Second-Order Partial Differentiation of Real Binary Functions

Bing Xie
Qingdao University of Science and Technology
China

Xiquan Liang
Qingdao University of Science
and Technology
China

Xiuzhuan Shen
Qingdao University of Science
and Technology
China

Abstract

Summary. In this article we define second-order partial differentiation of real binary functions and discuss the relation of second-order partial derivatives and partial derivatives defined in [17].

MML identifier: PDIFF_3, version: $\underline{7.11 .014 .117 .1046}$

The articles [15], [3], [4], [16], [5], [10], [1], [8], [11], [9], [2], [14], [6], [13], [12], [7], and [17] provide the notation and terminology for this paper.

1. Second-Order Partial Derivatives

For simplicity, we adopt the following convention: x, x_{0}, y, y_{0}, r are real numbers, z, z_{0} are elements of $\mathcal{R}^{2}, f, f_{1}, f_{2}$ are partial functions from \mathcal{R}^{2} to \mathbb{R}, R is a rest, and L is a linear function.

Let us note that every rest is total.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let z be an element of \mathcal{R}^{2}. The functor $\operatorname{pdiff}(f, z)$ yielding a function from \mathcal{R}^{2} into \mathbb{R} is defined as follows:
(Def. 1) For every z such that $z \in \mathcal{R}^{2}$ holds $(\operatorname{pdiff} 1(f, z))(z)=\operatorname{partdiff1}(f, z)$.
The functor $\operatorname{pdiff} 2(f, z)$ yields a function from \mathcal{R}^{2} into \mathbb{R} and is defined as follows:
(Def. 2) For every z such that $z \in \mathcal{R}^{2}$ holds $(\operatorname{pdiff} 2(f, z))(z)=\operatorname{partdiff} 2(f, z)$.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let z be an element of \mathcal{R}^{2}. We say that f is partial differentiable on 1st-1st coordinate in z if and only if the condition (Def. 3) is satisfied.
(Def. 3) There exist real numbers x_{0}, y_{0} such that
(i) $z=\left\langle x_{0}, y_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1 ($\operatorname{pdiff} 1(f, z), z)$ and there exist L, R such that for every x such that $x \in N$ holds $(\operatorname{SVF} 1(\operatorname{pdiff} 1(f, z), z))(x)-(\operatorname{SVF} 1(\operatorname{pdiff} 1(f, z), z))\left(x_{0}\right)=$ $L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
We say that f is partial differentiable on 1 st-2nd coordinate in z if and only if the condition (Def. 4) is satisfied.
(Def. 4) There exist real numbers x_{0}, y_{0} such that
(i) $z=\left\langle x_{0}, y_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ dom SVF2 ($\operatorname{pdiff} 1(f, z), z)$ and there exist L, R such that for every y such that $y \in N$ holds $(\operatorname{SVF} 2(\operatorname{pdiff} 1(f, z), z))(y)-(\operatorname{SVF} 2(\operatorname{pdiff} 1(f, z), z))\left(y_{0}\right)=$ $L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
We say that f is partial differentiable on 2 nd- 1 st coordinate in z if and only if the condition (Def. 5) is satisfied.
(Def. 5) There exist real numbers x_{0}, y_{0} such that
(i) $z=\left\langle x_{0}, y_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1 ($\operatorname{pdiff} 2(f, z), z)$ and there exist L, R such that for every x such that $x \in N$ holds $(\operatorname{SVF} 1(\operatorname{pdiff} 2(f, z), z))(x)-(\operatorname{SVF} 1(\operatorname{pdiff} 2(f, z), z))\left(x_{0}\right)=$ $L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
We say that f is partial differentiable on 2 nd- 2 nd coordinate in z if and only if the condition (Def. 6) is satisfied.
(Def. 6) There exist real numbers x_{0}, y_{0} such that
