The Cauchy-Riemann Differential Equations of Complex Functions

Hiroshi Yamazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan
Yatsuka Nakamura
Shinshu University
Nagano, Japan

Chanapat Pacharapokin

Shinshu University
Nagano, Japan

\qquad

Abstract

Summary. In this article we prove Cauchy-Riemann differential equations of complex functions. These theorems give necessary and sufficient condition for differentiable function.

MML identifier: CFDIFF_2, version: $\underline{7.11 .024 .125 .1059}$

The articles [20], [21], [6], [7], [22], [8], [3], [1], [4], [14], [13], [19], [16], [9], [2], [5], [10], [17], [11], [18], [12], and [15] provide the notation and terminology for this paper.

Let f be a partial function from \mathbb{C} to \mathbb{C}. The functor $\Re(f)$ yielding a partial function from \mathbb{C} to \mathbb{R} is defined as follows:
(Def. 1) $\operatorname{dom} f=\operatorname{dom} \Re(f)$ and for every complex number z such that $z \in$ dom $\Re(f)$ holds $\Re(f)(z)=\Re\left(f_{z}\right)$.
Let f be a partial function from \mathbb{C} to \mathbb{C}. The functor $\Im(f)$ yields a partial function from \mathbb{C} to \mathbb{R} and is defined as follows:
(Def. 2) $\operatorname{dom} f=\operatorname{dom} \Im(f)$ and for every complex number z such that $z \in$ $\operatorname{dom} \Im(f)$ holds $\Im(f)(z)=\Im\left(f_{z}\right)$.
One can prove the following propositions:
(1) For every partial function f from \mathbb{C} to \mathbb{C} such that f is total holds $\operatorname{dom} \Re(f)=\mathbb{C}$ and $\operatorname{dom} \Im(f)=\mathbb{C}$.
(2) Let f be a partial function from \mathbb{C} to \mathbb{C}, u, v be partial functions from \mathcal{R}^{2} to \mathbb{R}, z_{0} be a complex number, x_{0}, y_{0} be real numbers, and x_{1} be an element of \mathcal{R}^{2}. Suppose that
(i) for all real numbers x, y such that $x+y \cdot i \in \operatorname{dom} f$ holds $\langle x, y\rangle \in \operatorname{dom} u$ and $u(\langle x, y\rangle)=\Re(f)(x+y \cdot i)$,
(ii) for all real numbers x, y such that $x+y \cdot i \in \operatorname{dom} f$ holds $\langle x, y\rangle \in \operatorname{dom} v$ and $v(\langle x, y\rangle)=\Im(f)(x+y \cdot i)$,
(iii) $z_{0}=x_{0}+y_{0} \cdot i$,
(iv) $x_{1}=\left\langle x_{0}, y_{0}\right\rangle$, and
(v) $\quad f$ is differentiable in z_{0}.

