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Summary. In this article, we formalized the measurability of complex-
valued functional sequences. First, we proved the measurability of the limits of
real-valued functional sequences. Next, we defined complex-valued functional se-
quences dividing real part into imaginary part. Then using the former theorems,
we proved the measurability of each part. Lastly, we proved the measurability of
the limits of complex-valued functional sequences. We also showed several proper-
ties of complex-valued measurable functions. In addition, we proved properties
of complex-valued simple functions.

MML identifier: MESFUN7C, version: 7.11.01 4.117.1046

The articles [12], [26], [2], [8], [1], [21], [27], [9], [11], [3], [18], [10], [22], [4], [5],
[17], [23], [20], [28], [6], [7], [16], [14], [24], [19], [25], [15], and [13] provide the
notation and terminology for this paper.

1. Real-Valued Functional Sequences

For simplicity, we adopt the following rules: X is a non empty set, Y is a set,
S is a σ-field of subsets of X, M is a σ-measure on S, f , g are partial functions
from X to C, r is a real number, k is a real number, and E is an element of S.
Let X be a non empty set and let f be a sequence of partial functions from

X into R. The functor R(f) yields a sequence of partial functions from X into
R and is defined by:
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(Def. 1) R(f) = f.
Next we state the proposition

(1) Let X be a non empty set, f be a sequence of partial functions from X
into R, and x be an element of X. Then f#x = R(f)#x.
Let X be a non empty set and let f be a function from X into R. Observe

that R(f) is total.
Let X be a non empty set and let f be a sequence of partial functions from

X into R. The functor inf f yielding a partial function from X to R is defined
by:

(Def. 2) inf f = inf R(f).
One can prove the following proposition

(2) Let X be a non empty set, f be a sequence of partial functions from
X into R, and x be an element of X. If x ∈ dom inf f, then (inf f)(x) =
inf rngR(f#x).
Let X be a non empty set and let f be a sequence of partial functions from

X into R. The functor sup f yielding a partial function from X to R is defined
by:

(Def. 3) sup f = supR(f).
Next we state the proposition

(3) Let X be a non empty set, f be a sequence of partial functions from X
into R, and x be an element of X. If x ∈ dom sup f, then (sup f)(x) =
sup rngR(f#x).
Let X be a non empty set and let f be a sequence of partial functions from

X into R. The inferior real sequence of f yields a sequence of partial functions
from X into R with the same dom and is defined by:
(Def. 4) The inferior real sequence of f = the inferior real sequence of R(f).

Next we state the proposition

(4) Let X be a non empty set, f be a sequence of partial functions from X
into R, and n be a natural number. Then
(i) dom (the inferior real sequence of f)(n) = dom f(0), and
(ii) for every element x of X such that x ∈ dom (the inferior real sequence
of f)(n) holds (the inferior real sequence of f)(n)(x) = (the inferior real
sequence of R(f#x))(n).
Let X be a non empty set and let f be a sequence of partial functions from

X into R. The superior real sequence of f yields a sequence of partial functions
from X into R with the same dom and is defined by:
(Def. 5) The superior real sequence of f = the superior real sequence of R(f).

We now state two propositions:
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(5) Let X be a non empty set, f be a sequence of partial functions from X
into R, and n be a natural number. Then
(i) dom (the superior real sequence of f)(n) = dom f(0), and
(ii) for every element x of X such that x ∈ dom (the superior real sequence
of f)(n) holds (the superior real sequence of f)(n)(x) = (the superior real
sequence of R(f#x))(n).

(6) Let f be a sequence of partial functions from X into R and x be an
element of X. Suppose x ∈ dom f(0). Then (the inferior real sequence of
f)#x = the inferior real sequence of R(f#x).
Let X be a non empty set and let f be a sequence of partial functions from

X into R with the same dom. Observe that R(f) has the same dom.
We now state several propositions:

(7) Let X be a non empty set, f be a sequence of partial functions from
X into R with the same dom, S be a σ-field of subsets of X, E be an
element of S, and n be a natural number. If f(n) is measurable on E,
then (R(f))(n) is measurable on E.

