Arithmetic Operations on Functions from Sets into Functional Sets

Artur Korniłowicz ${ }^{1}$
Institute of Computer Science
University of Bialystok
Sosnowa 64, 15-887 Bialystok
Poland

Summary. In this paper we introduce sets containing number-valued functions. Different arithmetic operations on maps between any set and such functional sets are later defined.

MML identifier: VALUED_2, version: $\underline{7.11 .014 .117 .1046}$

The notation and terminology used here are introduced in the following papers: [4], [9], [10], [2], [11], [6], [3], [1], [8], [5], and [7].

1. Functional sets

In this paper x, X, X_{1}, X_{2} are sets.
Let Y be a functional set. The functor $\operatorname{DOMS}(Y)$ is defined by:
(Def. 1) $\operatorname{DOMS}(Y)=\bigcup\{\operatorname{dom} f: f$ ranges over elements of $Y\}$.
Let us consider X. We say that X is complex-functions-membered if and only if:
(Def. 2) If $x \in X$, then x is a complex-valued function.
Let us consider X. We say that X is extended-real-functions-membered if and only if:
(Def. 3) If $x \in X$, then x is an extended real-valued function.
Let us consider X. We say that X is real-functions-membered if and only if:

[^0](Def. 4) If $x \in X$, then x is a real-valued function.
Let us consider X. We say that X is rational-functions-membered if and only if:
(Def. 5) If $x \in X$, then x is a rational-valued function.
Let us consider X. We say that X is integer-functions-membered if and only if:
(Def. 6) If $x \in X$, then x is an integer-valued function.
Let us consider X. We say that X is natural-functions-membered if and only if:
(Def. 7) If $x \in X$, then x is a natural-valued function.
One can check the following observations:

* every set which is natural-functions-membered is also integer-functionsmembered,
* every set which is integer-functions-membered is also rational-functionsmembered,
* every set which is rational-functions-membered is also real-functionsmembered,
* every set which is real-functions-membered is also complex-functionsmembered, and
* every set which is real-functions-membered is also extended-real-functions-membered.
Let us mention that every set which is empty is also natural-functionsmembered.

Let f be a complex-valued function. Observe that $\{f\}$ is complex-functionsmembered.

One can verify that every set which is complex-functions-membered is also functional and every set which is extended-real-functions-membered is also functional.

One can verify that there exists a set which is natural-functions-membered and non empty.

Let X be a complex-functions-membered set. One can verify that every subset of X is complex-functions-membered.

Let X be an extended-real-functions-membered set. Note that every subset of X is extended-real-functions-membered.

Let X be a real-functions-membered set. Note that every subset of X is real-functions-membered.

Let X be a rational-functions-membered set. Observe that every subset of X is rational-functions-membered.

Let X be an integer-functions-membered set. Note that every subset of X is integer-functions-membered.

Let X be a natural-functions-membered set. Observe that every subset of X is natural-functions-membered.

