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Summary. In this article, we prove a series of differentiation identities [2]
involving the arctan and arccot functions and specific combinations of special
functions including trigonometric and exponential functions.
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The papers [13], [15], [1], [10], [16], [5], [12], [3], [6], [9], [4], [11], [8], [14], and [7]
provide the terminology and notation for this paper.
For simplicity, we adopt the following rules: x denotes a real number, n

denotes an element of N, Z denotes an open subset of R, and f , g denote partial
functions from R to R.
Next we state a number of propositions:

(1) Suppose Z ⊆ dom((the function arctan) ·(the function sin)) and for
every x such that x ∈ Z holds −1 < sinx < 1. Then
(i) (the function arctan) ·(the function sin) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·(the function
sin))′�Z(x) =

cosx
1+(sinx)2 .

(2) Suppose Z ⊆ dom((the function arccot) ·(the function sin)) and for every
x such that x ∈ Z holds −1 < sinx < 1. Then
(i) (the function arccot) ·(the function sin) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·(the function
sin))′�Z(x) = − cosx

1+(sinx)2 .

(3) Suppose Z ⊆ dom((the function arctan) ·(the function cos)) and for
every x such that x ∈ Z holds −1 < cosx < 1. Then
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(i) (the function arctan) ·(the function cos) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·(the function
cos))′�Z(x) = − sinx

1+(cosx)2 .

(4) Suppose Z ⊆ dom((the function arccot) ·(the function cos)) and for
every x such that x ∈ Z holds −1 < cosx < 1. Then
(i) (the function arccot) ·(the function cos) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·(the function
cos))′�Z(x) =

sinx
1+(cosx)2 .

(5) Suppose Z ⊆ dom((the function arctan) ·(the function tan)) and for
every x such that x ∈ Z holds −1 < tanx < 1. Then
(i) (the function arctan) ·(the function tan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·(the function
tan))′�Z(x) = 1.

(6) Suppose Z ⊆ dom((the function arccot) ·(the function tan)) and for
every x such that x ∈ Z holds −1 < tanx < 1. Then
(i) (the function arccot) ·(the function tan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·(the function
tan))′�Z(x) = −1.

(7) Suppose Z ⊆ dom((the function arctan) ·(the function cot)) and for
every x such that x ∈ Z holds −1 < cotx < 1. Then
(i) (the function arctan) ·(the function cot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·(the function
cot))′�Z(x) = −1.

(8) Suppose Z ⊆ dom((the function arccot) ·(the function cot)) and for
every x such that x ∈ Z holds −1 < cotx < 1. Then
(i) (the function arccot) ·(the function cot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·(the function
cot))′�Z(x) = 1.

(9) Suppose Z ⊆ dom((the function arctan) ·(the function arctan)) and
Z ⊆ ]−1, 1[ and for every x such that x ∈ Z holds −1 < arctanx < 1.
Then
(i) (the function arctan) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·(the function
arctan))′�Z(x) =

1
(1+x2)·(1+(arctanx)2) .

(10) Suppose Z ⊆ dom((the function arccot) ·(the function arctan)) and Z ⊆
]−1, 1[ and for every x such that x ∈ Z holds −1 < arctanx < 1. Then
(i) (the function arccot) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·(the function
arctan))′�Z(x) = − 1

(1+x2)·(1+(arctanx)2) .
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(11) Suppose Z ⊆ dom((the function arctan) ·(the function arccot)) and Z ⊆
]−1, 1[ and for every x such that x ∈ Z holds −1 < arccotx < 1. Then
(i) (the function arctan) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·(the function
arccot))′�Z(x) = − 1

(1+x2)·(1+(arccotx)2) .

(12) Suppose Z ⊆ dom((the function arccot) ·(the function arccot)) and Z ⊆
]−1, 1[ and for every x such that x ∈ Z holds −1 < arccotx < 1. Then
(i) (the function arccot) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·(the function
arccot))′�Z(x) =

1
(1+x2)·(1+(arccotx)2) .

(13) Suppose Z ⊆ dom((the function sin) ·(the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function sin) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sin) ·(the function
arctan))′�Z(x) =

cos arctanx
1+x2 .

(14) Suppose Z ⊆ dom((the function sin) ·(the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function sin) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sin) ·(the function
arccot))′�Z(x) = − cos arccotx1+x2 .

(15) Suppose Z ⊆ dom((the function cos) ·(the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function cos) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cos) ·(the function
arctan))′�Z(x) = − sin arctanx1+x2 .