(8) Let X be a non empty set, f be a sequence of partial functions from X
into R, and n be an element of N. Then R(f) ↑ n = R(f ↑ n).

(9) Let f be a sequence of partial functions from X into R with the same
dom and n be an element of N. Then (the inferior real sequence of f)(n) =
inf(f ↑ n).

(10) Let f be a sequence of partial functions from X into R with the same
dom and n be an element of N. Then (the superior real sequence of f)(n) =
sup(f ↑ n).

(11) Let f be a sequence of partial functions from X into R and x be an
element of X. Suppose x ∈ dom f(0). Then (the superior real sequence of
f)#x = the superior real sequence of R(f#x).
Let X be a non empty set and let f be a sequence of partial functions from

X into R. The functor lim inf f yields a partial function from X to R and is
defined as follows:

(Def. 6) lim inf f = lim inf R(f).
Next we state the proposition

(12) Let X be a non empty set, f be a sequence of partial functions from X
into R, and x be an element ofX. If x ∈ dom lim inf f, then (lim inf f)(x) =
lim inf R(f#x).
Let X be a non empty set and let f be a sequence of partial functions from

X into R. The functor lim sup f yields a partial function from X to R and is
defined by:

(Def. 7) lim sup f = lim supR(f).
One can prove the following proposition
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(13) Let X be a non empty set, f be a sequence of partial functions
from X into R, and x be an element of X. If x ∈ dom lim sup f, then
(lim sup f)(x) = lim supR(f#x).
Let X be a non empty set and let f be a sequence of partial functions from

X into R. The functor lim f yielding a partial function from X to R is defined
by:

(Def. 8) lim f = limR(f).
Next we state several propositions:

(14) Let X be a non empty set, f be a sequence of partial functions from
X into R, and x be an element of X. If x ∈ dom lim f, then (lim f)(x) =
limR(f#x).

(15) Let f be a sequence of partial functions from X into R and x be an
element of X. If x ∈ dom lim f and f#x is convergent, then (lim f)(x) =
(lim sup f)(x) and (lim f)(x) = (lim inf f)(x).

(16) Let f be a sequence of partial functions from X into R with the same
dom, F be a sequence of subsets of S, and r be a real number. Suppose that
for every natural number n holds F (n) = dom f(0) ∩ GT-dom(f(n), r).
Then

⋃
rngF = dom f(0) ∩GT-dom(sup f, r).

(17) Let f be a sequence of partial functions from X into R with the same
dom, F be a sequence of subsets of S, and r be a real number. Suppose that
for every natural number n holds F (n) = dom f(0) ∩ GTE-dom(f(n), r).
Then

⋂
rngF = dom f(0) ∩GTE-dom(inf f, r).

(18) Let f be a sequence of partial functions fromX into R with the same dom
and E be an element of S. Suppose dom f(0) = E and for every natural
number n holds f(n) is measurable on E. Then lim sup f is measurable on
E.

(19) Let f be a sequence of partial functions fromX into R with the same dom
and E be an element of S. Suppose dom f(0) = E and for every natural
number n holds f(n) is measurable on E. Then lim inf f is measurable on
E.

(20) Let f be a sequence of partial functions from X into R and x be an
element of X. Suppose x ∈ dom f(0) and f#x is convergent. Then (the
superior real sequence of f)#x is lower bounded.

(21) Let f be a sequence of partial functions from X into R with the same
dom and E be an element of S. Suppose that
(i) dom f(0) = E,
(ii) for every natural number n holds f(n) is measurable on E, and
(iii) for every element x of X such that x ∈ E holds f#x is convergent.
Then lim f is measurable on E.

(22) Let f be a sequence of partial functions from X into R with the same
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dom, g be a partial function from X to R, and E be an element of S.
Suppose that
(i) dom f(0) = E,
(ii) for every natural number n holds f(n) is measurable on E,
(iii) dom g = E, and
(iv) for every element x of X such that x ∈ E holds f#x is convergent and
g(x) = lim(f#x).
Then g is measurable on E.

2. The Measurability of Complex-Valued Functional Sequences

Let X be a non empty set, let H be a sequence of partial functions from
X into C, and let x be an element of X. The functor H#x yields a complex
sequence and is defined by:

(Def. 9) For every natural number n holds (H#x)(n) = H(n)(x).