Let D be a set. The functor \mathbb{C}-PFuncs D yields a set and is defined by:
(Def. 8) For every set f holds $f \in \mathbb{C}$-PFuncs D iff f is a partial function from D to \mathbb{C}.
Let D be a set. The functor \mathbb{C}-Funcs D yielding a set is defined by:
(Def. 9) For every set f holds $f \in \mathbb{C}$-Funcs D iff f is a function from D into \mathbb{C}.
Let D be a set. The functor $\overline{\mathbb{R}}$-PFuncs D yields a set and is defined by:
(Def. 10) For every set f holds $f \in \overline{\mathbb{R}}$-PFuncs D iff f is a partial function from D to $\overline{\mathbb{R}}$.
Let D be a set. The functor $\overline{\mathbb{R}}$-Funcs D yields a set and is defined as follows:
(Def. 11) For every set f holds $f \in \overline{\mathbb{R}}$-Funcs D iff f is a function from D into $\overline{\mathbb{R}}$.
Let D be a set. The functor \mathbb{R}-PFuncs D yielding a set is defined by:
(Def. 12) For every set f holds $f \in \mathbb{R}$-PFuncs D iff f is a partial function from D to \mathbb{R}.
Let D be a set. The functor \mathbb{R}-Funcs D yielding a set is defined by:
(Def. 13) For every set f holds $f \in \mathbb{R}$-Funcs D iff f is a function from D into \mathbb{R}.
Let D be a set. The functor \mathbb{Q}-PFuncs D yields a set and is defined as follows:
(Def. 14) For every set f holds $f \in \mathbb{Q}$-PFuncs D iff f is a partial function from D to \mathbb{Q}.
Let D be a set. The functor \mathbb{Q}-Funcs D yields a set and is defined by:
(Def. 15) For every set f holds $f \in \mathbb{Q}$-Funcs D iff f is a function from D into \mathbb{Q}.
Let D be a set. The functor \mathbb{Z}-PFuncs D yielding a set is defined by:
(Def. 16) For every set f holds $f \in \mathbb{Z}$-PFuncs D iff f is a partial function from D to \mathbb{Z}.
Let D be a set. The functor \mathbb{Z}-Funcs D yields a set and is defined as follows:
(Def. 17) For every set f holds $f \in \mathbb{Z}$-Funcs D iff f is a function from D into \mathbb{Z}.
Let D be a set. The functor \mathbb{N}-PFuncs D yields a set and is defined by:
(Def. 18) For every set f holds $f \in \mathbb{N}$-PFuncs D iff f is a partial function from D to \mathbb{N}.
Let D be a set. The functor \mathbb{N}-Funcs D yielding a set is defined by:
(Def. 19) For every set f holds $f \in \mathbb{N}$-Funcs D iff f is a function from D into \mathbb{N}.
The following propositions are true:
(1) \mathbb{C}-Funcs X is a subset of \mathbb{C}-PFuncs X.
(2) $\overline{\mathbb{R}}$-Funcs X is a subset of $\overline{\mathbb{R}}$-PFuncs X.
(3) \mathbb{R}-Funcs X is a subset of \mathbb{R}-PFuncs X.
(4) \mathbb{Q}-Funcs X is a subset of \mathbb{Q}-PFuncs X.
(5) \mathbb{Z}-Funcs X is a subset of \mathbb{Z}-PFuncs X.
(6) \mathbb{N}-Funcs X is a subset of \mathbb{N}-PFuncs X.

Let us consider X. One can verify the following observations:

* \mathbb{C}-PFuncs X is complex-functions-membered,
* \mathbb{C}-Funcs X is complex-functions-membered,
* $\overline{\mathbb{R}}$-PFuncs X is extended-real-functions-membered,
* $\overline{\mathbb{R}}$-Funcs X is extended-real-functions-membered,
* \mathbb{R}-PFuncs X is real-functions-membered,
* \mathbb{R}-Funcs X is real-functions-membered,
* \mathbb{Q}-PFuncs X is rational-functions-membered,
* \mathbb{Q}-Funcs X is rational-functions-membered,
* \mathbb{Z}-PFuncs X is integer-functions-membered,
* \mathbb{Z}-Funcs X is integer-functions-membered,
* \mathbb{N}-PFuncs X is natural-functions-membered, and
* \mathbb{N}-Funcs X is natural-functions-membered.

Let X be a complex-functions-membered set. Observe that every element of X is complex-valued.

Let X be an extended-real-functions-membered set. One can check that every element of X is extended real-valued.

Let X be a real-functions-membered set. One can check that every element of X is real-valued.

Let X be a rational-functions-membered set. One can check that every element of X is rational-valued.

Let X be an integer-functions-membered set. Observe that every element of X is integer-valued.

Let X be a natural-functions-membered set. Observe that every element of X is natural-valued.

Let X, x be sets, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. Observe that $f(x)$ is function-like and relationlike.

Let X, x be sets, let Y be an extended-real-functions-membered set, and let f be a partial function from X to Y. Observe that $f(x)$ is function-like and relation-like.

Let us consider X, x, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. One can check that $f(x)$ is complex-valued.

Let us consider X, x, let Y be an extended-real-functions-membered set, and let f be a partial function from X to Y. One can verify that $f(x)$ is extended real-valued.

Let us consider X, x, let Y be a real-functions-membered set, and let f be a partial function from X to Y. Note that $f(x)$ is real-valued.

Let us consider X, x, let Y be a rational-functions-membered set, and let f be a partial function from X to Y. Note that $f(x)$ is rational-valued.

Let us consider X, x, let Y be an integer-functions-membered set, and let f be a partial function from X to Y. Note that $f(x)$ is integer-valued.

Let us consider X, x, let Y be a natural-functions-membered set, and let f be a partial function from X to Y. One can check that $f(x)$ is natural-valued.