(i) $z=\left\langle x_{0}, y_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ dom SVF2 (pdiff2 $(f, z), z)$ and there exist L, R such that for every y such that $y \in N$ holds $(\operatorname{SVF} 2(\operatorname{pdiff} 2(f, z), z))(y)-(\operatorname{SVF} 2(\operatorname{pdiff} 2(f, z), z))\left(y_{0}\right)=$ $L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let z be an element of \mathcal{R}^{2}. Let us assume that f is partial differentiable on 1 st-1st coordinate in z. The functor hpartdiff $11(f, z)$ yields a real number and is defined by the condition (Def. 7).
(Def. 7) There exist real numbers x_{0}, y_{0} such that
(i) $z=\left\langle x_{0}, y_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1 ($\operatorname{pdiff1}(f, z), z)$ and there exist L, R such that $\operatorname{hpartdiff11}(f, z)=$ $L(1)$ and for every x such that $x \in N$ holds $(\operatorname{SVF} 1(\operatorname{pdiff} 1(f, z), z))(x)-$ $(\operatorname{SVF} 1(\operatorname{pdiff} 1(f, z), z))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let z be an element of \mathcal{R}^{2}. Let us assume that f is partial differentiable on 1st-2nd coordinate in z. The functor hpartdiff12 (f, z) yielding a real number is defined by the condition (Def. 8).
(Def. 8) There exist real numbers x_{0}, y_{0} such that
(i) $z=\left\langle x_{0}, y_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ dom SVF2 (pdiff1 $(f, z), z)$ and there exist L, R such that hpartdiff12 $(f, z)=$ $L(1)$ and for every y such that $y \in N$ holds (SVF2(pdiff1 $(f, z), z))(y)-$ $(\operatorname{SVF} 2(\operatorname{pdiff} 1(f, z), z))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let z be an element of \mathcal{R}^{2}. Let us assume that f is partial differentiable on 2 nd- 1 st coordinate in z. The functor hpartdiff $21(f, z)$ yielding a real number is defined by the condition (Def. 9).
(Def. 9) There exist real numbers x_{0}, y_{0} such that
(i) $z=\left\langle x_{0}, y_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1(pdiff2 $(f, z), z)$ and there exist L, R such that hpartdiff21 $(f, z)=$ $L(1)$ and for every x such that $x \in N$ holds (SVF1 $(\operatorname{pdiff} 2(f, z), z))(x)-$ $(\operatorname{SVF} 1(\operatorname{pdiff} 2(f, z), z))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let z be an element of \mathcal{R}^{2}. Let us assume that f is partial differentiable on 2 nd- 2 nd coordinate in z. The functor hpartdiff $22(f, z)$ yields a real number and is defined by the condition (Def. 10).
(Def. 10) There exist real numbers x_{0}, y_{0} such that
(i) $z=\left\langle x_{0}, y_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ dom SVF2(pdiff2 $(f, z), z)$ and there exist L, R such that hpartdiff22 $(f, z)=$ $L(1)$ and for every y such that $y \in N$ holds (SVF2(pdiff2 $(f, z), z))(y)-$ (SVF2 $\operatorname{pdiff} 2(f, z), z))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
Next we state several propositions:
(1) If $z=\left\langle x_{0}, y_{0}\right\rangle$ and f is partial differentiable on 1st-1st coordinate in z, then SVF1 $(\operatorname{pdiff} 1(f, z), z)$ is differentiable in x_{0}.
(2) If $z=\left\langle x_{0}, y_{0}\right\rangle$ and f is partial differentiable on 1st-2nd coordinate in z, then $\operatorname{SVF} 2(\operatorname{pdiff} 1(f, z), z)$ is differentiable in y_{0}.
(3) If $z=\left\langle x_{0}, y_{0}\right\rangle$ and f is partial differentiable on 2nd-1st coordinate in z, then SVF1 $(\operatorname{pdiff} 2(f, z), z)$ is differentiable in x_{0}.
(4) If $z=\left\langle x_{0}, y_{0}\right\rangle$ and f is partial differentiable on 2nd-2nd coordinate in z, then $\operatorname{SVF} 2(\operatorname{pdiff} 2(f, z), z)$ is differentiable in y_{0}.
(5) If $z=\left\langle x_{0}, y_{0}\right\rangle$ and f is partial differentiable on 1st-1st coordinate in z, then $\operatorname{hpartdiff11}(f, z)=(\operatorname{SVF} 1(\operatorname{pdiff} 1(f, z), z))^{\prime}\left(x_{0}\right)$.
