} space if and only if for all closed subsets A, B of T such that A misses B there exist open subsets U, W of T such that $A \subseteq U$ and $B \subseteq W$ and \bar{U} misses \bar{W}.
Let us consider T. The sequence of ind of T yields a sequence of subsets of $2^{\text {the carrier of } T}$ and is defined by the conditions (Def. 1).
(Def. 1)(i) (The sequence of ind of $T)(0)=\left\{\emptyset_{T}\right\}$, and
(ii) $\quad A \in$ (the sequence of ind of $T)(n+1)$ iff $A \in$ (the sequence of ind of $T)(n)$ or for all p, U such that $p \in U$ there exists W such that $p \in W$ and $W \subseteq U$ and $\operatorname{Fr} W \in($ the sequence of ind of $T)(n)$.
Let us consider T. Note that the sequence of ind of T is ascending.
We now state the proposition
(3) For every F such that $F=B$ holds $F \in($ the sequence of ind of $T \upharpoonright A)(n)$ iff $B \in($ the sequence of ind of $T)(n)$.
Let us consider T, A. We say that A has finite small inductive dimension if and only if:
(Def. 2) There exists n such that $A \in($ the sequence of ind of $T)(n)$.
Let us consider T, A. We introduce A is finite-ind as a synonym of A has finite small inductive dimension.

Let us consider T, G. We say that G has finite small inductive dimension if and only if:
(Def. 3) There exists n such that $G \subseteq$ (the sequence of ind of $T)(n)$.
Let us consider T, G. We introduce G is finite-ind as a synonym of G has finite small inductive dimension.

The following proposition is true
(4) If $A \in G$ and G is finite-ind, then A is finite-ind.

Let us consider T. One can check the following observations:

* every subset of T which is finite is also finite-ind,
* there exists a subset of T which is finite-ind,
* every family of subsets of T which is empty is also finite-ind, and
* there exists a family of subsets of T which is non empty and finite-ind.

Let T be a non empty topological space. One can check that there exists a subset of T which is non empty and finite-ind.

Let us consider T. We say that T has finite small inductive dimension if and only if:
(Def. 4) Ω_{T} has finite small inductive dimension.
Let us consider T. We introduce T is finite-ind as a synonym of T has finite small inductive dimension.

One can verify that every topological space which is empty is also finite-ind.
Let X be a set. Note that $\{X\}_{\text {top }}$ is finite-ind.
One can check that there exists a topological space which is non empty and finite-ind.

In the sequel A_{1} is a finite-ind subset of T and T_{3} is a finite-ind topological space.

2. Small Inductive Dimension

Let us consider T and let us consider A. Let us assume that A is finite-ind. The functor ind A yields an integer and is defined as follows:
(Def. 5) $A \in($ the sequence of ind of $T)($ ind $A+1)$ and $A \notin$ (the sequence of ind of $T)(\operatorname{ind} A)$.
We now state two propositions:
(5) $-1 \leq$ ind A_{1}.
(6) ind $A_{1}=-1$ iff A_{1} is empty.

Let T be a non empty topological space and let A be a non empty finite-ind subset of T. Observe that ind A is natural.

The following three propositions are true:
(7) ind $A_{1} \leq n-1$ iff $A_{1} \in$ (the sequence of ind of $\left.T\right)(n)$.
(8) For every finite subset A of T holds ind $A<\overline{\bar{A}}$.
(9) ind $A_{1} \leq n$ if and only if for every point p of $T \upharpoonright A_{1}$ and for every open subset U of $T \upharpoonright A_{1}$ such that $p \in U$ there exists an open subset W of $T \upharpoonright A_{1}$ such that $p \in W$ and $W \subseteq U$ and $\operatorname{Fr} W$ is finite-ind and ind $\operatorname{Fr} W \leq n-1$.
Let us consider T and let us consider G. Let us assume that G is finite-ind. The functor ind G yielding an integer is defined by the conditions (Def. 6).
(Def. 6)(i) $G \subseteq($ the sequence of ind of $T)($ ind $G+1)$,
(ii) $-1 \leq$ ind G, and
(iii) for every integer i such that $-1 \leq i$ and $G \subseteq$ (the sequence of ind of $T)(i+1)$ holds ind $G \leq i$.
The following propositions are true:
(10) ind $G=-1$ and G is finite-ind iff $G \subseteq\left\{\emptyset_{T}\right\}$.
(11) G is finite-ind and ind $G \leq I$ iff $-1 \leq I$ and for every A such that $A \in G$ holds A is finite-ind and ind $A \leq I$.
(12) If G_{1} is finite-ind and $G_{2} \subseteq G_{1}$, then G_{2} is finite-ind and ind $G_{2} \leq \operatorname{ind} G_{1}$.