Let us consider X and let Y be a complex-membered set. One can check that $X \dot{\rightarrow} Y$ is complex-functions-membered.

Let us consider X and let Y be an extended real-membered set. Observe that $X \dot{\rightarrow} Y$ is extended-real-functions-membered.

Let us consider X and let Y be a real-membered set. Observe that $X \dot{\rightarrow} Y$ is real-functions-membered.

Let us consider X and let Y be a rational-membered set. Observe that $X \dot{\rightarrow} Y$ is rational-functions-membered.

Let us consider X and let Y be an integer-membered set. Observe that $X \dot{\rightarrow} Y$ is integer-functions-membered.

Let us consider X and let Y be a natural-membered set. One can verify that $X \dot{\rightarrow} Y$ is natural-functions-membered.

Let us consider X and let Y be a complex-membered set. Note that Y^{X} is complex-functions-membered.

Let us consider X and let Y be an extended real-membered set. Note that Y^{X} is extended-real-functions-membered.

Let us consider X and let Y be a real-membered set. Note that Y^{X} is real-functions-membered.

Let us consider X and let Y be a rational-membered set. Note that Y^{X} is rational-functions-membered.

Let us consider X and let Y be an integer-membered set. Note that Y^{X} is integer-functions-membered.

Let us consider X and let Y be a natural-membered set. One can check that Y^{X} is natural-functions-membered.

Let R be a binary relation. We say that R is complex-functions-valued if and only if:
(Def. 20) $\quad \operatorname{rng} R$ is complex-functions-membered.
We say that R is extended-real-functions-valued if and only if:
(Def. 21) $\quad \operatorname{rng} R$ is extended-real-functions-membered.
We say that R is real-functions-valued if and only if:
(Def. 22) rng R is real-functions-membered.
We say that R is rational-functions-valued if and only if:
(Def. 23) $\operatorname{rng} R$ is rational-functions-membered.
We say that R is integer-functions-valued if and only if:
(Def. 24) rng R is integer-functions-membered.
We say that R is natural-functions-valued if and only if:
(Def. 25) rng R is natural-functions-membered.
Let f be a function. Let us observe that f is complex-functions-valued if and only if:
(Def. 26) For every set x such that $x \in \operatorname{dom} f$ holds $f(x)$ is a complex-valued function.
Let us observe that f is extended-real-functions-valued if and only if:
(Def. 27) For every set x such that $x \in \operatorname{dom} f$ holds $f(x)$ is an extended real-valued function.
Let us observe that f is real-functions-valued if and only if:
(Def. 28) For every set x such that $x \in \operatorname{dom} f$ holds $f(x)$ is a real-valued function.
Let us observe that f is rational-functions-valued if and only if:
(Def. 29) For every set x such that $x \in \operatorname{dom} f$ holds $f(x)$ is a rational-valued function.
Let us observe that f is integer-functions-valued if and only if:
(Def. 30) For every set x such that $x \in \operatorname{dom} f$ holds $f(x)$ is an integer-valued function.
Let us observe that f is natural-functions-valued if and only if:
(Def. 31) For every set x such that $x \in \operatorname{dom} f$ holds $f(x)$ is a natural-valued function.
One can verify the following observations:

* every binary relation which is natural-functions-valued is also integer-functions-valued,
* every binary relation which is integer-functions-valued is also rational-functions-valued,
* every binary relation which is rational-functions-valued is also real-functions-valued,
* every binary relation which is real-functions-valued is also extended-real-functions-valued, and
* every binary relation which is real-functions-valued is also complex-functions-valued.

Let us note that every binary relation which is empty is also natural-functions-valued.

Let us mention that there exists a function which is natural-functions-valued.
Let R be a complex-functions-valued binary relation. Note that $\operatorname{rng} R$ is complex-functions-membered.

Let R be an extended-real-functions-valued binary relation. Observe that $\operatorname{rng} R$ is extended-real-functions-membered.

Let R be a real-functions-valued binary relation. Note that $\operatorname{rng} R$ is real-functions-membered.

Let R be a rational-functions-valued binary relation. Observe that $\mathrm{rng} R$ is rational-functions-membered.

Let R be an integer-functions-valued binary relation. One can verify that $\operatorname{rng} R$ is integer-functions-membered.

Let R be a natural-functions-valued binary relation. One can check that $\operatorname{rng} R$ is natural-functions-membered.