(6) If $z=\left\langle x_{0}, y_{0}\right\rangle$ and f is partial differentiable on 1st-2nd coordinate in z, then hpartdiff12 $(f, z)=(\operatorname{SVF} 2(\operatorname{pdiff} 1(f, z), z))^{\prime}\left(y_{0}\right)$.
(7) If $z=\left\langle x_{0}, y_{0}\right\rangle$ and f is partial differentiable on 2nd-1st coordinate in z, then hpartdiff21 $(f, z)=(\operatorname{SVF} 1(\operatorname{pdiff} 2(f, z), z))^{\prime}\left(x_{0}\right)$.
(8) If $z=\left\langle x_{0}, y_{0}\right\rangle$ and f is partial differentiable on 2nd-2nd coordinate in z, then hpartdiff22 $(f, z)=(\operatorname{SVF} 2(\operatorname{pdiff} 2(f, z), z))^{\prime}\left(y_{0}\right)$.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let Z be a set. We say that f is partial differentiable on 1st-1st coordinate on Z if and only if:
(Def. 11) $Z \subseteq \operatorname{dom} f$ and for every element z of \mathcal{R}^{2} such that $z \in Z$ holds $f \upharpoonright Z$ is partial differentiable on 1st-1st coordinate in z.
We say that f is partial differentiable on 1st-2nd coordinate on Z if and only if:
(Def. 12) $Z \subseteq \operatorname{dom} f$ and for every element z of \mathcal{R}^{2} such that $z \in Z$ holds $f \upharpoonright Z$ is partial differentiable on 1st-2nd coordinate in z.
We say that f is partial differentiable on 2 nd-1st coordinate on Z if and only if:
(Def. 13) $Z \subseteq \operatorname{dom} f$ and for every element z of \mathcal{R}^{2} such that $z \in Z$ holds $f \upharpoonright Z$ is partial differentiable on 2nd-1st coordinate in z.
We say that f is partial differentiable on 2 nd-2nd coordinate on Z if and only if:
(Def. 14) $Z \subseteq \operatorname{dom} f$ and for every element z of \mathcal{R}^{2} such that $z \in Z$ holds $f \upharpoonright Z$ is partial differentiable on 2nd-2nd coordinate in z.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let Z be a set. Let us assume that f is partial differentiable on 1st-1st coordinate on Z. The functor $f_{\mid Z}^{1 \text { st-1st }}$ yields a partial function from \mathcal{R}^{2} to \mathbb{R} and is defined by:
(Def. 15) $\operatorname{dom}\left(f_{\mid Z}^{1 \text { st- } 1 \text { st }}\right)=Z$ and for every element z of \mathcal{R}^{2} such that $z \in Z$ holds $f_{\mid Z}^{1 \text { st-1st }}(z)=\operatorname{hpartdiff11}(f, z)$.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let Z be a set. Let us assume that f is partial differentiable on 1 st-2nd coordinate on Z. The functor $f_{\mid Z}^{\text {1st-2nd }}$ yielding a partial function from \mathcal{R}^{2} to \mathbb{R} is defined by:
(Def. 16) $\operatorname{dom}\left(f_{\mid Z}^{1 \text { st-2nd }}\right)=Z$ and for every element z of \mathcal{R}^{2} such that $z \in Z$ holds $f_{\lceil Z}^{1 \text { st-2nd }}(z)=\operatorname{hpartdiff12(f,z).}$
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let Z be a set. Let us assume that f is partial differentiable on 2 nd- 1 st coordinate on Z. The functor $f_{\Gamma Z}^{2 \text { nd }-1 \text { st }}$ yields a partial function from \mathcal{R}^{2} to \mathbb{R} and is defined by:
(Def. 17) $\operatorname{dom}\left(f_{\mid Z}^{2 \text { nd-1st }}\right)=Z$ and for every element z of \mathcal{R}^{2} such that $z \in Z$ holds $f_{\lceil Z}^{2 \text { nd-1st }}(z)=\operatorname{hpartdiff21}(f, z)$.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let Z be a set. Let us assume that f is partial differentiable on 2 nd-2nd coordinate on Z. The functor $f_{\Gamma}^{2 \text { nd }-2 \text { nd }}$ yields a partial function from \mathcal{R}^{2} to \mathbb{R} and is defined by:
(Def. 18) $\operatorname{dom}\left(f_{\square Z}^{\text {nnd-2nd }}\right)=Z$ and for every element z of \mathcal{R}^{2} such that $z \in Z$ holds $f_{\lceil Z}^{2 \text { nd-2nd }}(z)=\operatorname{hpartdiff22}(f, z)$.

