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Summary. In this paper we introduce sets containing number-valued func-
tions. Different arithmetic operations on maps between any set and such func-
tional sets are later defined.
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The notation and terminology used here are introduced in the following papers:
[4], [9], [10], [2], [11], [6], [3], [1], [8], [5], and [T7].

1. FUNCTIONAL SETS

In this paper z, X, X1, Xy are sets.
Let Y be a functional set. The functor DOMS(Y) is defined by:
(Def. 1) DOMS(Y) = [U{dom f : f ranges over elements of Y'}.
Let us consider X. We say that X is complex-functions-membered if and
only if:
(Def. 2) If z € X, then x is a complex-valued function.

Let us consider X. We say that X is extended-real-functions-membered if
and only if:

(Def. 3) If z € X, then x is an extended real-valued function.

Let us consider X. We say that X is real-functions-membered if and only if:

!The article was written while the author visited Shinshu University, Nagano, Japan.

(© 2009 University of Bialystok
43 ISSN 1426-2630(p), 1898-9934(c)


http://fm.mizar.org/miz/valued_2.miz
http://ftp.mizar.org/

44 ARTUR KORNILOWICZ

(Def. 4) If z € X, then z is a real-valued function.
Let us consider X. We say that X is rational-functions-membered if and
only if:
(Def. 5) If z € X, then z is a rational-valued function.
Let us consider X. We say that X is integer-functions-membered if and only
if:
(Def. 6) If x € X, then x is an integer-valued function.
Let us consider X. We say that X is natural-functions-membered if and only
if:
(Def. 7) If z € X, then z is a natural-valued function.
One can check the following observations:

* every set which is natural-functions-membered is also integer-functions-
membered,

x every set which is integer-functions-membered is also rational-functions-
membered,

% every set which is rational-functions-membered is also real-functions-
membered,

x every set which is real-functions-membered is also complex-functions-
membered, and

% every set which is real-functions-membered is also extended-real-
functions-membered.

Let us mention that every set which is empty is also natural-functions-
membered.

Let f be a complex-valued function. Observe that {f} is complex-functions-
membered.

One can verify that every set which is complex-functions-membered is al-
so functional and every set which is extended-real-functions-membered is also
functional.

One can verify that there exists a set which is natural-functions-membered
and non empty.

Let X be a complex-functions-membered set. One can verify that every
subset of X is complex-functions-membered.

Let X be an extended-real-functions-membered set. Note that every subset
of X is extended-real-functions-membered.

Let X be a real-functions-membered set. Note that every subset of X is
real-functions-membered.

Let X be a rational-functions-membered set. Observe that every subset of
X is rational-functions-membered.

Let X be an integer-functions-membered set. Note that every subset of X
is integer-functions-membered.



ARITHMETIC OPERATIONS ON FUNCTIONS FROM SETS ... 45

Let X be a natural-functions-membered set. Observe that every subset of X
is natural-functions-membered.
Let D be a set. The functor C-PFuncs D yields a set and is defined by:

(Def. 8) For every set f holds f € C-PFuncs D iff f is a partial function from D
to C.

Let D be a set. The functor C-Funcs D yielding a set is defined by:
(Def. 9) For every set f holds f € C-Funcs D iff f is a function from D into C.
Let D be a set. The functor R-PFuncs D yields a set and is defined by:

(Def. 10) For every set f holds f € R-PFuncs D iff f is a partial function from D
to R.

Let D be a set. The functor R-Funcs D yields a set and is defined as follows:
(Def. 11) For every set f holds f € R-Funcs D iff f is a function from D into R.
Let D be a set. The functor R-PFuncs D yielding a set is defined by:

(Def. 12) For every set f holds f € R-PFuncs D iff f is a partial function from D
to R.

Let D be a set. The functor R-Funcs D yielding a set is defined by:
(Def. 13) For every set f holds f € R-Funcs D iff f is a function from D into R.
Let D be a set. The functor Q-PFuncs D yields a set and is defined as follows:
(Def. 14) For every set f holds f € Q-PFuncs D iff f is a partial function from D
to Q.
Let D be a set. The functor Q-Funcs D yields a set and is defined by:
(Def. 15) For every set f holds f € Q-Funcs D iff f is a function from D into Q.
Let D be a set. The functor Z-PFuncs D yielding a set is defined by:

(Def. 16) For every set f holds f € Z-PFuncs D iff f is a partial function from D
to Z.

Let D be a set. The functor Z-Funcs D yields a set and is defined as follows:
(Def. 17) For every set f holds f € Z-Funcs D iff f is a function from D into Z.
Let D be a set. The functor N-PFuncs D yields a set and is defined by:

(Def. 18) For every set f holds f € N-PFuncs D iff f is a partial function from D
to N.

