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Summary. Based on the Petri net definitions and theorems already for-
malized in [8], with this article, we developed the concept of “Cell Petri Nets”. It
is based on [9]. In a cell Petri net we introduce the notions of colors and colored
states of a Petri net, connecting mappings for linking two Petri nets, firing rules
for transitions, and the synthesis of two or more Petri nets.

MML identifier: PETRI 2, version: 7.11.01 4.117.1046

The papers [11], [12], [6], [13], [14], [10], [8], [2], [5], [3], [4], [7], and [1] provide
the terminology and notation for this paper.

1. Preliminaries: Thin Cylinder, Locus

Let A be a non empty set, let B be a set, let B1 be a set, and let y1
be a function from B1 into A. Let us assume that B1 ⊆ B. The functor
cylinder0(A,B,B1, y1) yields a non empty subset of A

B and is defined by:

(Def. 1) cylinder0(A,B,B1, y1) = {y : B → A: y�B1 = y1}.
Let A be a non empty set and let B be a set. A non empty subset of AB is

said to be a thin cylinder of A and B if:

(Def. 2) There exists a subset B1 of B and there exists a function y1 from B1
into A such that B1 is finite and it = cylinder0(A,B,B1, y1).

The following propositions are true:
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(1) Let A be a non empty set, B be a set, and D be a thin cylinder of A
and B. Then there exists a subset B1 of B and there exists a function y1
from B1 into A such that B1 is finite and D = {y : B → A: y�B1 = y1}.

(2) Let A1, A2 be non empty sets, B be a set, and D1 be a thin cylinder of
A1 and B. If A1 ⊆ A2, then there exists a thin cylinder D2 of A2 and B
such that D1 ⊆ D2.
Let A be a non empty set and let B be a set. The thin cylinders of A and

B constitute a non empty family of subsets of AB defined by:

(Def. 3) The thin cylinders of A and B = {D ⊆ AB: D is a thin cylinder of A
and B}.
We now state three propositions:

(3) Let A be a non trivial set, B be a set, B2 be a set, y2 be a function from
B2 into A, B3 be a set, and y3 be a function from B3 into A. If B2 ⊆ B
and B3 ⊆ B and cylinder0(A,B,B2, y2) = cylinder0(A,B,B3, y3), then
B2 = B3 and y2 = y3.

(4) Let A1, A2 be non empty sets and B4, B5 be sets. Suppose A1 ⊆ A2 and
B4 ⊆ B5. Then there exists a function F from the thin cylinders of A1 and
B4 into the thin cylinders of A2 and B5 such that for every set x if x ∈ the
thin cylinders of A1 and B4, then there exists a subset B1 of B4 and there
exists a function y2 from B1 into A1 and there exists a function y3 from B1
into A2 such that B1 is finite and y2 = y3 and x = cylinder0(A1, B4, B1, y2)
and F (x) = cylinder0(A2, B5, B1, y3).

(5) Let A1, A2 be non empty sets and B4, B5 be sets. Then there exists a
function G from the thin cylinders of A2 and B5 into the thin cylinders
of A1 and B4 such that for every set x if x ∈ the thin cylinders of A2
and B5, then there exists a subset B3 of B5 and there exists a subset B2
of B4 and there exists a function y2 from B2 into A1 and there exists
a function y3 from B3 into A2 such that B2 is finite and B3 is finite and
B2 = B4∩B3∩y3−1(A1) and y2 = y3�B2 and x = cylinder0(A2, B5, B3, y3)
and G(x) = cylinder0(A1, B4, B2, y2).

Let A1, A2 be non trivial sets and let B4, B5 be sets. Let us assume that there
exist sets x, y such that x 6= y and x, y ∈ A1 and A1 ⊆ A2 and B4 ⊆ B5. The
functor Extcylinders(A1, B4, A2, B5) yielding a function from the thin cylinders
of A1 and B4 into the thin cylinders of A2 and B5 is defined by the condition
(Def. 4).