2. Main Properties of Second-Order Partial Derivatives

One can prove the following propositions:
(9) f is partial differentiable on 1st-1st coordinate in z if and only if pdiff $1(f, z)$ is partial differentiable on 1st coordinate in z.
(10) f is partial differentiable on 1st-2nd coordinate in z if and only if $\operatorname{pdiff} 1(f, z)$ is partial differentiable on 2nd coordinate in z.
(11) f is partial differentiable on 2nd-1st coordinate in z if and only if $\operatorname{pdiff} 2(f, z)$ is partial differentiable on 1st coordinate in z.
(12) f is partial differentiable on 2 nd-2nd coordinate in z if and only if $\operatorname{pdiff} 2(f, z)$ is partial differentiable on 2 nd coordinate in z.
(13) f is partial differentiable on 1st-1st coordinate in z if and only if $\operatorname{pdiff} 1(f, z)$ is partially differentiable in z w.r.t. coordinate 1 .
(14) f is partial differentiable on 1st-2nd coordinate in z if and only if pdiff (f, z) is partially differentiable in z w.r.t. coordinate 2 .
(15) f is partial differentiable on 2nd-1st coordinate in z if and only if $\operatorname{pdiff} 2(f, z)$ is partially differentiable in z w.r.t. coordinate 1 .
(16) f is partial differentiable on 2 nd-2nd coordinate in z if and only if $\operatorname{pdiff} 2(f, z)$ is partially differentiable in z w.r.t. coordinate 2 .
(17) If f is partial differentiable on 1st-1st coordinate in z, then $\operatorname{hpartdiff11}(f, z)=\operatorname{partdiff} 1(\operatorname{pdiff} 1(f, z), z)$.
(18) If f is partial differentiable on 1st-2nd coordinate in z, then $\operatorname{hpartdiff12}(f, z)=\operatorname{partdiff2}(\operatorname{pdiff} 1(f, z), z)$.
(19) If f is partial differentiable on 2nd-1st coordinate in z, then $\operatorname{hpartdiff} 21(f, z)=\operatorname{partdiff} 1(\operatorname{pdiff} 2(f, z), z)$.
(20) If f is partial differentiable on 2 nd-2nd coordinate in z, then $\operatorname{hpartdiff} 22(f, z)=\operatorname{partdiff} 2(\operatorname{pdiff} 2(f, z), z)$.
(21) Let z_{0} be an element of \mathcal{R}^{2} and N be a neighbourhood of $(\operatorname{proj}(1,2))\left(z_{0}\right)$. Suppose f is partial differentiable on 1st-1st coordinate in z_{0} and $N \subseteq$ dom SVF1 ($\left.\operatorname{pdiff} 1\left(f, z_{0}\right), z_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=$
$\left\{(\operatorname{proj}(1,2))\left(z_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\operatorname{SVF} 1\left(\operatorname{pdiff} 1\left(f, z_{0}\right), z_{0}\right)\right.$. $\left.(h+c)-\operatorname{SVF} 1\left(\operatorname{pdiff} 1\left(f, z_{0}\right), z_{0}\right) \cdot c\right)$ is convergent and $\operatorname{hpartdiff} 11\left(f, z_{0}\right)=$ $\lim \left(h^{-1}\left(\operatorname{SVF} 1\left(\operatorname{pdiff} 1\left(f, z_{0}\right), z_{0}\right) \cdot(h+c)-\operatorname{SVF} 1\left(\operatorname{pdiff} 1\left(f, z_{0}\right), z_{0}\right) \cdot c\right)\right)$.
(22) Let z_{0} be an element of \mathcal{R}^{2} and N be a neighbourhood of $(\operatorname{proj}(2,2))\left(z_{0}\right)$. Suppose f is partial differentiable on 1st-2nd coordinate in z_{0} and $N \subseteq$ dom SVF2($\left.\operatorname{pdiff} 1\left(f, z_{0}\right), z_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=$ $\left\{(\operatorname{proj}(2,2))\left(z_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\operatorname{SVF} 2\left(\operatorname{pdiff} 1\left(f, z_{0}\right), z_{0}\right)\right.$. $\left.(h+c)-\operatorname{SVF} 2\left(\operatorname{pdiff} 1\left(f, z_{0}\right), z_{0}\right) \cdot c\right)$ is convergent and hpartdiff12 $\left(f, z_{0}\right)=$ $\lim \left(h^{-1}\left(\operatorname{SVF} 2\left(\operatorname{pdiff} 1\left(f, z_{0}\right), z_{0}\right) \cdot(h+c)-\operatorname{SVF} 2\left(\operatorname{pdiff} 1\left(f, z_{0}\right), z_{0}\right) \cdot c\right)\right)$.
(23) Let z_{0} be an element of \mathcal{R}^{2} and N be a neighbourhood of $(\operatorname{proj}(1,2))\left(z_{0}\right)$. Suppose f is partial differentiable on 2 nd-1st coordinate in z_{0} and $N \subseteq$ dom SVF1 ($\left.\operatorname{pdiff} 2\left(f, z_{0}\right), z_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=$ $\left\{(\operatorname{proj}(1,2))\left(z_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\operatorname{SVF} 1\left(\operatorname{pdiff} 2\left(f, z_{0}\right), z_{0}\right)\right.$. $\left.(h+c)-\operatorname{SVF} 1\left(\operatorname{pdiff} 2\left(f, z_{0}\right), z_{0}\right) \cdot c\right)$ is convergent and $\operatorname{hpartdiff} 21\left(f, z_{0}\right)=$ $\lim \left(h^{-1}\left(\operatorname{SVF} 1\left(\operatorname{pdiff} 2\left(f, z_{0}\right), z_{0}\right) \cdot(h+c)-\operatorname{SVF} 1\left(\operatorname{pdiff} 2\left(f, z_{0}\right), z_{0}\right) \cdot c\right)\right)$.
(24) Let z_{0} be an element of \mathcal{R}^{2} and N be a neighbourhood of $(\operatorname{proj}(2,2))\left(z_{0}\right)$. Suppose f is partial differentiable on 2 nd-2nd coordinate in z_{0} and $N \subseteq$ dom SVF2 ($\left.\operatorname{pdiff} 2\left(f, z_{0}\right), z_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=$ $\left\{(\operatorname{proj}(2,2))\left(z_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\operatorname{SVF} 2\left(\operatorname{pdiff} 2\left(f, z_{0}\right), z_{0}\right)\right.$. $\left.(h+c)-\operatorname{SVF} 2\left(\operatorname{pdiff} 2\left(f, z_{0}\right), z_{0}\right) \cdot c\right)$ is convergent and hpartdiff22 $\left(f, z_{0}\right)=$ $\lim \left(h^{-1}\left(\operatorname{SVF} 2\left(\operatorname{pdiff} 2\left(f, z_{0}\right), z_{0}\right) \cdot(h+c)-\operatorname{SVF} 2\left(\operatorname{pdiff} 2\left(f, z_{0}\right), z_{0}\right) \cdot c\right)\right)$.
(25) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1 st- 1 st coordinate in z_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1 st- 1 st coordinate in z_{0}.