Let us consider X and let Y be a complex-functions-membered set. Observe that every partial function from X to Y is complex-functions-valued.

Let us consider X and let Y be an extended-real-functions-membered set. One can check that every partial function from X to Y is extended-real-functions-valued.

Let us consider X and let Y be a real-functions-membered set. One can check that every partial function from X to Y is real-functions-valued.

Let us consider X and let Y be a rational-functions-membered set. Observe that every partial function from X to Y is rational-functions-valued.

Let us consider X and let Y be an integer-functions-membered set. Observe that every partial function from X to Y is integer-functions-valued.

Let us consider X and let Y be a natural-functions-membered set. Note that every partial function from X to Y is natural-functions-valued.

Let f be a complex-functions-valued function and let us consider x. Note that $f(x)$ is function-like and relation-like.

Let f be an extended-real-functions-valued function and let us consider x. Observe that $f(x)$ is function-like and relation-like.

Let f be a complex-functions-valued function and let us consider x. One can verify that $f(x)$ is complex-valued.

Let f be an extended-real-functions-valued function and let us consider x. Note that $f(x)$ is extended real-valued.

Let f be a real-functions-valued function and let us consider x. One can verify that $f(x)$ is real-valued.

Let f be a rational-functions-valued function and let us consider x. Observe that $f(x)$ is rational-valued.

Let f be an integer-functions-valued function and let us consider x. Note that $f(x)$ is integer-valued.

Let f be a natural-functions-valued function and let us consider x. One can check that $f(x)$ is natural-valued.

2. Operations

For simplicity, we adopt the following rules: Y, Y_{1}, Y_{2} are complex-functionsmembered sets, c, c_{1}, c_{2} are complex numbers, f is a partial function from X
to Y, f_{1} is a partial function from X_{1} to Y_{1}, f_{2} is a partial function from X_{2} to Y_{2}, and g, h, k are complex-valued functions.

We now state a number of propositions:
(7) If $g \neq \emptyset$ and $g+c_{1}=g+c_{2}$, then $c_{1}=c_{2}$.
(8) If $g \neq \emptyset$ and $g-c_{1}=g-c_{2}$, then $c_{1}=c_{2}$.
(9) If $g \neq \emptyset$ and g is non-empty and $g c_{1}=g c_{2}$, then $c_{1}=c_{2}$.
(10) $-(g+c)=-g-c$.
(11) $-(g-c)=-g+c$.
(12) $\left(g+c_{1}\right)+c_{2}=g+\left(c_{1}+c_{2}\right)$.
(13) $\left(g+c_{1}\right)-c_{2}=g+\left(c_{1}-c_{2}\right)$.
(14) $\left(g-c_{1}\right)+c_{2}=g-\left(c_{1}-c_{2}\right)$.
(15) $g-c_{1}-c_{2}=g-\left(c_{1}+c_{2}\right)$.
(16) $g c_{1} c_{2}=g\left(c_{1} \cdot c_{2}\right)$.
(17) $-(g+h)=-g-h$.
(18) $g-h=-(h-g)$.
(19) $(g h) / k=g(h / k)$.
(20) $(g / h) k=(g k) / h$.
(21) $g / h / k=g /(h k)$.
(22) $c-g=(-c) g$.
(23) $c-g=-c g$.
(24) $(-c) g=-c g$.
(25) $-g h=(-g) h$.
(26) $-g / h=(-g) / h$.
(27) $-g / h=g /-h$.

Let f be a complex-valued function and let c be a complex number. The functor f / c yields a function and is defined as follows:
(Def. 32) $f / c=\frac{1}{c} f$.
Let f be a complex-valued function and let c be a complex number. Note that f / c is complex-valued.

Let f be a real-valued function and let r be a real number. Note that f / r is real-valued.

Let f be a rational-valued function and let r be a rational number. One can check that f / r is rational-valued.

Let f be a complex-valued finite sequence and let c be a complex number. One can check that f / c is finite sequence-like.

