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Summary. In this article we define second-order partial differentiation of
real binary functions and discuss the relation of second-order partial derivatives
and partial derivatives defined in [17].
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The articles [15], [3], [4], [16], [5], [10], [1], [8], [11], [9], [2], [14], [6], [13], [12],
[7], and [17] provide the notation and terminology for this paper.

1. Second-Order Partial Derivatives

For simplicity, we adopt the following convention: x, x0, y, y0, r are real
numbers, z, z0 are elements of R2, f , f1, f2 are partial functions from R2 to R,
R is a rest, and L is a linear function.
Let us note that every rest is total.
Let f be a partial function from R2 to R and let z be an element of R2. The

functor pdiff1(f, z) yielding a function from R2 into R is defined as follows:
(Def. 1) For every z such that z ∈ R2 holds (pdiff1(f, z))(z) = partdiff1(f, z).
The functor pdiff2(f, z) yields a function from R2 into R and is defined as
follows:
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(Def. 2) For every z such that z ∈ R2 holds (pdiff2(f, z))(z) = partdiff2(f, z).
Let f be a partial function from R2 to R and let z be an element of R2. We

say that f is partial differentiable on 1st-1st coordinate in z if and only if the
condition (Def. 3) is satisfied.

(Def. 3) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of x0 such that N ⊆
domSVF1(pdiff1(f, z), z) and there exist L, R such that for every x such
that x ∈ N holds (SVF1(pdiff1(f, z), z))(x)−(SVF1(pdiff1(f, z), z))(x0) =
L(x− x0) +R(x− x0).

We say that f is partial differentiable on 1st-2nd coordinate in z if and only if
the condition (Def. 4) is satisfied.

(Def. 4) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of y0 such that N ⊆
domSVF2(pdiff1(f, z), z) and there exist L, R such that for every y such
that y ∈ N holds (SVF2(pdiff1(f, z), z))(y)−(SVF2(pdiff1(f, z), z))(y0) =
L(y − y0) +R(y − y0).

We say that f is partial differentiable on 2nd-1st coordinate in z if and only if
the condition (Def. 5) is satisfied.

(Def. 5) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of x0 such that N ⊆
domSVF1(pdiff2(f, z), z) and there exist L, R such that for every x such
that x ∈ N holds (SVF1(pdiff2(f, z), z))(x)−(SVF1(pdiff2(f, z), z))(x0) =
L(x− x0) +R(x− x0).

We say that f is partial differentiable on 2nd-2nd coordinate in z if and only if
the condition (Def. 6) is satisfied.

(Def. 6) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of y0 such that N ⊆
domSVF2(pdiff2(f, z), z) and there exist L, R such that for every y such
that y ∈ N holds (SVF2(pdiff2(f, z), z))(y)−(SVF2(pdiff2(f, z), z))(y0) =
L(y − y0) +R(y − y0).
Let f be a partial function from R2 to R and let z be an element of R2. Let

us assume that f is partial differentiable on 1st-1st coordinate in z. The functor
hpartdiff11(f, z) yields a real number and is defined by the condition (Def. 7).

(Def. 7) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
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(ii) there exists a neighbourhood N of x0 such that N ⊆
domSVF1(pdiff1(f, z), z) and there exist L,R such that hpartdiff11(f, z) =
L(1) and for every x such that x ∈ N holds (SVF1(pdiff1(f, z), z))(x) −
(SVF1(pdiff1(f, z), z))(x0) = L(x− x0) +R(x− x0).
Let f be a partial function from R2 to R and let z be an element of R2. Let

us assume that f is partial differentiable on 1st-2nd coordinate in z. The functor
hpartdiff12(f, z) yielding a real number is defined by the condition (Def. 8).

(Def. 8) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of y0 such that N ⊆
domSVF2(pdiff1(f, z), z) and there exist L,R such that hpartdiff12(f, z) =
L(1) and for every y such that y ∈ N holds (SVF2(pdiff1(f, z), z))(y) −
(SVF2(pdiff1(f, z), z))(y0) = L(y − y0) +R(y − y0).
Let f be a partial function from R2 to R and let z be an element of R2. Let

us assume that f is partial differentiable on 2nd-1st coordinate in z. The functor
hpartdiff21(f, z) yielding a real number is defined by the condition (Def. 9).

(Def. 9) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of x0 such that N ⊆
domSVF1(pdiff2(f, z), z) and there exist L,R such that hpartdiff21(f, z) =
L(1) and for every x such that x ∈ N holds (SVF1(pdiff2(f, z), z))(x) −
(SVF1(pdiff2(f, z), z))(x0) = L(x− x0) +R(x− x0).
Let f be a partial function from R2 to R and let z be an element of R2.