Then pdiff1 $\left(f_{1}, z_{0}\right)+\operatorname{pdiff} 1\left(f_{2}, z_{0}\right)$ is partial differentiable on 1 st coordinate in z_{0} and partdiff1 $\left(\operatorname{pdiff1}\left(f_{1}, z_{0}\right)+\operatorname{pdiff} 1\left(f_{2}, z_{0}\right), z_{0}\right)=\operatorname{hpartdiff11}\left(f_{1}, z_{0}\right)+$ $\operatorname{hpartdiff11}\left(f_{2}, z_{0}\right)$.
(26) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1 st- 2 nd coordinate in z_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1st-2nd coordinate in z_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, z_{0}\right)+\operatorname{pdiff} 1\left(f_{2}, z_{0}\right)$ is partial differentiable on 2 nd coordinate in z_{0} and partdiff2 $\left(\operatorname{pdiff} 1\left(f_{1}, z_{0}\right)+\operatorname{pdiff} 1\left(f_{2}, z_{0}\right), z_{0}\right)=$ $\operatorname{hpartdiff} 12\left(f_{1}, z_{0}\right)+\operatorname{hpartdiff} 12\left(f_{2}, z_{0}\right)$.
(27) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 1 st coordinate in z_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd- 1 st coordinate in z_{0}.

Then pdiff2 $\left(f_{1}, z_{0}\right)+\operatorname{pdiff} 2\left(f_{2}, z_{0}\right)$ is partial differentiable on 1 st coordinate in z_{0} and partdiff1 $\left(\operatorname{pdiff} 2\left(f_{1}, z_{0}\right)+\operatorname{pdiff} 2\left(f_{2}, z_{0}\right), z_{0}\right)=\operatorname{hpartdiff} 21\left(f_{1}, z_{0}\right)+$
hpartdiff21 $\left(f_{2}, z_{0}\right)$.
(28) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd-2nd coordinate in z_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd- 2 nd coordinate in z_{0}.