The following propositions are true:
(28) $\operatorname{dom}(g / c)=\operatorname{dom} g$.

$$
\begin{equation*}
(g / c)(x)=\frac{g(x)}{c} . \tag{29}
\end{equation*}
$$

(30) $(-g) / c=-g / c$.
(31) $g /-c=-g / c$.
(32) $g /-c=(-g) / c$.
(33) If $g \neq \emptyset$ and g is non-empty and $g / c_{1}=g / c_{2}$, then $c_{1}=c_{2}$.
(34) $\left(g c_{1}\right) / c_{2}=g \frac{c_{1}}{c_{2}}$.
(35) $\left(g / c_{1}\right) c_{2}=\left(g c_{2}\right) / c_{1}$.
(36) $g / c_{1} / c_{2}=g /\left(c_{1} \cdot c_{2}\right)$.
(37) $(g+h) / c=g / c+h / c$.
(38) $(g-h) / c=g / c-h / c$.
(39) $(g h) / c=g(h / c)$.
(40) $\quad(g / h) / c=g /(h c)$.

Let us consider X, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. The functor $-f$ yields a function and is defined by:
(Def. 33) $\operatorname{dom}(-f)=\operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom}(-f)$ holds $(-f)(x)=-f(x)$.
Let us consider X, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. Then $-f$ is a partial function from X to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, and let f be a partial function from X to Y. Then $-f$ is a partial function from X to \mathbb{R}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a rational-functions-membered set, and let f be a partial function from X to Y. Then $-f$ is a partial function from X to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be an integer-functions-membered set, and let f be a partial function from X to Y. Then $-f$ is a partial function from X to Z-PFuncs DOMS (Y).

Let Y be a complex-functions-membered set and let f be a finite sequence of elements of Y. One can check that $-f$ is finite sequence-like.

We now state two propositions:
(41) $--f=f$.
(42) If $-f_{1}=-f_{2}$, then $f_{1}=f_{2}$.

Let X be a complex-functions-membered set, let Y be a set, and let f be a partial function from X to Y. The functor $f \circ-$ yielding a function is defined as follows:
(Def. 34) $\operatorname{dom}(f \circ-)=\operatorname{dom} f$ and for every complex-valued function x such that $x \in \operatorname{dom}(f \circ-)$ holds $(f \circ-)(x)=f(-x)$.

Let us consider X, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. The functor ${ }^{1} / f$ yields a function and is defined as follows:
(Def. 35) $\quad \operatorname{dom}{ }^{1} / f=\operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom}^{1} / f$ holds $\left({ }^{1} / f\right)(x)=f(x)^{-1}$.
Let us consider X, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. Then ${ }^{1} / f$ is a partial function from X to \mathbb{C}-PFuncs DOMS (Y).

Let us consider X, let Y be a real-functions-membered set, and let f be a partial function from X to Y. Then ${ }^{1} / f$ is a partial function from X to \mathbb{R}-PFuncs DOMS (Y).

Let us consider X, let Y be a rational-functions-membered set, and let f be a partial function from X to Y. Then ${ }^{1} / f$ is a partial function from X to \mathbb{Q}-PFuncs DOMS (Y).

Let Y be a complex-functions-membered set and let f be a finite sequence of elements of Y. Note that ${ }^{1} / f$ is finite sequence-like.

The following proposition is true
(43) $\quad 1 / 1 / f=f$.

Let us consider X, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. The functor $|f|$ yields a function and is defined by:
(Def. 36) $\quad \operatorname{dom}|f|=\operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom}|f|$ holds $|f|(x)=$ $|f(x)|$.
Let us consider X, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. Then $|f|$ is a partial function from X to \mathbb{C}-PFuncs DOMS (Y).

Let us consider X, let Y be a real-functions-membered set, and let f be a partial function from X to Y. Then $|f|$ is a partial function from X to \mathbb{R}-PFuncs DOMS (Y).

Let us consider X, let Y be a rational-functions-membered set, and let f be a partial function from X to Y. Then $|f|$ is a partial function from X to \mathbb{Q}-PFuncs DOMS (Y).

Let us consider X, let Y be an integer-functions-membered set, and let f be a partial function from X to Y. Then $|f|$ is a partial function from X to \mathbb{N}-PFuncs DOMS (Y).

Let Y be a complex-functions-membered set and let f be a finite sequence of elements of Y. Note that $|f|$ is finite sequence-like.

We now state the proposition
(44) $\quad||f||=|f|$.

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. The functor $f+c$
yields a function and is defined by:
(Def. 37) $\operatorname{dom}(f+c)=\operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom}(f+c)$ holds $(f+c)(x)=c+f(x)$.
Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. Then $f+c$ is a partial function from X to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let c be a real number. Then $f+c$ is a partial function from X to \mathbb{R}-PFuncs DOMS (Y).