Let D be a set. The functor N-Funcs D yielding a set is defined by:

(Def. 19) For every set f holds f € N-Funcs D iff f is a function from D into N.
The following propositions are true:

1) C-Funcs X is a subset of C-PFuncs X.

2) R-Funcs X is a subset of R-PFuncs X.

3) R-Funcs X is a subset of R-PFuncs X.

4) Q-Funcs X is a subset of Q-PFuncs X.

Z-Funcs X is a subset of Z-PFuncs X.
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(6) N-Funcs X is a subset of N-PFuncs X.
Let us consider X. One can verify the following observations:
% C-PFuncs X is complex-functions-membered,
* C-Funcs X is complex-functions-membered,
* R-PFuncs X is extended-real-functions-membered,
* R-Funcs X is extended-real-functions-membered,
% R-PFuncs X is real-functions-membered,
*  R-Funcs X is real-functions-membered,
*  (Q-PFuncs X is rational-functions-membered,
*  Q-Funcs X is rational-functions-membered,
* Z-PFuncs X is integer-functions-membered,
* Z-Funcs X is integer-functions-membered,
*  N-PFuncs X is natural-functions-membered, and
% N-Funcs X is natural-functions-membered.

Let X be a complex-functions-membered set. Observe that every element of
X is complex-valued.

Let X be an extended-real-functions-membered set. One can check that eve-
ry element of X is extended real-valued.

Let X be a real-functions-membered set. One can check that every element
of X is real-valued.

Let X be a rational-functions-membered set. One can check that every ele-
ment of X is rational-valued.

Let X be an integer-functions-membered set. Observe that every element of
X is integer-valued.

Let X be a natural-functions-membered set. Observe that every element of
X is natural-valued.

Let X, = be sets, let Y be a complex-functions-membered set, and let f be
a partial function from X to Y. Observe that f(z) is function-like and relation-
like.

Let X, = be sets, let Y be an extended-real-functions-membered set, and
let f be a partial function from X to Y. Observe that f(z) is function-like and
relation-like.

Let us consider X, z, let Y be a complex-functions-membered set, and let f
be a partial function from X to Y. One can check that f(x) is complex-valued.

Let us consider X, z, let Y be an extended-real-functions-membered set, and
let f be a partial function from X to Y. One can verify that f(z) is extended
real-valued.

Let us consider X, z, let Y be a real-functions-membered set, and let f be
a partial function from X to Y. Note that f(z) is real-valued.
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Let us consider X, x, let Y be a rational-functions-membered set, and let f
be a partial function from X to Y. Note that f(z) is rational-valued.

Let us consider X, z, let Y be an integer-functions-membered set, and let f
be a partial function from X to Y. Note that f(z) is integer-valued.

Let us consider X, x, let Y be a natural-functions-membered set, and let f
be a partial function from X to Y. One can check that f(z) is natural-valued.

Let us consider X and let Y be a complex-membered set. One can check
that X—=Y is complex-functions-membered.

Let us consider X and let Y be an extended real-membered set. Observe
that XY is extended-real-functions-membered.

Let us consider X and let Y be a real-membered set. Observe that X—>Y is
real-functions-membered.

Let us consider X and let Y be a rational-membered set. Observe that X —>Y
is rational-functions-membered.

Let us consider X and let Y be an integer-membered set. Observe that X —-Y
is integer-functions-membered.

Let us consider X and let Y be a natural-membered set. One can verify that
X -5Y is natural-functions-membered.

Let us consider X and let Y be a complex-membered set. Note that Y ¥ is
complex-functions-membered.

Let us consider X and let Y be an extended real-membered set. Note that
Y X is extended-real-functions-membered.

Let us consider X and let Y be a real-membered set. Note that Y X is real-
functions-membered.

Let us consider X and let Y be a rational-membered set. Note that Y is
rational-functions-membered.

Let us consider X and let Y be an integer-membered set. Note that YX is
integer-functions-membered.

Let us consider X and let Y be a natural-membered set. One can check that
Y X is natural-functions-membered.

Let R be a binary relation. We say that R is complex-functions-valued if
and only if:

(Def. 20) rng R is complex-functions-membered.
We say that R is extended-real-functions-valued if and only if:
(Def. 21) rng R is extended-real-functions-membered.
We say that R is real-functions-valued if and only if:
(Def. 22) rng R is real-functions-membered.
We say that R is rational-functions-valued if and only if:
(Def. 23) rng R is rational-functions-membered.