Let us assume that f is partial differentiable on 2nd-2nd coordinate in z. The
functor hpartdiff22(f, z) yields a real number and is defined by the condition
(Def. 10).

(Def. 10) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of y0 such that N ⊆
domSVF2(pdiff2(f, z), z) and there exist L,R such that hpartdiff22(f, z) =
L(1) and for every y such that y ∈ N holds (SVF2(pdiff2(f, z), z))(y) −
(SVF2(pdiff2(f, z), z))(y0) = L(y − y0) +R(y − y0).
Next we state several propositions:

(1) If z = 〈x0, y0〉 and f is partial differentiable on 1st-1st coordinate in z,
then SVF1(pdiff1(f, z), z) is differentiable in x0.

(2) If z = 〈x0, y0〉 and f is partial differentiable on 1st-2nd coordinate in z,
then SVF2(pdiff1(f, z), z) is differentiable in y0.

(3) If z = 〈x0, y0〉 and f is partial differentiable on 2nd-1st coordinate in z,
then SVF1(pdiff2(f, z), z) is differentiable in x0.
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(4) If z = 〈x0, y0〉 and f is partial differentiable on 2nd-2nd coordinate in z,
then SVF2(pdiff2(f, z), z) is differentiable in y0.

(5) If z = 〈x0, y0〉 and f is partial differentiable on 1st-1st coordinate in z,
then hpartdiff11(f, z) = (SVF1(pdiff1(f, z), z))′(x0).

(6) If z = 〈x0, y0〉 and f is partial differentiable on 1st-2nd coordinate in z,
then hpartdiff12(f, z) = (SVF2(pdiff1(f, z), z))′(y0).

(7) If z = 〈x0, y0〉 and f is partial differentiable on 2nd-1st coordinate in z,
then hpartdiff21(f, z) = (SVF1(pdiff2(f, z), z))′(x0).

(8) If z = 〈x0, y0〉 and f is partial differentiable on 2nd-2nd coordinate in z,
then hpartdiff22(f, z) = (SVF2(pdiff2(f, z), z))′(y0).

Let f be a partial function from R2 to R and let Z be a set. We say that f
is partial differentiable on 1st-1st coordinate on Z if and only if:

(Def. 11) Z ⊆ dom f and for every element z of R2 such that z ∈ Z holds f�Z is
partial differentiable on 1st-1st coordinate in z.

We say that f is partial differentiable on 1st-2nd coordinate on Z if and only if:

(Def. 12) Z ⊆ dom f and for every element z of R2 such that z ∈ Z holds f�Z is
partial differentiable on 1st-2nd coordinate in z.

We say that f is partial differentiable on 2nd-1st coordinate on Z if and only if:

(Def. 13) Z ⊆ dom f and for every element z of R2 such that z ∈ Z holds f�Z is
partial differentiable on 2nd-1st coordinate in z.

We say that f is partial differentiable on 2nd-2nd coordinate on Z if and only
if:

(Def. 14) Z ⊆ dom f and for every element z of R2 such that z ∈ Z holds f�Z is
partial differentiable on 2nd-2nd coordinate in z.

Let f be a partial function from R2 to R and let Z be a set. Let us assume
that f is partial differentiable on 1st-1st coordinate on Z. The functor f1st−1st�Z

yields a partial function from R2 to R and is defined by:

(Def. 15) dom(f1st−1st�Z ) = Z and for every element z of R2 such that z ∈ Z holds
f1st−1st�Z (z) = hpartdiff11(f, z).

Let f be a partial function from R2 to R and let Z be a set. Let us assume
that f is partial differentiable on 1st-2nd coordinate on Z. The functor f1st−2nd�Z

yielding a partial function from R2 to R is defined by:

(Def. 16) dom(f1st−2nd�Z ) = Z and for every element z of R2 such that z ∈ Z holds
f1st−2nd�Z (z) = hpartdiff12(f, z).

Let f be a partial function from R2 to R and let Z be a set. Let us assume
that f is partial differentiable on 2nd-1st coordinate on Z. The functor f2nd−1st�Z

yields a partial function from R2 to R and is defined by:
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(Def. 17) dom(f2nd−1st�Z ) = Z and for every element z of R2 such that z ∈ Z holds
f2nd−1st�Z (z) = hpartdiff21(f, z).