(Def. 4) Let x be a set. Suppose x ∈ the thin cylinders of A1 and B4. Then there
exists a subset B1 of B4 and there exists a function y2 from B1 into A1 and
there exists a function y3 from B1 into A2 such that B1 is finite and y2 = y3
and x = cylinder0(A1, B4, B1, y2) and (Extcylinders(A1, B4, A2, B5))(x) =
cylinder0(A2, B5, B1, y3).
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Let A1 be a non empty set, let A2 be a non trivial set, and let B4,
B5 be sets. Let us assume that A1 ⊆ A2 and B4 ⊆ B5. The functor
Ristcylinders(A1, B4, A2, B5) yields a function from the thin cylinders of A2
and B5 into the thin cylinders of A1 and B4 and is defined by the condition
(Def. 5).

(Def. 5) Let x be a set. Suppose x ∈ the thin cylinders of A2 and B5. Then
there exists a subset B3 of B5 and there exists a subset B2 of B4 and
there exists a function y2 from B2 into A1 and there exists a function
y3 from B3 into A2 such that B2 is finite and B3 is finite and B2 =
B4 ∩B3 ∩ y3−1(A1) and y2 = y3�B2 and x = cylinder0(A2, B5, B3, y3) and
(Ristcylinders(A1, B4, A2, B5))(x) = cylinder0(A1, B4, B2, y2).

Let A be a non trivial set, let B be a set, and let D be a thin cylinder of A
and B. The functor locD yielding a finite subset of B is defined by the condition
(Def. 6).

(Def. 6) There exists a subset B1 of B and there exists a function y1 from B1 into
A such that B1 is finite and D = {y : B → A: y�B1 = y1} and locD = B1.

2. Colored Petri Nets

Let A1, A2 be non trivial sets, let B4, B5 be sets, let C1, C2 be non
trivial sets, let D1, D2 be sets, and let F be a function from the thin cy-
linders of A1 and B4 into the thin cylinders of C1 and D1. The functor
CylinderFunc(A1, B4, A2, B5, C1, D1, C2, D2, F ) yielding a function from the
thin cylinders of A2 and B5 into the thin cylinders of C2 and D2 is defined
as follows:

(Def. 7) CylinderFunc(A1, B4, A2, B5, C1, D1, C2, D2, F ) =
Extcylinders(C1, D1, C2, D2) · F · Ristcylinders(A1, B4, A2, B5).
We consider colored place/transition net structures as extensions of pla-

ce/transition net structure as systems
〈 places, transitions, S-T arcs, T-S arcs, a colored set, a firing-rule 〉,

where the places and the transitions constitute non empty sets, the S-T arcs
constitute a non empty relation between the places and the transitions, the T-S
arcs constitute a non empty relation between the transitions and the places, the
colored set is a non empty finite set, and the firing-rule is a function.
Let C3 be a colored place/transition net structure and let t0 be a transition

of C3. We say that t0 is outbound if and only if:

(Def. 8) {t0} = ∅.
Let C4 be a colored place/transition net structure. The functor OutbdsC4

yielding a subset of the transitions of C4 is defined by:

(Def. 9) OutbdsC4 = {x;x ranges over transitions of C4: x is outbound}.
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Let C3 be a colored place/transition net structure. We say that C3 is colored-
PT-net-like if and only if the conditions (Def. 10) are satisfied.

(Def. 10)(i) dom (the firing-rule of C3) ⊆ (the transitions of C3) \OutbdsC3, and
(ii) for every transition t of C3 such that t ∈ dom (the firing-rule of C3)
there exists a non empty subset C5 of the colored set of C3 and there
exists a subset I of ∗{t} and there exists a subset O of {t} such that (the
firing-rule of C3)(t) is a function from the thin cylinders of C5 and I into
the thin cylinders of C5 and O.

We now state two propositions:

(6) Let C3 be a colored place/transition net structure and t be a transition
of C3. Suppose C3 is colored-PT-net-like and t ∈ dom (the firing-rule of
C3). Then there exists a non empty subset C5 of the colored set of C3 and
there exists a subset I of ∗{t} and there exists a subset O of {t} such that
(the firing-rule of C3)(t) is a function from the thin cylinders of C5 and I
into the thin cylinders of C5 and O.