Then $\operatorname{pdiff} 2\left(f_{1}, z_{0}\right)+\operatorname{pdiff} 2\left(f_{2}, z_{0}\right)$ is partial differentiable on 2 nd coordinate in z_{0} and partdiff2 $\left(\operatorname{pdiff} 2\left(f_{1}, z_{0}\right)+\operatorname{pdiff} 2\left(f_{2}, z_{0}\right), z_{0}\right)=$ $\operatorname{hpartdiff} 22\left(f_{1}, z_{0}\right)+\operatorname{hpartdiff} 22\left(f_{2}, z_{0}\right)$.
(29) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1 st- 1 st coordinate in z_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1st-1st coordinate in z_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, z_{0}\right)-\operatorname{pdiff} 1\left(f_{2}, z_{0}\right)$ is partial differentiable on 1st coordinate in z_{0} and partdiff1 $\left(\operatorname{pdiff1}\left(f_{1}, z_{0}\right)-\operatorname{pdiff} 1\left(f_{2}, z_{0}\right), z_{0}\right)=\operatorname{hpartdiff11}\left(f_{1}, z_{0}\right)-$ hpartdiff11 $\left(f_{2}, z_{0}\right)$.
(30) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1 st- 2 nd coordinate in z_{0}, and
(ii) f_{2} is partial differentiable on 1st-2nd coordinate in z_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, z_{0}\right)-\operatorname{pdiff} 1\left(f_{2}, z_{0}\right)$ is partial differentiable on 2 nd coordinate in z_{0} and partdiff2 $\left(\operatorname{pdiff} 1\left(f_{1}, z_{0}\right)-\operatorname{pdiff} 1\left(f_{2}, z_{0}\right), z_{0}\right)=$ hpartdiff12 $\left(f_{1}, z_{0}\right)-\operatorname{hpartdiff12}\left(f_{2}, z_{0}\right)$.
(31) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 1 st coordinate in z_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd- 1 st coordinate in z_{0}.

Then pdiff2 $\left(f_{1}, z_{0}\right)$-pdiff2 $\left(f_{2}, z_{0}\right)$ is partial differentiable on 1 st coordinate in z_{0} and partdiff1 $\left(\operatorname{pdiff} 2\left(f_{1}, z_{0}\right)-\operatorname{pdiff} 2\left(f_{2}, z_{0}\right), z_{0}\right)=\operatorname{hpartdiff} 21\left(f_{1}, z_{0}\right)-$ hpartdiff21 $\left(f_{2}, z_{0}\right)$.
(32) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd-2nd coordinate in z_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd-2nd coordinate in z_{0}.

Then $\operatorname{pdiff} 2\left(f_{1}, z_{0}\right)-\operatorname{pdiff} 2\left(f_{2}, z_{0}\right)$ is partial differentiable on 2 nd coordinate in z_{0} and partdiff2($\left.\operatorname{pdiff} 2\left(f_{1}, z_{0}\right)-\operatorname{pdiff} 2\left(f_{2}, z_{0}\right), z_{0}\right)=$ $\operatorname{hpartdiff} 22\left(f_{1}, z_{0}\right)-\operatorname{hpartdiff} 22\left(f_{2}, z_{0}\right)$.
(33) Suppose f is partial differentiable on 1 st-1st coordinate in z_{0}. Then $r \operatorname{pdiff} 1\left(f, z_{0}\right)$ is partial differentiable on 1st coordinate in z_{0} and $\operatorname{partdiff} 1\left(r \operatorname{pdiff} 1\left(f, z_{0}\right), z_{0}\right)=r \cdot \operatorname{hpartdiff11}\left(f, z_{0}\right)$.
(34) Suppose f is partial differentiable on 1 st-2nd coordinate in z_{0}. Then $r \operatorname{pdiff} 1\left(f, z_{0}\right)$ is partial differentiable on 2 nd coordinate in z_{0} and $\operatorname{partdiff} 2\left(r \operatorname{pdiff} 1\left(f, z_{0}\right), z_{0}\right)=r \cdot \operatorname{hpartdiff12}\left(f, z_{0}\right)$.
(35) Suppose f is partial differentiable on 2 nd-1st coordinate in z_{0}. Then $r \operatorname{pdiff} 2\left(f, z_{0}\right)$ is partial differentiable on 1 st coordinate in z_{0} and $\operatorname{partdiff} 1\left(r \operatorname{pdiff} 2\left(f, z_{0}\right), z_{0}\right)=r \cdot \operatorname{hpartdiff} 21\left(f, z_{0}\right)$.
(36) Suppose f is partial differentiable on 2 nd-2nd coordinate in z_{0}. Then $r \operatorname{pdiff} 2\left(f, z_{0}\right)$ is partial differentiable on 2 nd coordinate in z_{0} and partdiff2 $\left(r \operatorname{pdiff} 2\left(f, z_{0}\right), z_{0}\right)=r \cdot \operatorname{hpartdiff} 22\left(f, z_{0}\right)$.
(37) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1 st- 1 st coordinate in z_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1st-1st coordinate in z_{0}.