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let c be a rational number. Then $f+c$ is a partial function from X to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be an integer-functions-membered set, let f be a partial function from X to Y, and let c be an integer number. Then $f+c$ is a partial function from X to \mathbb{Z}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a natural-functions-membered set, let f be a partial function from X to Y, and let c be a natural number. Then $f+c$ is a partial function from X to \mathbb{N}-PFuncs $\operatorname{DOMS}(Y)$.

One can prove the following propositions:
(45) $f+c_{1}+c_{2}=f+\left(c_{1}+c_{2}\right)$.
(46) If $f \neq \emptyset$ and f is non-empty and $f+c_{1}=f+c_{2}$, then $c_{1}=c_{2}$.

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. The functor $f-c$ yields a function and is defined as follows:
(Def. 38) $f-c=f+-c$.
We now state two propositions:
(47) $\operatorname{dom}(f-c)=\operatorname{dom} f$.
(48) If $x \in \operatorname{dom}(f-c)$, then $(f-c)(x)=f(x)-c$.

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. Then $f-c$ is a partial function from X to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let c be a real number. Then $f-c$ is a partial function from X to \mathbb{R}-PFuncs DOMS (Y).

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let c be a rational number. Then $f-c$ is a partial function from X to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be an integer-functions-membered set, let f be a partial function from X to Y, and let c be an integer number. Then $f-c$ is a partial function from X to \mathbb{Z}-PFuncs $\operatorname{DOMS}(Y)$.

We now state four propositions:
(49) If $f \neq \emptyset$ and f is non-empty and $f-c_{1}=f-c_{2}$, then $c_{1}=c_{2}$.

$$
\begin{equation*}
\left(f+c_{1}\right)-c_{2}=f+\left(c_{1}-c_{2}\right) . \tag{50}
\end{equation*}
$$

$$
\left(f-c_{1}\right)+c_{2}=f-\left(c_{1}-c_{2}\right)
$$

$$
\begin{equation*}
f-c_{1}-c_{2}=f-\left(c_{1}+c_{2}\right) . \tag{52}
\end{equation*}
$$

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. The functor $f \cdot c$ yielding a function is defined as follows:
(Def. 39) $\operatorname{dom}(f \cdot c)=\operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom}(f \cdot c)$ holds $(f \cdot c)(x)=c f(x)$.
Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. Then $f \cdot c$ is a partial function from X to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let c be a real number. Then $f \cdot c$ is a partial function from X to \mathbb{R}-PFuncs DOMS (Y).

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let c be a rational number. Then $f \cdot c$ is a partial function from X to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be an integer-functions-membered set, let f be a partial function from X to Y, and let c be an integer number. Then $f \cdot c$ is a partial function from X to \mathbb{Z}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a natural-functions-membered set, let f be a partial function from X to Y, and let c be a natural number. Then $f \cdot c$ is a partial function from X to \mathbb{N}-PFuncs $\operatorname{DOMS}(Y)$.

The following two propositions are true:
(53) $f \cdot c_{1} \cdot c_{2}=f \cdot\left(c_{1} \cdot c_{2}\right)$.
(54) If $f \neq \emptyset$ and f is non-empty and for every x such that $x \in \operatorname{dom} f$ holds $f(x)$ is non-empty and $f \cdot c_{1}=f \cdot c_{2}$, then $c_{1}=c_{2}$.
Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. The functor f / c yielding a function is defined as follows:
(Def. 40) $\quad f / c=f \cdot c^{-1}$.
One can prove the following propositions:
(55) $\operatorname{dom}(f / c)=\operatorname{dom} f$.
(56) If $x \in \operatorname{dom}(f / c)$, then $(f / c)(x)=c^{-1} f(x)$.

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. Then f / c is a partial function from X to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let c be a real number. Then f / c is a partial function from X to \mathbb{R}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let c be a rational number. Then f / c is a partial function from X to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

The following propositions are true:

$$
\begin{equation*}
f / c_{1} / c_{2}=f /\left(c_{1} \cdot c_{2}\right) \tag{57}
\end{equation*}
$$

(58) If $f \neq \emptyset$ and f is non-empty and for every x such that $x \in \operatorname{dom} f$ holds $f(x)$ is non-empty and $f / c_{1}=f / c_{2}$, then $c_{1}=c_{2}$.
Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. The functor $f+g$ yielding a function is defined as follows:
(Def. 41) $\operatorname{dom}(f+g)=\operatorname{dom} f \cap \operatorname{dom} g$ and for every set x such that $x \in \operatorname{dom}(f+g)$ holds $(f+g)(x)=f(x)+g(x)$.
Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. Then $f+g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let g be a real-valued function. Then $f+g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{R}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let g be a rational-valued function. Then $f+g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be an integer-functions-membered set, let f be a partial function from X to Y, and let g be an integer-valued function. Then $f+g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{Z}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a natural-functions-membered set, let f be a partial function from X to Y, and let g be a natural-valued function. Then $f+g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{N}-PFuncs DOMS (Y).