Let X be a non empty set and let f be a sequence of partial functions from
X into C. The functor lim f yields a partial function from X to C and is defined
as follows:

(Def. 10) dom lim f = dom f(0) and for every element x of X such that x ∈
dom lim f holds (lim f)(x) = lim(f#x).

Let X be a non empty set and let f be a sequence of partial functions from
X into C. The functor <(f) yields a sequence of partial functions from X into
R and is defined by the condition (Def. 11).

(Def. 11) Let n be a natural number. Then dom<(f)(n) = dom f(n) and for
every element x of X such that x ∈ dom<(f)(n) holds <(f)(n)(x) =
<(f#x)(n).
Let X be a non empty set and let f be a sequence of partial functions from

X into C with the same dom. Then <(f) is a sequence of partial functions from
X into R with the same dom.
Let X be a non empty set and let f be a sequence of partial functions from

X into C. The functor =(f) yields a sequence of partial functions from X into
R and is defined by the condition (Def. 12).

(Def. 12) Let n be a natural number. Then dom=(f)(n) = dom f(n) and for
every element x of X such that x ∈ dom=(f)(n) holds =(f)(n)(x) =
=(f#x)(n).
Let X be a non empty set and let f be a sequence of partial functions from

X into C with the same dom. Then =(f) is a sequence of partial functions from
X into R with the same dom.
Next we state several propositions:



94 keiko narita et al.

(23) Let f be a sequence of partial functions from X into C with the same
dom and x be an element of X. If x ∈ dom f(0), then <(f)#x = <(f#x)
and =(f)#x = =(f#x).

(24) Let f be a sequence of partial functions fromX into C and n be a natural
number. Then <(f)(n) = <(f(n)) and =(f)(n) = =(f(n)).

(25) Let f be a sequence of partial functions from X into C with the same
dom. Suppose that for every element x of X such that x ∈ dom f(0) holds
f#x is convergent. Then lim<(f) = <(lim f) and lim=(f) = =(lim f).

(26) Let f be a sequence of partial functions from X into C with the same
dom and E be an element of S. Suppose that
(i) dom f(0) = E,
(ii) for every natural number n holds f(n) is measurable on E, and
(iii) for every element x of X such that x ∈ E holds f#x is convergent.
Then lim f is measurable on E.

(27) Let f be a sequence of partial functions from X into C with the same
dom, g be a partial function from X to C, and E be an element of S.
Suppose that
(i) dom f(0) = E,
(ii) for every natural number n holds f(n) is measurable on E,
(iii) dom g = E, and
(iv) for every element x of X such that x ∈ E holds f#x is convergent and
g(x) = lim(f#x).
Then g is measurable on E.

3. Selected Properties of Complex-Valued Measurable Functions

One can prove the following propositions:

(28) (r f)�Y = r (f�Y ).

(29) If 0 ≤ k and E ⊆ dom f and f is measurable on E, then |f |k is measu-
rable on E.

(30) For all partial functions f , g from X to R holds R(f)R(g) = R(f g).
(31) Let f , g be partial functions from X to R. Suppose dom f ∩ dom g = E
and f is measurable on E and g is measurable on E. Then f g is measurable
on E.

(32) <(f g) = <(f)<(g)−=(f)=(g) and =(f g) = =(f)<(g) + <(f)=(g).
(33) If dom f ∩ dom g = E and f is measurable on E and g is measurable on
E, then f g is measurable on E.

(34) Let f , g be partial functions from X to R. Suppose that
(i) there exists an element E of S such that E = dom f and E = dom g
and f is measurable on E and g is measurable on E,
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(ii) f is non-negative,
(iii) g is non-negative, and
(iv) for every element x of X such that x ∈ dom g holds g(x) ≤ f(x).
Then

∫
g dM ≤

∫
f dM.

(35) Let X be a non empty set, S be a σ-field of subsets of X, M be a
σ-measure on S, and f be a partial function from X to C. Suppose f is
integrable onM . Then there exists an element A of S such that A = dom f
and f is measurable on A and |f | is integrable on M .