We say that R is integer-functions-valued if and only if:
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(Def. 24) rng R is integer-functions-membered.
We say that R is natural-functions-valued if and only if:
(Def. 25) rng R is natural-functions-membered.
Let f be a function. Let us observe that f is complex-functions-valued if and
only if:
(Def. 26) For every set z such that x € dom f holds f(x) is a complex-valued
function.
Let us observe that f is extended-real-functions-valued if and only if:
(Def. 27) For every set x such that € dom f holds f(z) is an extended real-valued
function.
Let us observe that f is real-functions-valued if and only if:
(Def. 28) For every set « such that x € dom f holds f(z) is a real-valued function.
Let us observe that f is rational-functions-valued if and only if:
(Def. 29) For every set x such that x € dom f holds f(z) is a rational-valued
function.
Let us observe that f is integer-functions-valued if and only if:
(Def. 30) For every set x such that z € dom f holds f(z) is an integer-valued
function.
Let us observe that f is natural-functions-valued if and only if:
(Def. 31) For every set = such that z € dom f holds f(z) is a natural-valued
function.
One can verify the following observations:
% every binary relation which is natural-functions-valued is also integer-
functions-valued,
% every binary relation which is integer-functions-valued is also rational-
functions-valued,
% every binary relation which is rational-functions-valued is also real-
functions-valued,
% every binary relation which is real-functions-valued is also extended-real-
functions-valued, and
% every binary relation which is real-functions-valued is also complex-
functions-valued.

Let us note that every binary relation which is empty is also natural-
functions-valued.

Let us mention that there exists a function which is natural-functions-valued.

Let R be a complex-functions-valued binary relation. Note that rng R is
complex-functions-membered.

Let R be an extended-real-functions-valued binary relation. Observe that
rng R is extended-real-functions-membered.



ARITHMETIC OPERATIONS ON FUNCTIONS FROM SETS ...

Let R be a real-functions-valued binary relation. Note that rng R is real-
functions-membered.

Let R be a rational-functions-valued binary relation. Observe that rng R is
rational-functions-membered.

Let R be an integer-functions-valued binary relation. One can verify that
rng R is integer-functions-membered.

Let R be a natural-functions-valued binary relation. One can check that
rng R is natural-functions-membered.

Let us consider X and let Y be a complex-functions-membered set. Observe
that every partial function from X to Y is complex-functions-valued.

Let us consider X and let Y be an extended-real-functions-membered set.
One can check that every partial function from X to Y is extended-real-
functions-valued.

Let us consider X and let Y be a real-functions-membered set. One can
check that every partial function from X to Y is real-functions-valued.

Let us consider X and let Y be a rational-functions-membered set. Observe
that every partial function from X to Y is rational-functions-valued.

Let us consider X and let Y be an integer-functions-membered set. Observe
that every partial function from X to Y is integer-functions-valued.

Let us consider X and let Y be a natural-functions-membered set. Note that
every partial function from X to Y is natural-functions-valued.

Let f be a complex-functions-valued function and let us consider z. Note
that f(z) is function-like and relation-like.

Let f be an extended-real-functions-valued function and let us consider x.
Observe that f(z) is function-like and relation-like.

Let f be a complex-functions-valued function and let us consider z. One can
verify that f(x) is complex-valued.

Let f be an extended-real-functions-valued function and let us consider x.
Note that f(x) is extended real-valued.

Let f be a real-functions-valued function and let us consider x. One can
verify that f(x) is real-valued.

Let f be a rational-functions-valued function and let us consider x. Observe
that f(z) is rational-valued.

Let f be an integer-functions-valued function and let us consider x. Note
that f(z) is integer-valued.

Let f be a natural-functions-valued function and let us consider z. One can
check that f(x) is natural-valued.

2. OPERATIONS

For simplicity, we adopt the following rules: Y, Y7, Y5 are complex-functions-
membered sets, ¢, ¢1, co are complex numbers, f is a partial function from X
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to Y, fi is a partial function from X7 to Y7, fo is a partial function from X5 to

Ys, and g, h, k are complex-valued functions.

We now state a number of propositions:
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If g# 0 and g + ¢y = g + co, then ¢ = cs.

If g#0 and g — ¢ = g — o, then ¢; = ¢a.

If g # 0 and g is non-empty and gc; = g ¢, then ¢ = cs.
—(g+c)=—g—c

—(g—c)=-g+c

(g+c1)+eca=g+ (c1+ca).
(g+c)—ca=g+(c1 —c2).

(g—c1) +ea=g—(c1 —c2).

g—c —cx=g—(c1+c2).

gcica =g (e -ca).

—(g+h)=—g—h.
g—h=—(h—g).
(gh)/k =g (h/k).
(g/h) k= (gk)/h.
g/h/k = g/(hk).
c—g=(-0)g.
c—g = —Cg.
(—c)g=—cg.
—gh={(—g)h.
—g/h = (—g)/h.
—g/h=g/-h.