Next we state two propositions:

$$
\begin{equation*}
f+g+h=f+(g+h) \tag{59}
\end{equation*}
$$

(60) $-(f+g)=(-f)+-g$.

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. The functor $f-g$ yields a function and is defined by:
(Def. 42) $\quad f-g=f+-g$.
We now state two propositions:
(61) $\operatorname{dom}(f-g)=\operatorname{dom} f \cap \operatorname{dom} g$.
(62) If $x \in \operatorname{dom}(f-g)$, then $(f-g)(x)=f(x)-g(x)$.

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. Then $f-g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let g be a real-valued function. Then $f-g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{R}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let g be a rational-valued function. Then $f-g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be an integer-functions-membered set, let f be a partial function from X to Y, and let g be an integer-valued function. Then $f-g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{Z}-PFuncs $\operatorname{DOMS}(Y)$.

The following propositions are true:
(63) $f--g=f+g$.

$$
\begin{equation*}
-(f-g)=(-f)+g \tag{64}
\end{equation*}
$$

$$
\begin{equation*}
(f+g)-h=f+(g-h) . \tag{66}
\end{equation*}
$$

$(f-g)+h=f-(g-h)$.
$f-g-h=f-(g+h)$.
Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. The functor $f \cdot g$ yielding a function is defined by:
(Def. 43) $\quad \operatorname{dom}(f \cdot g)=\operatorname{dom} f \cap \operatorname{dom} g$ and for every set x such that $x \in \operatorname{dom}(f \cdot g)$ holds $(f \cdot g)(x)=f(x) g(x)$.
Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. Then $f \cdot g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let g be a real-valued function. Then $f \cdot g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{R}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let g be a rational-valued function. Then $f \cdot g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be an integer-functions-membered set, let f be a partial function from X to Y, and let g be an integer-valued function. Then $f \cdot g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{Z}-PFuncs DOMS (Y).

Let us consider X, let Y be a natural-functions-membered set, let f be a partial function from X to Y, and let g be a natural-valued function. Then $f \cdot g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{N}-PFuncs $\operatorname{DOMS}(Y)$.

Next we state three propositions:

$$
\begin{equation*}
f \cdot-g=(-f) \cdot g . \tag{68}
\end{equation*}
$$

$$
\begin{align*}
& f \cdot-g=-f \cdot g . \tag{69}\\
& f \cdot g \cdot h=f \cdot(g h) .
\end{align*}
$$

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. The functor f / g yields a function and is defined by:
(Def. 44) $\quad f / g=f \cdot g^{-1}$.
Next we state two propositions:
(71) $\operatorname{dom}(f / g)=\operatorname{dom} f \cap \operatorname{dom} g$.
(72) If $x \in \operatorname{dom}(f / g)$, then $(f / g)(x)=f(x) / g(x)$.

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. Then f / g is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let g be a real-valued function. Then f / g is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{R}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let g be a rational-valued function. Then f / g is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Next we state the proposition
(73) $(f \cdot g) / h=f \cdot(g / h)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. The functor $f+g$ yielding a function is defined as follows:
(Def. 45) $\operatorname{dom}(f+g)=\operatorname{dom} f \cap \operatorname{dom} g$ and for every set x such that $x \in \operatorname{dom}(f+g)$ holds $(f+g)(x)=f(x)+g(x)$.
Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f+g$ is a partial function from $X_{1} \cap X_{2}$ to \mathbb{C}-PFuncs $\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be real-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f+g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{R}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be rational-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f+g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{Q}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be integer-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to
Y_{2}. Then $f+g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{Z}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be natural-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f+g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{N}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