(16) Suppose Z ⊆ dom((the function cos) ·(the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function cos) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cos) ·(the function
arccot))′�Z(x) =

sin arccotx
1+x2 .

(17) Suppose Z ⊆ dom((the function tan) ·(the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function tan) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function tan) ·(the function
arctan))′�Z(x) =

1
(cos arctanx)2·(1+x2) .

(18) Suppose Z ⊆ dom((the function tan) ·(the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function tan) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function tan) ·(the function
arccot))′�Z(x) = − 1

(cos arccotx)2·(1+x2) .
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(19) Suppose Z ⊆ dom((the function cot) ·(the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function cot) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cot) ·(the function
arctan))′�Z(x) = − 1

(sin arctanx)2·(1+x2) .

(20) Suppose Z ⊆ dom((the function cot) ·(the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function cot) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cot) ·(the function
arccot))′�Z(x) =

1
(sin arccotx)2·(1+x2) .

(21) Suppose Z ⊆ dom((the function sec) ·(the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function sec) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sec) ·(the function
arctan))′�Z(x) =

sin arctanx
(cos arctanx)2·(1+x2) .

(22) Suppose Z ⊆ dom((the function sec) ·(the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function sec) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sec) ·(the function
arccot))′�Z(x) = − sin arccotx

(cos arccotx)2·(1+x2) .

(23) Suppose Z ⊆ dom((the function cosec) ·(the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function cosec) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cosec) ·(the function
arctan))′�Z(x) = − cos arctanx

(sin arctanx)2·(1+x2) .

(24) Suppose Z ⊆ dom((the function cosec) ·(the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function cosec) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cosec) ·(the function
arccot))′�Z(x) =

cos arccotx
(sin arccotx)2·(1+x2) .

(25) Suppose Z ⊆ dom((the function sin) (the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function sin) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sin) (the function
arctan))′�Z(x) = cosx · arctanx+ sinx1+x2 .

(26) Suppose Z ⊆ dom((the function sin) (the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function sin) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sin) (the function
arccot))′�Z(x) = cosx · arccotx− sinx1+x2 .
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(27) Suppose Z ⊆ dom((the function cos) (the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function cos) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cos) (the function
arctan))′�Z(x) = −sinx · arctanx+ cosx1+x2 .

(28) Suppose Z ⊆ dom((the function cos) (the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function cos) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cos) (the function
arccot))′�Z(x) = −sinx · arccotx− cosx1+x2 .

(29) Suppose Z ⊆ dom((the function tan) (the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function tan) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function tan) (the function
arctan))′�Z(x) =

arctanx
(cosx)2 +

tanx
1+x2 .

(30) Suppose Z ⊆ dom((the function tan) (the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function tan) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function tan) (the function
arccot))′�Z(x) =

arccotx
(cosx)2 −

tanx
1+x2 .

(31) Suppose Z ⊆ dom((the function cot) (the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function cot) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cot) (the function
arctan))′�Z(x) = −arctanx(sinx)2 +

cotx
1+x2 .

(32) Suppose Z ⊆ dom((the function cot) (the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function cot) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cot) (the function
arccot))′�Z(x) = −arccotx(sinx)2 −

cotx
1+x2 .

(33) Suppose Z ⊆ dom((the function sec) (the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function sec) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sec) (the function
arctan))′�Z(x) =

sinx·arctanx
(cosx)2 + 1

cosx·(1+x2) .

(34) Suppose Z ⊆ dom((the function sec) (the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function sec) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sec) (the function
arccot))′�Z(x) =

sinx·arccotx
(cosx)2 − 1

cosx·(1+x2) .
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(35) Suppose Z ⊆ dom((the function cosec) (the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function cosec) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cosec) (the function
arctan))′�Z(x) = − cosx·arctanx(sinx)2 + 1

sinx·(1+x2) .

(36) Suppose Z ⊆ dom((the function cosec) (the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function cosec) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cosec) (the function
arccot))′�Z(x) = − cosx·arccotx(sinx)2 − 1

sinx·(1+x2) .

(37) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function arctan)+(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan)+(the function
arccot))′�Z(x) = 0.

(38) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function arctan)−(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan)−(the function
arccot))′�Z(x) =

2
1+x2 .

(39) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function sin) ((the function arctan)+(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ((the function
arctan)+(the function arccot)))′�Z(x) = cosx · (arctanx+ arccotx).

(40) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function sin) ((the function arctan)−(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ((the function
arctan)−(the function arccot)))′�Z(x) = cosx·(arctanx−arccotx)+ 2·sinx1+x2 .