Let f be a complex-valued function and let ¢ be a complex number. The

functor f/c yields a function and is defined as follows:

(Def. 32)

fle=1F.

Let f be a complex-valued function and let ¢ be a complex number. Note
that f/c is complex-valued.

Let f be a real-valued function and let r be a real number. Note that f/r is
real-valued.

Let f be a rational-valued function and let r be a rational number. One can
check that f/r is rational-valued.

Let f be a complex-valued finite sequence and let ¢ be a complex number.
One can check that f/c is finite sequence-like.

The following propositions are true:

(28)
(29)

dom(g/c) = domg.
(g/c)(z) = 42,
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(30) (—g)/c=—g/c

(31) g/—c=—g/c

(32) g/—c=(~g)/c

(33) If g # 0 and g is non-empty and g/c; = g/ca, then ¢; = ca.
(34) (ga)/c2=g¢g.

(35) (g/c1) ca = (ge2)/cr.
(36) g/ci/ca=g/(c1-c2).
(37) (g+h)/c=g/c+ h/ec.
(38) (9—h)/c=g/c—h]ec
(39) (gh)/c=g(h/c).

(40) (g/h)/c=g/(hc).

Let us consider X, let Y be a complex-functions-membered set, and let f be
a partial function from X to Y. The functor —f yields a function and is defined
by:

(Def. 33) dom(—f) = dom f and for every set = such that x € dom(—f) holds
(=) = —f(x).

Let us consider X, let Y be a complex-functions-membered set, and let f
be a partial function from X to Y. Then —f is a partial function from X to
C-PFuncs DOMS(Y).

Let us consider X, let Y be a real-functions-membered set, and let f be
a partial function from X to Y. Then —f is a partial function from X to
R-PFuncs DOMS(Y).

Let us consider X, let Y be a rational-functions-membered set, and let f
be a partial function from X to Y. Then —f is a partial function from X to
Q-PFuncs DOMS(Y).

Let us consider X, let Y be an integer-functions-membered set, and let f
be a partial function from X to Y. Then —f is a partial function from X to
Z-PFuncs DOMS(Y).

Let Y be a complex-functions-membered set and let f be a finite sequence
of elements of Y. One can check that — f is finite sequence-like.

We now state two propositions:

41) ——f=1/.
(42) If —f1 = —fQ, then f1 = fg.
Let X be a complex-functions-membered set, let Y be a set, and let f be a

partial function from X to Y. The functor f o — yielding a function is defined
as follows:

(Def. 34) dom(fo—)=dom f and for every complex-valued function x such that
x € dom(f o —) holds (f o —)(x) = f(—=x).
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Let us consider X, let Y be a complex-functions-membered set, and let f be
a partial function from X to Y. The functor !/f yields a function and is defined
as follows:

(Def. 35) dom!/f = dom f and for every set = such that € dom'/f holds
(/f)(@) = fz)~".

Let us consider X, let Y be a complex-functions-membered set, and let f
be a partial function from X to Y. Then !/f is a partial function from X to
C-PFuncs DOMS(Y).

Let us consider X, let Y be a real-functions-membered set, and let f be
a partial function from X to Y. Then !/f is a partial function from X to
R-PFuncs DOMS(Y).

Let us consider X, let Y be a rational-functions-membered set, and let f
be a partial function from X to Y. Then !/f is a partial function from X to
Q-PFuncs DOMS(Y).

Let Y be a complex-functions-membered set and let f be a finite sequence
of elements of Y. Note that 1/f is finite sequence-like.

The following proposition is true

43) Y f=1.

Let us consider X, let Y be a complex-functions-membered set, and let f be
a partial function from X to Y. The functor |f| yields a function and is defined
by:

(Def. 36) dom|f| = dom f and for every set x such that € dom|f| holds | f|(z) =
|f ()]

Let us consider X, let Y be a complex-functions-membered set, and let f
be a partial function from X to Y. Then |f| is a partial function from X to
C-PFuncs DOMS(Y).

Let us consider X, let Y be a real-functions-membered set, and let f be
a partial function from X to Y. Then |f| is a partial function from X to
R-PFuncs DOMS(Y).

Let us consider X, let Y be a rational-functions-membered set, and let f
be a partial function from X to Y. Then |f| is a partial function from X to
Q-PFuncs DOMS(Y).

Let us consider X, let Y be an integer-functions-membered set, and let f
be a partial function from X to Y. Then |f| is a partial function from X to
N-PFuncs DOMS(Y).

Let Y be a complex-functions-membered set and let f be a finite sequence
of elements of Y. Note that |f]| is finite sequence-like.