We now state three propositions:
(74) $f_{1}+f_{2}=f_{2}+f_{1}$.
(75) $\left(f+f_{1}\right)+f_{2}=f+\left(f_{1}+f_{2}\right)$.
(76) $-\left(f_{1}+f_{2}\right)=\left(-f_{1}\right)+-f_{2}$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. The functor $f-g$ yields a function and is defined by:
(Def. 46) $\quad \operatorname{dom}(f-g)=\operatorname{dom} f \cap \operatorname{dom} g$ and for every set x such that $x \in \operatorname{dom}(f-g)$ holds $(f-g)(x)=f(x)-g(x)$.
Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f-g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{C}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be real-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f-g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{R}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be rational-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f-g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{Q}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be integer-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f-g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{Z}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

One can prove the following propositions:

$$
\begin{equation*}
f_{1}-f_{2}=-\left(f_{2}-f_{1}\right) \tag{77}
\end{equation*}
$$

$-\left(f_{1}-f_{2}\right)=\left(-f_{1}\right)+f_{2}$.
$\left(f+f_{1}\right)-f_{2}=f+\left(f_{1}-f_{2}\right)$.
$\left(f-f_{1}\right)+f_{2}=f-\left(f_{1}-f_{2}\right)$
(81) $f-f_{1}-f_{2}=f-\left(f_{1}+f_{2}\right)$.
(82) $f-f_{1}-f_{2}=f-f_{2}-f_{1}$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}.

The functor $f \cdot g$ yields a function and is defined by:
(Def. 47) $\operatorname{dom}(f \cdot g)=\operatorname{dom} f \cap \operatorname{dom} g$ and for every set x such that $x \in \operatorname{dom}(f \cdot g)$ holds $(f \cdot g)(x)=f(x) g(x)$.
Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f \cdot g$ is a partial function from $X_{1} \cap X_{2}$ to \mathbb{C}-PFuncs $\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be real-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f \cdot g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{R}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be rational-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f \cdot g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{Q}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be integer-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f \cdot g$ is a partial function from $X_{1} \cap X_{2}$ to \mathbb{Z} - $\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be natural-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f \cdot g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{N}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

We now state several propositions:
(83) $f_{1} \cdot f_{2}=f_{2} \cdot f_{1}$.

$$
\begin{align*}
& \left(f \cdot f_{1}\right) \cdot f_{2}=f \cdot\left(f_{1} \cdot f_{2}\right) . \tag{84}\\
& \left(-f_{1}\right) \cdot f_{2}=-f_{1} \cdot f_{2} . \tag{85}\\
& f_{1} \cdot-f_{2}=-f_{1} \cdot f_{2} . \tag{86}\\
& f \cdot\left(f_{1}+f_{2}\right)=f \cdot f_{1}+f \cdot f_{2} . \tag{87}\\
& \left(f_{1}+f_{2}\right) \cdot f=f_{1} \cdot f+f_{2} \cdot f . \tag{88}\\
& f \cdot\left(f_{1}-f_{2}\right)=f \cdot f_{1}-f \cdot f_{2} . \tag{89}\\
& \left(f_{1}-f_{2}\right) \cdot f=f_{1} \cdot f-f_{2} \cdot f . \tag{90}
\end{align*}
$$

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. The functor f / g yields a function and is defined by:
(Def. 48) $\operatorname{dom}(f / g)=\operatorname{dom} f \cap \operatorname{dom} g$ and for every set x such that $x \in \operatorname{dom}(f / g)$ holds $(f / g)(x)=f(x) / g(x)$.
Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2}
to Y_{2}. Then f / g is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{C}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be real-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then f / g is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{R}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be rational-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then f / g is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{Q}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

One can prove the following propositions:
(91) $\left(-f_{1}\right) / f_{2}=-f_{1} / f_{2}$.
(92) $\quad f_{1} /-f_{2}=-f_{1} / f_{2}$.
(93) $\left(f \cdot f_{1}\right) / f_{2}=f \cdot\left(f_{1} / f_{2}\right)$.
(94) $\left(f / f_{1}\right) \cdot f_{2}=\left(f \cdot f_{2}\right) / f_{1}$.
(95) $f / f_{1} / f_{2}=f /\left(f_{1} \cdot f_{2}\right)$.
(96) $\left(f_{1}+f_{2}\right) / f=f_{1} / f+f_{2} / f$.
(97) $\left(f_{1}-f_{2}\right) / f=f_{1} / f-f_{2} / f$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[5] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
[6] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[7] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341347, 2003.
[8] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[11] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[^0]: ${ }^{1}$ The article was written while the author visited Shinshu University, Nagano, Japan.