(41) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function cos) ((the function arctan)+(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ((the function
arctan)+(the function arccot)))′�Z(x) = −sinx · (arctanx+ arccotx).

(42) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function cos) ((the function arctan)−(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ((the function
arctan)−(the function arccot)))′�Z(x) = −sinx · (arctanx− arccotx) +
2·cosx
1+x2 .

(43) Suppose Z ⊆ dom (the function tan) and Z ⊆ ]−1, 1[. Then
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(i) (the function tan) ((the function arctan)+(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) ((the function
arctan)+(the function arccot)))′�Z(x) =

arctanx+arccotx
(cosx)2 .

(44) Suppose Z ⊆ dom (the function tan) and Z ⊆ ]−1, 1[. Then
(i) (the function tan) ((the function arctan)−(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) ((the function
arctan)−(the function arccot)))′�Z(x) = arctanx−arccotx(cosx)2 + 2·tanx1+x2 .

(45) Suppose Z ⊆ dom (the function cot) and Z ⊆ ]−1, 1[. Then
(i) (the function cot) ((the function arctan)+(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) ((the function
arctan)+(the function arccot)))′�Z(x) = −arctanx+arccotx(sinx)2 .

(46) Suppose Z ⊆ dom (the function cot) and Z ⊆ ]−1, 1[. Then
(i) (the function cot) ((the function arctan)−(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) ((the function
arctan)−(the function arccot)))′�Z(x) = −arctanx−arccotx(sinx)2 + 2·cotx1+x2 .

(47) Suppose Z ⊆ dom (the function sec) and Z ⊆ ]−1, 1[. Then
(i) (the function sec) ((the function arctan)+(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sec) ((the function
arctan)+(the function arccot)))′�Z(x) =

(arctanx+arccotx)·sinx
(cosx)2 .

(48) Suppose Z ⊆ dom (the function sec) and Z ⊆ ]−1, 1[. Then
(i) (the function sec) ((the function arctan)−(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sec) ((the function
arctan)−(the function arccot)))′�Z(x) =

(arctanx−arccotx)·sinx
(cosx)2 + 2·secx1+x2 .

(49) Suppose Z ⊆ dom (the function cosec) and Z ⊆ ]−1, 1[. Then
(i) (the function cosec) ((the function arctan)+(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cosec) ((the function
arctan)+(the function arccot)))′�Z(x) = −

(arctanx+arccotx)·cosx
(sinx)2 .

(50) Suppose Z ⊆ dom (the function cosec) and Z ⊆ ]−1, 1[. Then
(i) (the function cosec) ((the function arctan)−(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cosec) ((the function
arctan)−(the function arccot)))′�Z(x) = −

(arctanx−arccotx)·cosx
(sinx)2 + 2·cosecx1+x2 .

(51) Suppose Z ⊆ ]−1, 1[. Then
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(i) (the function exp) ((the function arctan)+(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ((the function
arctan)+(the function arccot)))′�Z(x) = expx · (arctanx+ arccotx).

(52) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function exp) ((the function arctan)−(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ((the function
arctan)−(the function arccot)))′�Z(x) = expx·(arctanx−arccotx)+

2·expx
1+x2 .

(53) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function arctan)+(the function arccot)

the function exp is differentiable on Z, and
(ii) for every x such that x ∈ Z holds
( (the function arctan)+(the function arccot)the function exp )′�Z(x) = −arctanx+arccotxexpx .

(54) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function arctan)−(the function arccot)

the function exp is differentiable on Z, and
(ii) for every x such that x ∈ Z holds

( (the function arctan)−(the function arccot)the function exp )′�Z(x) =
( 2
1+x2

−arctanx)+arccotx
expx .

(55) Suppose Z ⊆ dom((the function exp) ·((the function arctan)+(the func-
tion arccot))) and Z ⊆ ]−1, 1[. Then
(i) (the function exp) ·((the function arctan)+(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·((the function
arctan)+(the function arccot)))′�Z(x) = 0.

(56) Suppose Z ⊆ dom((the function exp) ·((the function arctan)−(the func-
tion arccot))) and Z ⊆ ]−1, 1[. Then
(i) (the function exp) ·((the function arctan)−(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·((the function
arctan)−(the function arccot)))′�Z(x) =

2·exp(arctanx−arccotx)
1+x2 .