We now state the proposition

(44) |[f[l =111

Let us consider X, let Y be a complex-functions-membered set, let f be a
partial function from X to Y, and let ¢ be a complex number. The functor f+c
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yields a function and is defined by:
(Def. 37) dom(f + ¢) = dom f and for every set x such that x € dom(f + ¢) holds
(f+o)(@) =c+ f(z).

Let us consider X, let Y be a complex-functions-membered set, let f be a
partial function from X to Y, and let ¢ be a complex number. Then f + c is a
partial function from X to C-PFuncs DOMS(Y).

Let us consider X, let Y be a real-functions-membered set, let f be a partial
function from X to Y, and let ¢ be a real number. Then f+c is a partial function
from X to R-PFuncs DOMS(Y).

Let us consider X, let Y be a rational-functions-membered set, let f be a
partial function from X to Y, and let ¢ be a rational number. Then f + c is a
partial function from X to Q-PFuncs DOMS(Y).

Let us consider X, let Y be an integer-functions-membered set, let f be a
partial function from X to Y, and let ¢ be an integer number. Then f + ¢ is a
partial function from X to Z-PFuncs DOMS(Y).

Let us consider X, let Y be a natural-functions-membered set, let f be a
partial function from X to Y, and let ¢ be a natural number. Then f + c is a
partial function from X to N-PFuncs DOMS(Y).

One can prove the following propositions:

(45) fHa+c=f+(ca+c).
(46) 1If f # 0 and f is non-empty and f + c¢; = f + cg, then ¢; = cs.
Let us consider X, let Y be a complex-functions-membered set, let f be a

partial function from X to Y, and let ¢ be a complex number. The functor f —c¢
yields a function and is defined as follows:
(Def. 38) f—c=f+—c
We now state two propositions:
(47) dom(f — ¢) = dom f.
(48) If z € dom(f — ¢), then (f — ¢)(z) = f(z) —c.

Let us consider X, let Y be a complex-functions-membered set, let f be a
partial function from X to Y, and let ¢ be a complex number. Then f —cis a
partial function from X to C-PFuncs DOMS(Y).

Let us consider X, let Y be a real-functions-membered set, let f be a partial
function from X to Y, and let ¢ be a real number. Then f—cis a partial function
from X to R-PFuncs DOMS(Y).

Let us consider X, let Y be a rational-functions-membered set, let f be a
partial function from X to Y, and let ¢ be a rational number. Then f — cis a
partial function from X to Q-PFuncs DOMS(Y).

Let us consider X, let Y be an integer-functions-membered set, let f be a

partial function from X to Y, and let ¢ be an integer number. Then f —cis a
partial function from X to Z-PFuncs DOMS(Y).
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We now state four propositions:
49) 1If f # 0 and f is non-empty and f — ¢; = f — co, then ¢; = co.
50) (f+c1)—ca=f+(c1 —ca).
51) (f—c1)+ca=f—(c1 —ca).
52) f—c1—ca=f—(c1+ ).
Let us consider X, let Y be a complex-functions-membered set, let f be a

partial function from X to Y, and let ¢ be a complex number. The functor f - c
yielding a function is defined as follows:
(Def. 39) dom(f -c¢) = dom f and for every set x such that x € dom(f - ¢) holds
(f- o)) = cf().

Let us consider X, let Y be a complex-functions-membered set, let f be a
partial function from X to Y, and let ¢ be a complex number. Then f - c is a
partial function from X to C-PFuncs DOMS(Y).

Let us consider X, let Y be a real-functions-membered set, let f be a partial
function from X to Y, and let ¢ be a real number. Then f-cis a partial function
from X to R-PFuncs DOMS(Y).

Let us consider X, let Y be a rational-functions-membered set, let f be a
partial function from X to Y, and let ¢ be a rational number. Then f - c is a
partial function from X to Q-PFuncs DOMS(Y').

Let us consider X, let Y be an integer-functions-membered set, let f be a
partial function from X to Y, and let ¢ be an integer number. Then f - c is a
partial function from X to Z-PFuncs DOMS(Y).

Let us consider X, let Y be a natural-functions-membered set, let f be a
partial function from X to Y, and let ¢ be a natural number. Then f - ¢ is a
partial function from X to N-PFuncs DOMS(Y).

The following two propositions are true:

(53) f-61~62=f~(01-62>.
(54) 1If f # 0 and f is non-empty and for every x such that x € dom f holds
f(x) is non-empty and f-c¢; = f - o, then ¢; = co.