Let f be a partial function from R2 to R and let Z be a set. Let us assume
that f is partial differentiable on 2nd-2nd coordinate on Z. The functor f2nd−2nd�Z

yields a partial function from R2 to R and is defined by:
(Def. 18) dom(f2nd−2nd�Z ) = Z and for every element z of R2 such that z ∈ Z holds

f2nd−2nd�Z (z) = hpartdiff22(f, z).

2. Main Properties of Second-Order Partial Derivatives

One can prove the following propositions:

(9) f is partial differentiable on 1st-1st coordinate in z if and only if
pdiff1(f, z) is partial differentiable on 1st coordinate in z.

(10) f is partial differentiable on 1st-2nd coordinate in z if and only if
pdiff1(f, z) is partial differentiable on 2nd coordinate in z.

(11) f is partial differentiable on 2nd-1st coordinate in z if and only if
pdiff2(f, z) is partial differentiable on 1st coordinate in z.

(12) f is partial differentiable on 2nd-2nd coordinate in z if and only if
pdiff2(f, z) is partial differentiable on 2nd coordinate in z.

(13) f is partial differentiable on 1st-1st coordinate in z if and only if
pdiff1(f, z) is partially differentiable in z w.r.t. coordinate 1.

(14) f is partial differentiable on 1st-2nd coordinate in z if and only if
pdiff1(f, z) is partially differentiable in z w.r.t. coordinate 2.

(15) f is partial differentiable on 2nd-1st coordinate in z if and only if
pdiff2(f, z) is partially differentiable in z w.r.t. coordinate 1.

(16) f is partial differentiable on 2nd-2nd coordinate in z if and only if
pdiff2(f, z) is partially differentiable in z w.r.t. coordinate 2.

(17) If f is partial differentiable on 1st-1st coordinate in z, then
hpartdiff11(f, z) = partdiff1(pdiff1(f, z), z).

(18) If f is partial differentiable on 1st-2nd coordinate in z, then
hpartdiff12(f, z) = partdiff2(pdiff1(f, z), z).

(19) If f is partial differentiable on 2nd-1st coordinate in z, then
hpartdiff21(f, z) = partdiff1(pdiff2(f, z), z).

(20) If f is partial differentiable on 2nd-2nd coordinate in z, then
hpartdiff22(f, z) = partdiff2(pdiff2(f, z), z).

(21) Let z0 be an element ofR2 and N be a neighbourhood of (proj(1, 2))(z0).
Suppose f is partial differentiable on 1st-1st coordinate in z0 and N ⊆
domSVF1(pdiff1(f, z0), z0). Let h be a convergent to 0 sequence of real
numbers and c be a constant sequence of real numbers. Suppose rng c =
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{(proj(1, 2))(z0)} and rng(h+ c) ⊆ N. Then h−1 (SVF1(pdiff1(f, z0), z0) ·
(h+ c)− SVF1(pdiff1(f, z0), z0) · c) is convergent and hpartdiff11(f, z0) =
lim(h−1 (SVF1(pdiff1(f, z0), z0) · (h+ c)− SVF1(pdiff1(f, z0), z0) · c)).

(22) Let z0 be an element ofR2 and N be a neighbourhood of (proj(2, 2))(z0).
Suppose f is partial differentiable on 1st-2nd coordinate in z0 and N ⊆
domSVF2(pdiff1(f, z0), z0). Let h be a convergent to 0 sequence of real
numbers and c be a constant sequence of real numbers. Suppose rng c =
{(proj(2, 2))(z0)} and rng(h+ c) ⊆ N. Then h−1 (SVF2(pdiff1(f, z0), z0) ·
(h+ c)− SVF2(pdiff1(f, z0), z0) · c) is convergent and hpartdiff12(f, z0) =
lim(h−1 (SVF2(pdiff1(f, z0), z0) · (h+ c)− SVF2(pdiff1(f, z0), z0) · c)).

(23) Let z0 be an element ofR2 and N be a neighbourhood of (proj(1, 2))(z0).
Suppose f is partial differentiable on 2nd-1st coordinate in z0 and N ⊆
domSVF1(pdiff2(f, z0), z0). Let h be a convergent to 0 sequence of real
numbers and c be a constant sequence of real numbers. Suppose rng c =
{(proj(1, 2))(z0)} and rng(h+ c) ⊆ N. Then h−1 (SVF1(pdiff2(f, z0), z0) ·
(h+ c)− SVF1(pdiff2(f, z0), z0) · c) is convergent and hpartdiff21(f, z0) =
lim(h−1 (SVF1(pdiff2(f, z0), z0) · (h+ c)− SVF1(pdiff2(f, z0), z0) · c)).