(7) Let C4, C6 be colored place/transition net structures, t1 be a transition
of C4, and t2 be a transition of C6. Suppose that
(i) the places of C4 ⊆ the places of C6,
(ii) the transitions of C4 ⊆ the transitions of C6,
(iii) the S-T arcs of C4 ⊆ the S-T arcs of C6,
(iv) the T-S arcs of C4 ⊆ the T-S arcs of C6, and
(v) t1 = t2.
Then ∗{t1} ⊆ ∗{t2} and {t1} ⊆ {t2} .
One can verify that there exists a colored place/transition net structure

which is strict and colored-PT-net-like.
A colored place/transition net is a colored-PT-net-like colored pla-

ce/transition net structure.

3. Color Counts of CPNT

Let C4, C6 be colored place/transition net structures. We say that C4 misses
C6 if and only if:

(Def. 11) (The places of C4) ∩ (the places of C6) = ∅ and (the transitions of
C4) ∩ (the transitions of C6) = ∅.

Let us note that the predicate C4 misses C6 is symmetric.

4. Colored States of CPNT

Let C4 be a colored place/transition net structure and let C6 be a colored
place/transition net structure. Connecting mapping of C4 and C6 is defined by
the condition (Def. 12).
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(Def. 12) There exists a function O12 from OutbdsC4 into the places of C6 and
there exists a function O21 from OutbdsC6 into the places of C4 such that
it = 〈〈O12, O21〉〉.

5. Outbound Transitions of CPNT

Let C4, C6 be colored place/transition nets and let O be a connecting map-
ping of C4 and C6. Connecting firing rule of C4, C6, and O is defined by the
condition (Def. 13).

(Def. 13) There exist functions q12, q21 and there exists a function O12 from
OutbdsC4 into the places of C6 and there exists a function O21 from
OutbdsC6 into the places of C4 such that
(i) O = 〈〈O12, O21〉〉,
(ii) dom q12 = OutbdsC4,
(iii) dom q21 = OutbdsC6,
(iv) for every transition t3 of C4 such that t3 is outbound holds q12(t3) is
a function from the thin cylinders of the colored set of C4 and ∗{t3} into
the thin cylinders of the colored set of C4 and O12◦t3,

(v) for every transition t4 of C6 such that t4 is outbound holds q21(t4) is
a function from the thin cylinders of the colored set of C6 and ∗{t4} into
the thin cylinders of the colored set of C6 and O21◦t4, and

(vi) it = 〈〈q12, q21〉〉.

6. Connecting Mapping for CPNT1, CPNT2

Let C4, C6 be colored place/transition nets, let O be a connecting mapping
of C4 and C6, and let q be a connecting firing rule of C4, C6, and O. Let us
assume that C4 misses C6. The functor synthesis(C4, C6, O, q) yielding a strict
colored place/transition net is defined by the condition (Def. 14).

(Def. 14) There exist functions q12, q21 and there exists a function O12 from
OutbdsC4 into the places of C6 and there exists a function O21 from
OutbdsC6 into the places of C4 such that
O = 〈〈O12, O21〉〉 and dom q12 = OutbdsC4 and dom q21 = OutbdsC6 and
for every transition t3 of C4 such that t3 is outbound holds q12(t3) is a
function from the thin cylinders of the colored set of C4 and ∗{t3} into
the thin cylinders of the colored set of C4 and O12◦t3 and for every trans-
ition t4 of C6 such that t4 is outbound holds q21(t4) is a function from the
thin cylinders of the colored set of C6 and ∗{t4} into the thin cylinders
of the colored set of C6 and O21◦t4 and q = 〈〈q12, q21〉〉 and the places of
synthesis(C4, C6, O, q) = (the places of C4) ∪ (the places of C6) and the
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transitions of synthesis(C4, C6, O, q) = (the transitions of C4)∪(the trans-
itions of C6) and the S-T arcs of synthesis(C4, C6, O, q) = (the S-T arcs of
C4)∪(the S-T arcs of C6) and the T-S arcs of synthesis(C4, C6, O, q) = (the
T-S arcs of C4) ∪ (the T-S arcs of C6) ∪ O12 ∪ O21 and the colored set of
synthesis(C4, C6, O, q) = (the colored set of C4) ∪ (the colored set of C6)
and the firing-rule of synthesis(C4, C6, O, q) = (the firing-rule of C4)+·(the
firing-rule of C6)+·q12+·q21.
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