(
(
(
(

Let us consider X, let Y be a complex-functions-membered set, let f be a
partial function from X to Y, and let ¢ be a complex number. The functor f/c
yielding a function is defined as follows:

(Def. 40) f/c=f-cL.
One can prove the following propositions:
(55) dom(f/c) = dom f.
(56) If x € dom(f/c), then (f/c)(x) =c! f(x).
Let us consider X, let Y be a complex-functions-membered set, let f be a

partial function from X to Y, and let ¢ be a complex number. Then f/c is a
partial function from X to C-PFuncs DOMS(Y).
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Let us consider X, let Y be a real-functions-membered set, let f be a partial
function from X to Y, and let ¢ be a real number. Then f/c is a partial function
from X to R-PFuncs DOMS(Y).

Let us consider X, let Y be a rational-functions-membered set, let f be a
partial function from X to Y, and let ¢ be a rational number. Then f/c is a
partial function from X to Q-PFuncs DOMS(Y).

The following propositions are true:

(57) fler/ea = f/(c1-ca).
(58) If f # () and f is non-empty and for every x such that x € dom f holds
f(z) is non-empty and f/c; = f/ca, then ¢; = co.
Let us consider X, let Y be a complex-functions-membered set, let f be
a partial function from X to Y, and let g be a complex-valued function. The
functor f 4+ g yielding a function is defined as follows:

(Def. 41) dom(f+g) = dom fNdom g and for every set x such that z € dom(f+g)

holds (f + g)(z) = f(z) + ().

Let us consider X, let Y be a complex-functions-membered set, let f be a
partial function from X to Y, and let g be a complex-valued function. Then
f + g is a partial function from X Ndom g to C-PFuncs DOMS(Y).

Let us consider X, let Y be a real-functions-membered set, let f be a partial
function from X to Y, and let g be a real-valued function. Then f+ ¢ is a partial
function from X Ndom g to R-PFuncs DOMS(Y').

Let us consider X, let Y be a rational-functions-membered set, let f be a
partial function from X to Y, and let g be a rational-valued function. Then
f -+ g is a partial function from X Ndom g to Q-PFuncs DOMS(Y).

Let us consider X, let Y be an integer-functions-membered set, let f be a
partial function from X to Y, and let g be an integer-valued function. Then
f 4+ g is a partial function from X Ndom g to Z-PFuncs DOMS(Y).

Let us consider X, let Y be a natural-functions-membered set, let f be a
partial function from X to Y, and let g be a natural-valued function. Then f+g¢
is a partial function from X N dom g to N-PFuncs DOMS(Y').

Next we state two propositions:

59) fH+g+h=f+(g+h).
(60) —(f+9)=(f)+—g.
Let us consider X, let Y be a complex-functions-membered set, let f be

a partial function from X to Y, and let g be a complex-valued function. The
functor f — g yields a function and is defined by:

(Def. 42) f—g=f+ —g.

We now state two propositions:
(61) dom(f —g) =dom f Ndomg.
(62) If 2 € dom(f —g), then (f — g)(z) = f(z) — g().
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Let us consider X, let Y be a complex-functions-membered set, let f be a
partial function from X to Y, and let g be a complex-valued function. Then
f — g is a partial function from X Ndom g to C-PFuncs DOMS(Y).

Let us consider X, let Y be a real-functions-membered set, let f be a partial
function from X to Y, and let g be a real-valued function. Then f— g is a partial
function from X Ndom g to R-PFuncs DOMS(Y').

Let us consider X, let Y be a rational-functions-membered set, let f be a
partial function from X to Y, and let g be a rational-valued function. Then
f — g is a partial function from X Ndom g to Q-PFuncs DOMS(Y).

Let us consider X, let Y be an integer-functions-membered set, let f be a
partial function from X to Y, and let g be an integer-valued function. Then
f — g is a partial function from X Ndom g to Z-PFuncs DOMS(Y).

The following propositions are true:

(63) f——g9g=f+y

64) —(f—9)=(-f)+g

(65) (f+g9)—h=Ff+(g—h).

(66) (f—g)+h=f—(9—h).

(67) f—g—h=f—(g+h).

Let us consider X, let Y be a complex-functions-membered set, let f be

6

w
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a partial function from X to Y, and let g be a complex-valued function. The
functor f - g yielding a function is defined by:
(Def. 43) dom(f-g) = dom f Ndom g and for every set x such that x € dom(f - g)
holds (f - g)(x) = f(x) g(x).

Let us consider X, let Y be a complex-functions-membered set, let f be a
partial function from X to Y, and let g be a complex-valued function. Then f-g
is a partial function from X N dom g to C-PFuncs DOMS(Y').

Let us consider X, let Y be a real-functions-membered set, let f be a partial
function from X to Y, and let g be a real-valued function. Then f - g is a partial
function from X Ndom g to R-PFuncs DOMS(Y').

Let us consider X, let Y be a rational-functions-membered set, let f be a
partial function from X to Y, and let g be a rational-valued function. Then f-g
is a partial function from X N dom g to Q-PFuncs DOMS(Y).