(24) Let z0 be an element ofR2 and N be a neighbourhood of (proj(2, 2))(z0).
Suppose f is partial differentiable on 2nd-2nd coordinate in z0 and N ⊆
domSVF2(pdiff2(f, z0), z0). Let h be a convergent to 0 sequence of real
numbers and c be a constant sequence of real numbers. Suppose rng c =
{(proj(2, 2))(z0)} and rng(h+ c) ⊆ N. Then h−1 (SVF2(pdiff2(f, z0), z0) ·
(h+ c)− SVF2(pdiff2(f, z0), z0) · c) is convergent and hpartdiff22(f, z0) =
lim(h−1 (SVF2(pdiff2(f, z0), z0) · (h+ c)− SVF2(pdiff2(f, z0), z0) · c)).

(25) Suppose that
(i) f1 is partial differentiable on 1st-1st coordinate in z0, and
(ii) f2 is partial differentiable on 1st-1st coordinate in z0.
Then pdiff1(f1, z0)+pdiff1(f2, z0) is partial differentiable on 1st coordinate
in z0 and partdiff1(pdiff1(f1, z0)+pdiff1(f2, z0), z0) = hpartdiff11(f1, z0)+
hpartdiff11(f2, z0).

(26) Suppose that
(i) f1 is partial differentiable on 1st-2nd coordinate in z0, and
(ii) f2 is partial differentiable on 1st-2nd coordinate in z0.
Then pdiff1(f1, z0) + pdiff1(f2, z0) is partial differentiable on 2nd
coordinate in z0 and partdiff2(pdiff1(f1, z0) + pdiff1(f2, z0), z0) =
hpartdiff12(f1, z0) + hpartdiff12(f2, z0).

(27) Suppose that
(i) f1 is partial differentiable on 2nd-1st coordinate in z0, and
(ii) f2 is partial differentiable on 2nd-1st coordinate in z0.
Then pdiff2(f1, z0)+pdiff2(f2, z0) is partial differentiable on 1st coordinate
in z0 and partdiff1(pdiff2(f1, z0)+pdiff2(f2, z0), z0) = hpartdiff21(f1, z0)+
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hpartdiff21(f2, z0).

(28) Suppose that
(i) f1 is partial differentiable on 2nd-2nd coordinate in z0, and
(ii) f2 is partial differentiable on 2nd-2nd coordinate in z0.
Then pdiff2(f1, z0) + pdiff2(f2, z0) is partial differentiable on 2nd
coordinate in z0 and partdiff2(pdiff2(f1, z0) + pdiff2(f2, z0), z0) =
hpartdiff22(f1, z0) + hpartdiff22(f2, z0).

(29) Suppose that
(i) f1 is partial differentiable on 1st-1st coordinate in z0, and
(ii) f2 is partial differentiable on 1st-1st coordinate in z0.
Then pdiff1(f1, z0)−pdiff1(f2, z0) is partial differentiable on 1st coordinate
in z0 and partdiff1(pdiff1(f1, z0)−pdiff1(f2, z0), z0) = hpartdiff11(f1, z0)−
hpartdiff11(f2, z0).

(30) Suppose that
(i) f1 is partial differentiable on 1st-2nd coordinate in z0, and
(ii) f2 is partial differentiable on 1st-2nd coordinate in z0.
Then pdiff1(f1, z0) − pdiff1(f2, z0) is partial differentiable on 2nd
coordinate in z0 and partdiff2(pdiff1(f1, z0) − pdiff1(f2, z0), z0) =
hpartdiff12(f1, z0)− hpartdiff12(f2, z0).

(31) Suppose that
(i) f1 is partial differentiable on 2nd-1st coordinate in z0, and
(ii) f2 is partial differentiable on 2nd-1st coordinate in z0.
Then pdiff2(f1, z0)−pdiff2(f2, z0) is partial differentiable on 1st coordinate
in z0 and partdiff1(pdiff2(f1, z0)−pdiff2(f2, z0), z0) = hpartdiff21(f1, z0)−
hpartdiff21(f2, z0).

(32) Suppose that
(i) f1 is partial differentiable on 2nd-2nd coordinate in z0, and
(ii) f2 is partial differentiable on 2nd-2nd coordinate in z0.
Then pdiff2(f1, z0) − pdiff2(f2, z0) is partial differentiable on 2nd
coordinate in z0 and partdiff2(pdiff2(f1, z0) − pdiff2(f2, z0), z0) =
hpartdiff22(f1, z0)− hpartdiff22(f2, z0).