Let us consider T and let G_{1}, G_{2} be finite-ind families of subsets of T. Observe that $G_{1} \cup G_{2}$ is finite-ind.

The following proposition is true
(13) If G is finite-ind and G_{1} is finite-ind and ind $G \leq I$ and ind $G_{1} \leq I$, then $\operatorname{ind}\left(G \cup G_{1}\right) \leq I$.
Let us consider T. The functor ind T yields an integer and is defined as follows:
(Def. 7) $\quad \operatorname{ind} T=\operatorname{ind}\left(\Omega_{T}\right)$.
Let T be a non empty finite-ind topological space. One can verify that ind T is natural.

The following three propositions are true:
(14) For every non empty set X holds $\operatorname{ind}\left(\{X\}_{\text {top }}\right)=0$.
(15) Given n such that let p be a point of T and U be an open subset of T. Suppose $p \in U$. Then there exists an open subset W of T such that $p \in W$ and $W \subseteq U$ and $\operatorname{Fr} W$ is finite-ind and ind $\operatorname{Fr} W \leq n-1$. Then T is finite-ind.
(16) ind $T_{3} \leq n$ if and only if for every point p of T_{3} and for every open subset U of T_{3} such that $p \in U$ there exists an open subset W of T_{3} such that $p \in W$ and $W \subseteq U$ and $\operatorname{Fr} W$ is finite-ind and ind $\operatorname{Fr} W \leq n-1$.

3. Monotonicity of the Small Inductive Dimension

Let us consider T_{3}. Observe that every subset of T_{3} is finite-ind.
Let us consider T, A_{1}. Note that $T \upharpoonright A_{1}$ is finite-ind.
One can prove the following propositions:
(17) $\quad \operatorname{ind}\left(T \upharpoonright A_{1}\right)=\operatorname{ind} A_{1}$.
(18) If $T \upharpoonright A$ is finite-ind, then A is finite-ind.
(19) If $A \subseteq A_{1}$, then A is finite-ind and ind $A \leq \operatorname{ind} A_{1}$.
(20) For every subset A of T_{3} holds ind $A \leq \operatorname{ind} T_{3}$.
(21) If $F=B$ and B is finite-ind, then F is finite-ind and ind $F=\operatorname{ind} B$.
(22) If $F=B$ and F is finite-ind, then B is finite-ind and ind $F=\operatorname{ind} B$.
(23) Let T be a non empty topological space. Suppose T is a T_{3} space. Then T is finite-ind and ind $T \leq n$ if and only if for every closed subset A of T and for every point p of T such that $p \notin A$ there exists a subset L of T such that L separates $\{p\}, A$ and L is finite-ind and ind $L \leq n-1$.
(24) If T_{1} and T_{2} are homeomorphic, then T_{1} is finite-ind iff T_{2} is finite-ind.
(25) If T_{1} and T_{2} are homeomorphic and T_{1} is finite-ind, then $\operatorname{ind} T_{1}=\operatorname{ind} T_{2}$.
(26) Let A_{2} be a subset of T_{1} and A_{3} be a subset of T_{2}. Suppose A_{2} and A_{3} are homeomorphic. Then A_{2} is finite-ind if and only if A_{3} is finite-ind.
(27) Let A_{2} be a subset of T_{1} and A_{3} be a subset of T_{2}. If A_{2} and A_{3} are homeomorphic and A_{2} is finite-ind, then ind $A_{2}=\operatorname{ind} A_{3}$.
(28) If $T_{1} \times T_{2}$ is finite-ind, then $T_{2} \times T_{1}$ is finite-ind and $\operatorname{ind}\left(T_{1} \times T_{2}\right)=\operatorname{ind}\left(T_{2} \times\right.$ $\left.T_{1}\right)$.
(29) For every family G_{3} of subsets of $T \upharpoonright A$ such that G_{3} is finite-ind and $G_{3}=G$ holds G is finite-ind and ind $G=\operatorname{ind} G_{3}$.
(30) For every family G_{3} of subsets of $T \upharpoonright A$ such that G is finite-ind and $G_{3}=G$ holds G_{3} is finite-ind and ind $G=\operatorname{ind} G_{3}$.