Let us consider X, let Y be an integer-functions-membered set, let f be a
partial function from X to Y, and let g be an integer-valued function. Then f-g
is a partial function from X Ndom g to Z-PFuncs DOMS(Y).

Let us consider X, let Y be a natural-functions-membered set, let f be a
partial function from X to Y, and let g be a natural-valued function. Then f-g¢
is a partial function from X N dom g to N-PFuncs DOMS(Y').

Next we state three propositions:

68) f-—g=(-f)g
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69) f-—g=—f-g
(70) f-g-h=f-(gh).
Let us consider X, let Y be a complex-functions-membered set, let f be

a partial function from X to Y, and let g be a complex-valued function. The
functor f/g yields a function and is defined by:

(Def. 44) f/g=f-g7".
Next we state two propositions:

(71) dom(f/g) = dom f Ndomg.
(72) If 2 € dom(f/g), then (f/g)(z) = f(x)/g(x).

Let us consider X, let Y be a complex-functions-membered set, let f be a
partial function from X to Y, and let g be a complex-valued function. Then f/g
is a partial function from X Ndom g to C-PFuncs DOMS(Y').

Let us consider X, let Y be a real-functions-membered set, let f be a partial
function from X to Y, and let g be a real-valued function. Then f/g is a partial
function from X Ndom g to R-PFuncs DOMS(Y').

Let us consider X, let Y be a rational-functions-membered set, let f be a
partial function from X to Y, and let g be a rational-valued function. Then f/g
is a partial function from X Ndom g to Q-PFuncs DOMS(Y).

Next we state the proposition

(73) (f-9)/h=1-(g/h)
Let X1, X9 be sets, let Y7, Yo be complex-functions-membered sets, let f be

a partial function from X; to Y7, and let g be a partial function from X to Y5.
The functor f + g yielding a function is defined as follows:

(Def. 45) dom(f+g) = dom fNdom g and for every set x such that z € dom(f+g)
holds (f +g)(z) = f(z) + g(x).

Let X1, X9 be sets, let Y7, Y5 be complex-functions-membered sets, let f
be a partial function from X to Y7, and let g be a partial function from X5 to
Y2. Then f + ¢ is a partial function from X; N X2 to C-PFuncs(DOMS(Y7) N
DOMS(Y2)).

Let X7, X2 be sets, let Y7, Y5 be real-functions-membered sets, let f be
a partial function from X to Y7, and let g be a partial function from X5 to
Y2. Then f + ¢ is a partial function from X; N X to R-PFuncs(DOMS(Y7) N
DOMS(Y?2)).

Let X, X5 be sets, let Y7, Y5 be rational-functions-membered sets, let f be
a partial function from X; to Y7, and let g be a partial function from X5 to
Y5. Then f + g is a partial function from X; N X3 to Q-PFuncs(DOMS(Y7) N
DOMS(Y2)).

Let X1, X9 be sets, let Y71, Y5 be integer-functions-membered sets, let f be
a partial function from X to Y7, and let g be a partial function from X5 to
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Y5. Then f + g is a partial function from X; N X5 to Z-PFuncs(DOMS(Y7) N
DOMS(Y3)).
Let X1, X5 be sets, let Y7, Y5 be natural-functions-membered sets, let f be
a partial function from X; to Y7, and let g be a partial function from Xs to
Y5. Then f + g is a partial function from X; N Xa to N-PFuncs(DOMS(Y7) N
DOMS(Y2)).
We now state three propositions:
(74) fitfa=fot+ fr.
(75) (f+fi)+fa=f+(fi+ f2)
(76) —(fi+f2) = (=f1) +—fo
Let X1, X9 be sets, let Y7, Y5 be complex-functions-membered sets, let f be

a partial function from X; to Y7, and let g be a partial function from X5 to Y.
The functor f — g yields a function and is defined by:
(Def. 46) dom(f—g) = dom fNdom g and for every set x such that z € dom(f—g)
holds (f — g)(z) = f(z) — g().

Let X1, Xo be sets, let Y7, Ya be complex-functions-membered sets, let f
be a partial function from X; to Y7, and let g be a partial function from Xs to
Ys. Then f — g is a partial function from X; N Xs to C-PFuncs(DOMS(Y7) N
DOMS(Y2)).

Let X1, X2 be sets, let Y7, Y5 be real-functions-membered sets, let f be
a partial function from X; to Y7, and let g be a partial function from X5 to
Y5. Then f — g is a partial function from X; N X2 to R-PFuncs(DOMS(Y7) N
DOMS(Y2)).