Then pdiff1 $\left(f_{1}, z_{0}\right) \operatorname{pdiff} 1\left(f_{2}, z_{0}\right)$ is partial differentiable on 1st coordinate in z_{0}.
(38) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1 st- 2 nd coordinate in z_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1st-2nd coordinate in z_{0}.

Then pdiff $1\left(f_{1}, z_{0}\right) \operatorname{pdiff} 1\left(f_{2}, z_{0}\right)$ is partial differentiable on 2 nd coordinate in z_{0}.
(39) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 1 st coordinate in z_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd- 1 st coordinate in z_{0}.

Then pdiff $2\left(f_{1}, z_{0}\right)$ pdiff2 $\left(f_{2}, z_{0}\right)$ is partial differentiable on 1 st coordinate in z_{0}.
(40) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 2 nd coordinate in z_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd-2nd coordinate in z_{0}.

Then pdiff $2\left(f_{1}, z_{0}\right)$ pdiff $2\left(f_{2}, z_{0}\right)$ is partial differentiable on 2 nd coordinate in z_{0}.
(41) Let z_{0} be an element of \mathcal{R}^{2}. Suppose f is partial differentiable on 1 st-1st coordinate in z_{0}. Then $\operatorname{SVF} 1\left(\operatorname{pdiff} 1\left(f, z_{0}\right), z_{0}\right)$ is continuous in $(\operatorname{proj}(1,2))\left(z_{0}\right)$.
(42) Let z_{0} be an element of \mathcal{R}^{2}. Suppose f is partial differentiable on 1 st-2nd coordinate in z_{0}. Then $\operatorname{SVF} 2\left(\operatorname{pdiff} 1\left(f, z_{0}\right), z_{0}\right)$ is continuous in $(\operatorname{proj}(2,2))\left(z_{0}\right)$.
(43) Let z_{0} be an element of \mathcal{R}^{2}. Suppose f is partial differentiable on 2 nd-1st coordinate in z_{0}. Then $\operatorname{SVF} 1\left(\operatorname{pdiff} 2\left(f, z_{0}\right), z_{0}\right)$ is continuous in $(\operatorname{proj}(1,2))\left(z_{0}\right)$.
(44) Let z_{0} be an element of \mathcal{R}^{2}. Suppose f is partial differentiable on 2 nd-2nd coordinate in z_{0}. Then $\operatorname{SVF} 2\left(\operatorname{pdiff} 2\left(f, z_{0}\right), z_{0}\right)$ is continuous in $(\operatorname{proj}(2,2))\left(z_{0}\right)$.
(45) If f is partial differentiable on 1st-1st coordinate in z_{0}, then there exists R such that $R(0)=0$ and R is continuous in 0.
(46) If f is partial differentiable on 1 st-2 nd coordinate in z_{0}, then there exists R such that $R(0)=0$ and R is continuous in 0 .
(47) If f is partial differentiable on 2nd-1st coordinate in z_{0}, then there exists R such that $R(0)=0$ and R is continuous in 0 .
(48) If f is partial differentiable on 2 nd- 2 nd coordinate in z_{0}, then there exists R such that $R(0)=0$ and R is continuous in 0 .

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces \mathcal{R}^{n}. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[10] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[12] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[14] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[17] Bing Xie, Xiquan Liang, and Hongwei Li. Partial differentiation of real binary functions. Formalized Mathematics, 16(4):333-338, 2008, doi:10.2478/v10037-008-0041-z.