4. Basic Properties 0-dimensional Topological Spaces

Next we state several propositions:
(31) T is finite-ind and ind $T \leq n$ if and only if there exists a basis B_{1} of T such that for every A such that $A \in B_{1}$ holds $\operatorname{Fr} A$ is finite-ind and ind $\operatorname{Fr} A \leq n-1$.
(32) Let given T. Suppose that
(i) T is a T_{1} space, and
(ii) for all closed subsets A, B of T such that A misses B there exist closed subsets A^{\prime}, B^{\prime} of T such that A^{\prime} misses B^{\prime} and $A^{\prime} \cup B^{\prime}=\Omega_{T}$ and $A \subseteq A^{\prime}$ and $B \subseteq B^{\prime}$.
Then T is finite-ind and ind $T \leq 0$.
(33) Let X be a set and f be a sequence of subsets of X. Then there exists a sequence g of subsets of X such that
(i) $\bigcup \operatorname{rng} f=\bigcup \operatorname{rng} g$,
(ii) for all natural numbers i, j such that $i \neq j$ holds $g(i)$ misses $g(j)$, and
(iii) for every n there exists a finite family f_{1} of subsets of X such that $f_{1}=\{f(i) ; i$ ranges over elements of $\mathbb{N}: i<n\}$ and $g(n)=f(n) \backslash \bigcup f_{1}$.
(34) Let given T. Suppose T is finite-ind and ind $T \leq 0$ and T is Lindelöf. Let A, B be closed subsets of T. Suppose A misses B. Then there exist closed subsets A^{\prime}, B^{\prime} of T such that A^{\prime} misses B^{\prime} and $A^{\prime} \cup B^{\prime}=\Omega_{T}$ and $A \subseteq A^{\prime}$ and $B \subseteq B^{\prime}$
(35) Let given T. Suppose T is a T_{1} space and Lindelöf. Then T is finite-ind and ind $T \leq 0$ if and only if for all closed subsets A, B of T such that A misses B holds \emptyset_{T} separates A, B.
(36) Let given T. Suppose that
(i) $\quad T$ is a T_{4} space, a T_{1} space, and Lindelöf, and
(ii) there exists a family F of subsets of T such that F is closed, a cover of T, countable, and finite-ind and ind $F \leq 0$.
Then T is finite-ind and ind $T \leq 0$.
In the sequel T_{4} is a metrizable topological space.
We now state four propositions:
(37) Let A, B be closed subsets of T_{4}. Suppose A misses B. Let N_{1} be a finiteind subset of T_{4}. Suppose ind $N_{1} \leq 0$ and $T_{4} \upharpoonright N_{1}$ is second-countable. Then there exists a subset L of T_{4} such that L separates A, B and L misses N_{1}.
(38) Let N_{1} be a subset of T_{4}. Suppose $T_{4} \upharpoonright N_{1}$ is second-countable. Then N_{1} is finite-ind and ind $N_{1} \leq 0$ if and only if for every point p of T_{4} and for every open subset U of T_{4} such that $p \in U$ there exists an open subset W of T_{4} such that $p \in W$ and $W \subseteq U$ and N_{1} misses $\operatorname{Fr} W$.
(39) Let N_{1} be a subset of T_{4}. Suppose $T_{4} \upharpoonright N_{1}$ is second-countable. Then N_{1} is finite-ind and ind $N_{1} \leq 0$ if and only if there exists a basis B of T_{4} such that for every subset A of T_{4} such that $A \in B$ holds N_{1} misses Fr A.
(40) Let N_{1}, A be subsets of T_{4}. Suppose $T_{4} \upharpoonright N_{1}$ is second-countable and N_{1} is finite-ind and A is finite-ind and ind $N_{1} \leq 0$. Then $A \cup N_{1}$ is finite-ind and $\operatorname{ind}\left(A \cup N_{1}\right) \leq \operatorname{ind} A+1$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[5] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[7] Roman Duda. Wprowadzenie do topologii. PWN, 1986.
[8] Adam Grabowski. Properties of the product of compact topological spaces. Formalized Mathematics, 8(1):55-59, 1999.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.
[11] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[14] Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, $17(\mathbf{3}): 201-205,2009$, doi: 10.2478/v10037-009-0024-8.
[15] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
[16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[17] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received June 29, 2009