Let X1, X5 be sets, let Y7, Ys be rational-functions-membered sets, let f be
a partial function from X; to Y7, and let g be a partial function from Xs to
Ys. Then f — g is a partial function from X; N X3 to Q-PFuncs(DOMS(Y7) N
DOMS(Y2)).

Let X1, X9 be sets, let Y7, Y5 be integer-functions-membered sets, let f be
a partial function from X; to Y7, and let g be a partial function from X5 to
Y5. Then f — g is a partial function from X; N X5 to Z-PFuncs(DOMS(Y7) N
DOMS(Y2)).

One can prove the following propositions:

(77 fr—fa=—(fa— f1)

(78) —(f1 — f2) = (= f1) + fa.

(79) (f+fi)—fo=f+(fr—fo)
(80) (f=fi)+fo=f—(fi—fo)
Bl) f—fi—fo=f—(fit+f2)
82) f-fi—fo=f—-fa—f1-

Let X7, X9 be sets, let Y7, Y5 be complex-functions-membered sets, let f be
a partial function from X; to Y7, and let g be a partial function from X5 to Ys.
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The functor f - g yields a function and is defined by:

(Def. 47) dom(f-g) = dom f Ndom g and for every set x such that x € dom(f - g)
holds (f - g)(z) = f(z) g().

Let X1, X5 be sets, let Y7, Y5 be complex-functions-membered sets, let f
be a partial function from X; to Y7, and let g be a partial function from Xo
to Ya. Then f - g is a partial function from X; N Xo to C-PFuncs(DOMS(Y71) N
DOMS(Y2)).

Let X7, X9 be sets, let Y7, Y5 be real-functions-membered sets, let f be
a partial function from X; to Y7, and let g be a partial function from Xs to
Ys. Then f - g is a partial function from X; N X2 to R-PFuncs(DOMS(Y71) N
DOMS(Y3)).

Let X1, X5 be sets, let Y7, Yo be rational-functions-membered sets, let f be
a partial function from X; to Y7, and let g be a partial function from Xs to
Ys. Then f - ¢ is a partial function from X; N X3 to Q-PFuncs(DOMS(Y7) N
DOMS(Y2)).

Let X1, X9 be sets, let Y71, Y5 be integer-functions-membered sets, let f be
a partial function from X to Y7, and let g be a partial function from X5 to
Ys. Then f - g is a partial function from X; N X5 to Z-PFuncs(DOMS(Y71) N
DOMS(Y2)).

Let X1, X5 be sets, let Y7, Yo be natural-functions-membered sets, let f be
a partial function from X; to Y7, and let g be a partial function from Xs to
Ys. Then f - g is a partial function from X; N X2 to N-PFuncs(DOMS(Y71) N
DOMS(Y3)).

We now state several propositions:

(83) fi-fa=fo- f1-

84) (f-f1)-fa=[-(f1- fo)
(85) (=f1) fa=—f1" fo.

(86) fi-—fa=—f1fo

@®7) f-(hitf)=ffH+T[ f
88) (fitfa)-f=hH-f+faf
89) f-(hi—-f)=ffi—T f
90) (fi—fa)-f=hH-f—fa I

Let X1, X9 be sets, let Y7, Y5 be complex-functions-membered sets, let f be
a partial function from X7 to Y7, and let g be a partial function from X5 to Ys.
The functor f/g yields a function and is defined by:

(Def. 48) dom(f/g) = dom f Ndom g and for every set = such that x € dom(f/g)
holds (f/g)(z) = f(z)/g(x).

Let X1, X5 be sets, let Y7, Y5 be complex-functions-membered sets, let f
be a partial function from X; to Y7, and let g be a partial function from Xo
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to Y3. Then f/g is a partial function from X; N X5 to C-PFuncs(DOMS(Y1) N
DOMS(Y3)).

Let X1, X5 be sets, let Y7, Yo be real-functions-membered sets, let f be

a partial function from X; to Y7, and let g be a partial function from Xs to

Ys.

Then f/g is a partial function from X; N X3 to R-PFuncs(DOMS(Y7) N

DOMS(Y2)).

Let X1, Xo be sets, let Y7, Y5 be rational-functions-membered sets, let f

be a partial function from X; to Y7, and let g be a partial function from Xo
to Y2. Then f/g is a partial function from X; N Xs to Q-PFuncs(DOMS(Y71) N
DOMS(Y32)).

[11]
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One can prove the following propositions:

1) (=fh)/fa=—fi/fe
2) fi/ = fa=—hH/fa
3) (f-fO/f2=F- (1] f2)-
4) (f/fH)-fa=(f-f2)/f
5 flhi/fa=f/(fi- f2)
6) (fi+/f)/f=h/F+1/Ff
N (=L f=h/f-F/f
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