Then
(vi) u is partially differentiable in x_{1} w.r.t. coordinate 1 and partially differentiable in x_{1} w.r.t. coordinate 2 ,
(vii) $\quad v$ is partially differentiable in x_{1} w.r.t. coordinate 1 and partially differentiable in x_{1} w.r.t. coordinate 2 ,
(viii) $\Re\left(f^{\prime}\left(z_{0}\right)\right)=\operatorname{partdiff}\left(u, x_{1}, 1\right)$,
(ix) $\Re\left(f^{\prime}\left(z_{0}\right)\right)=\operatorname{partdiff}\left(v, x_{1}, 2\right)$,
(x) $\quad \Im\left(f^{\prime}\left(z_{0}\right)\right)=-\operatorname{partdiff}\left(u, x_{1}, 2\right)$, and
(xi) $\quad \Im\left(f^{\prime}\left(z_{0}\right)\right)=\operatorname{partdiff}\left(v, x_{1}, 1\right)$.
(3) For every sequence s of real numbers holds s is convergent and $\lim s=0$ iff $|s|$ is convergent and $\lim |s|=0$.
(4) Let X be a real normed space and s be a sequence of X. Then s is convergent and $\lim s=0_{X}$ if and only if $\|s\|$ is convergent and $\lim \|s\|=0$.
(5) Let u be a partial function from \mathcal{R}^{2} to \mathbb{R}, x_{0}, y_{0} be real numbers, and x_{1} be an element of \mathcal{R}^{2}. Suppose $x_{1}=\left\langle x_{0}, y_{0}\right\rangle$ and $\langle u\rangle$ is differentiable in x_{1}. Then
(i) u is partially differentiable in x_{1} w.r.t. coordinate 1 and partially differentiable in x_{1} w.r.t. coordinate 2 ,
(ii) $\left\langle\right.$ partdiff $\left.\left(u, x_{1}, 1\right)\right\rangle=\langle u\rangle^{\prime}\left(x_{1}\right)(\langle 1,0\rangle)$, and
(iii) $\left\langle\operatorname{partdiff}\left(u, x_{1}, 2\right)\right\rangle=\langle u\rangle^{\prime}\left(x_{1}\right)(\langle 0,1\rangle)$.
(6) Let f be a partial function from \mathbb{C} to \mathbb{C}, u, v be partial functions from \mathcal{R}^{2} to \mathbb{R}, z_{0} be a complex number, x_{0}, y_{0} be real numbers, and x_{1} be an element of \mathcal{R}^{2}. Suppose that for all real numbers x, y such that $\langle x, y\rangle \in \operatorname{dom} v$ holds $x+y \cdot i \in \operatorname{dom} f$ and for all real numbers x, y such that $x+y \cdot i \in \operatorname{dom} f$ holds $\langle x, y\rangle \in \operatorname{dom} u$ and $u(\langle x, y\rangle)=\Re(f)(x+y \cdot i)$ and for all real numbers x, y such that $x+y \cdot i \in \operatorname{dom} f$ holds $\langle x, y\rangle \in \operatorname{dom} v$ and $v(\langle x, y\rangle)=\Im(f)(x+y \cdot i)$ and $z_{0}=x_{0}+y_{0} \cdot i$ and $x_{1}=\left\langle x_{0}, y_{0}\right\rangle$ and $\langle u\rangle$ is differentiable in x_{1} and $\langle v\rangle$ is differentiable in x_{1} and partdiff $\left(u, x_{1}, 1\right)=\operatorname{partdiff}\left(v, x_{1}, 2\right)$ and partdiff $\left(u, x_{1}, 2\right)=-\operatorname{partdiff}\left(v, x_{1}, 1\right)$. Then f is differentiable in z_{0} and u is partially differentiable in x_{1} w.r.t. coordinate 1 and partially differentiable in x_{1} w.r.t. coordinate 2 and v is partially differentiable in
x_{1} w.r.t. coordinate 1 and partially differentiable in x_{1} w.r.t. coordinate 2 and $\Re\left(f^{\prime}\left(z_{0}\right)\right)=\operatorname{partdiff}\left(u, x_{1}, 1\right)$ and $\Re\left(f^{\prime}\left(z_{0}\right)\right)=\operatorname{partdiff}\left(v, x_{1}, 2\right)$ and $\Im\left(f^{\prime}\left(z_{0}\right)\right)=-\operatorname{partdiff}\left(u, x_{1}, 2\right)$ and $\Im\left(f^{\prime}\left(z_{0}\right)\right)=\operatorname{partdiff}\left(v, x_{1}, 1\right)$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[11] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.
[12] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces \mathcal{R}^{n}. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.
[13] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[14] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[15] Chanapat Pacharapokin, Hiroshi Yamazaki, Yasunari Shidama, and Yatsuka Nakamura. Complex function differentiability. Formalized Mathematics, 17(2):67-72, 2009, doi: 10.2478/v10037-009-0007-9.
[16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[17] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[18] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
[19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