(33) Suppose f is partial differentiable on 1st-1st coordinate in z0. Then
r pdiff1(f, z0) is partial differentiable on 1st coordinate in z0 and
partdiff1(r pdiff1(f, z0), z0) = r · hpartdiff11(f, z0).

(34) Suppose f is partial differentiable on 1st-2nd coordinate in z0. Then
r pdiff1(f, z0) is partial differentiable on 2nd coordinate in z0 and
partdiff2(r pdiff1(f, z0), z0) = r · hpartdiff12(f, z0).

(35) Suppose f is partial differentiable on 2nd-1st coordinate in z0. Then
r pdiff2(f, z0) is partial differentiable on 1st coordinate in z0 and
partdiff1(r pdiff2(f, z0), z0) = r · hpartdiff21(f, z0).
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(36) Suppose f is partial differentiable on 2nd-2nd coordinate in z0. Then
r pdiff2(f, z0) is partial differentiable on 2nd coordinate in z0 and
partdiff2(r pdiff2(f, z0), z0) = r · hpartdiff22(f, z0).

(37) Suppose that
(i) f1 is partial differentiable on 1st-1st coordinate in z0, and
(ii) f2 is partial differentiable on 1st-1st coordinate in z0.
Then pdiff1(f1, z0) pdiff1(f2, z0) is partial differentiable on 1st coordinate
in z0.

(38) Suppose that
(i) f1 is partial differentiable on 1st-2nd coordinate in z0, and
(ii) f2 is partial differentiable on 1st-2nd coordinate in z0.
Then pdiff1(f1, z0) pdiff1(f2, z0) is partial differentiable on 2nd coordinate
in z0.

(39) Suppose that
(i) f1 is partial differentiable on 2nd-1st coordinate in z0, and
(ii) f2 is partial differentiable on 2nd-1st coordinate in z0.
Then pdiff2(f1, z0) pdiff2(f2, z0) is partial differentiable on 1st coordinate
in z0.

(40) Suppose that
(i) f1 is partial differentiable on 2nd-2nd coordinate in z0, and
(ii) f2 is partial differentiable on 2nd-2nd coordinate in z0.
Then pdiff2(f1, z0) pdiff2(f2, z0) is partial differentiable on 2nd coordinate
in z0.

(41) Let z0 be an element of R2. Suppose f is partial differentiable on
1st-1st coordinate in z0. Then SVF1(pdiff1(f, z0), z0) is continuous in
(proj(1, 2))(z0).

(42) Let z0 be an element of R2. Suppose f is partial differentiable on
1st-2nd coordinate in z0. Then SVF2(pdiff1(f, z0), z0) is continuous in
(proj(2, 2))(z0).

(43) Let z0 be an element of R2. Suppose f is partial differentiable on
2nd-1st coordinate in z0. Then SVF1(pdiff2(f, z0), z0) is continuous in
(proj(1, 2))(z0).

(44) Let z0 be an element of R2. Suppose f is partial differentiable on
2nd-2nd coordinate in z0. Then SVF2(pdiff2(f, z0), z0) is continuous in
(proj(2, 2))(z0).

(45) If f is partial differentiable on 1st-1st coordinate in z0, then there exists
R such that R(0) = 0 and R is continuous in 0.

(46) If f is partial differentiable on 1st-2nd coordinate in z0, then there exists
R such that R(0) = 0 and R is continuous in 0.
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(47) If f is partial differentiable on 2nd-1st coordinate in z0, then there exists
R such that R(0) = 0 and R is continuous in 0.

(48) If f is partial differentiable on 2nd-2nd coordinate in z0, then there exists
R such that R(0) = 0 and R is continuous in 0.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[7] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on nor-
med linear spaces Rn. Formalized Mathematics, 15(2):65–72, 2007, doi:10.2478/v10037-
007-0008-5.

[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathe-
matics, 1(2):273–275, 1990.

[10] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781–786,
1990.

[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathema-
tics, 1(2):269–272, 1990.

[12] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathe-
matics, 1(4):787–791, 1990.

[13] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized
Mathematics, 1(4):797–801, 1990.

[14] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real num-
bers. Formalized Mathematics, 1(4):777–780, 1990.

[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

[17] Bing Xie, Xiquan Liang, and Hongwei Li. Partial differentiation of real binary functions.
Formalized Mathematics, 16(4):333–338, 2008, doi:10.2478/v10037-008-0041-z.

Received December 16, 2008