(36) Suppose f is integrable on M . Then there exists a function F from N
into S such that
(i) for every natural number n holds F (n) = dom f∩GTE-dom(|f |,R( 1n+1)),
(ii) dom f \ EQ-dom(|f |, 0) =

⋃
rngF, and

(iii) for every natural number n holds F (n) ∈ S and M(F (n)) < +∞.
In the sequel x, A denote sets.
Next we state several propositions:

(37) |f |�A = |f�A|.
(38) dom(|f |+ |g|) = dom f ∩ dom g and dom |f + g| ⊆ dom |f |.
(39) |f |�dom |f + g|+ |g|�dom |f + g| = (|f |+ |g|)�dom |f + g|.
(40) If x ∈ dom |f + g|, then |f + g|(x) ≤ (|f |+ |g|)(x).
(41) Let f , g be partial functions from X to R. If for every set x such that
x ∈ dom f holds f(x) ≤ g(x), then g − f is non-negative.

(42) Suppose f is integrable on M and g is integrable on M . Then there
exists an element E of S such that E = dom(f + g) and

∫
|f + g|�E dM ≤∫

|f |�E dM +
∫
|g|�E dM.

4. Properties of Complex-Valued Simple Functions

Let X be a non empty set, let S be a σ-field of subsets of X, and let f be a
partial function from X to C. We say that f is simple function in S if and only
if the condition (Def. 13) is satisfied.

(Def. 13) There exists a finite sequence F of separated subsets of S such that
(i) dom f =

⋃
rngF, and

(ii) for every natural number n and for all elements x, y of X such that
n ∈ domF and x, y ∈ F (n) holds f(x) = f(y).
Let X be a non empty set, let S be a σ-field of subsets of X, let f be a

partial function from X to R, let F be a finite sequence of separated subsets
of S, and let a be a finite sequence of elements of R. We say that F and a are
representation of f if and only if the conditions (Def. 14) are satisfied.

(Def. 14)(i) dom f =
⋃
rngF,

(ii) domF = dom a, and
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(iii) for every natural number n such that n ∈ domF and for every set x
such that x ∈ F (n) holds f(x) = a(n).
Let us consider X, S, f , let F be a finite sequence of separated subsets of

S, and let a be a finite sequence of elements of C. We say that F and a are
representation of f if and only if the conditions (Def. 15) are satisfied.

(Def. 15)(i) dom f =
⋃
rngF,

(ii) domF = dom a, and
(iii) for every natural number n such that n ∈ domF and for every set x
such that x ∈ F (n) holds f(x) = a(n).
One can prove the following three propositions:

(43) f is simple function in S if and only if <(f) is simple function in S and
=(f) is simple function in S.

(44) Suppose f is simple function in S. Then there exists a finite sequence F
of separated subsets of S and there exists a finite sequence a of elements
of C such that
(i) dom f =

⋃
rngF,

(ii) domF = dom a, and
(iii) for every natural number n such that n ∈ domF and for every set x
such that x ∈ F (n) holds f(x) = a(n).

(45) f is simple function in S if and only if there exists a finite sequence F
of separated subsets of S and there exists a finite sequence a of elements
of C such that F and a are representation of f .

In the sequel c denotes a finite sequence of elements of C.
One can prove the following four propositions:

(46) For every natural number n such that n ∈ dom<(c) holds <(c)(n) =
<(c(n)).

(47) For every natural number n such that n ∈ dom=(c) holds =(c)(n) =
=(c(n)).

(48) Let F be a finite sequence of separated subsets of S and a be a finite
sequence of elements of C. Then F and a are representation of f if and only
if F and <(a) are representation of <(f) and F and =(a) are representation
of =(f).

(49) f is simple function in S if and only if there exists a finite sequence F of
separated subsets of S and there exists a finite sequence c of elements of
C such that dom f =

⋃
rngF and domF = dom c and for every natural

number n such that n ∈ domF and for every set x such that x ∈ F (n)
holds <(f)(x) = <(c)(n) and for every natural number n such that n ∈
domF and for every set x such that x ∈ F (n) holds =(f)(x) = =(c)(n).
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