(57) Suppose Z ⊆ dom((the function sin) ·((the function arctan)+(the func-
tion arccot))) and Z ⊆ ]−1, 1[. Then
(i) (the function sin) ·((the function arctan)+(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·((the function
arctan)+(the function arccot)))′�Z(x) = 0.

(58) Suppose Z ⊆ dom((the function sin) ·((the function arctan)−(the func-
tion arccot))) and Z ⊆ ]−1, 1[. Then
(i) (the function sin) ·((the function arctan)−(the function arccot)) is dif-
ferentiable on Z, and
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(ii) for every x such that x ∈ Z holds ((the function sin) ·((the function
arctan)−(the function arccot)))′�Z(x) =

2·cos(arctanx−arccotx)
1+x2 .

(59) Suppose Z ⊆ dom((the function cos) ·((the function arctan)+(the func-
tion arccot))) and Z ⊆ ]−1, 1[. Then
(i) (the function cos) ·((the function arctan)+(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·((the function
arctan)+(the function arccot)))′�Z(x) = 0.

(60) Suppose Z ⊆ dom((the function cos) ·((the function arctan)−(the func-
tion arccot))) and Z ⊆ ]−1, 1[. Then
(i) (the function cos) ·((the function arctan)−(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·((the function
arctan)−(the function arccot)))′�Z(x) = −

2·sin(arctanx−arccotx)
1+x2 .

(61) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function arctan) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) (the function
arccot))′�Z(x) =

arccotx−arctanx
1+x2 .

(62) Suppose that
(i) Z ⊆ dom(((the function arctan) · 1f ) ((the function arccot) ·

1
f )), and

(ii) for every x such that x ∈ Z holds f(x) = x and −1 < ( 1f )(x) < 1.
Then

(iii) ((the function arctan) · 1f ) ((the function arccot) ·
1
f ) is differentiable on

Z, and
(iv) for every x such that x ∈ Z holds (((the function arctan) · 1f ) ((the

function arccot) · 1f ))
′
�Z(x) =

arctan( 1
x
)−arccot( 1

x
)

1+x2 .

(63) Suppose Z ⊆ dom(idZ ((the function arctan) · 1f )) and for every x such
that x ∈ Z holds f(x) = x and −1 < ( 1f )(x) < 1. Then
(i) idZ ((the function arctan) · 1f ) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ ((the function arctan)
· 1f ))

′
�Z(x) = arctan(

1
x)−

x
1+x2 .

(64) Suppose Z ⊆ dom(idZ ((the function arccot) · 1f )) and for every x such
that x ∈ Z holds f(x) = x and −1 < ( 1f )(x) < 1. Then
(i) idZ ((the function arccot) · 1f ) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ ((the function arccot)
· 1f ))

′
�Z(x) = arccot(

1
x) +

x
1+x2 .

(65) Suppose Z ⊆ dom(g ((the function arctan) · 1f )) and g = �2 and for
every x such that x ∈ Z holds f(x) = x and −1 < ( 1f )(x) < 1. Then
(i) g ((the function arctan) · 1f ) is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds (g ((the function arctan) · 1f ))
′
�Z(x) =

2 · x · arctan( 1x)−
x2

1+x2 .

(66) Suppose Z ⊆ dom(g ((the function arccot) · 1f )) and g = �2 and for every
x such that x ∈ Z holds f(x) = x and −1 < ( 1f )(x) < 1. Then
(i) g ((the function arccot) · 1f ) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (g ((the function arccot) · 1f ))

′
�Z(x) =

2 · x · arccot( 1x) +
x2

1+x2 .

(67) Suppose Z ⊆ ]−1, 1[ and for every x such that x ∈ Z holds (the function
arctan)(x) 6= 0. Then
(i) 1

the function arctan is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ( 1

the function arctan)
′
�Z(x) =

− 1
(arctanx)2·(1+x2) .

(68) Suppose Z ⊆ ]−1, 1[. Then
(i) 1

the function arccot is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ( 1

the function arccot)
′
�Z(x) =

1
(arccotx)2·(1+x2) .

One can prove the following propositions:

(69) Suppose Z ⊆ dom( 1
n (the function arctan)n ) and Z ⊆ ]−1, 1[ and n > 0 and

for every x such that x ∈ Z holds arctanx 6= 0. Then
(i) 1

n (the function arctan)n is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
n (the function arctan)n )

′
�Z(x) =

− 1
((arctanx)n+1)·(1+x2) .

(70) Suppose Z ⊆ dom( 1
n (the function arccot)n ) and Z ⊆ ]−1, 1[ and n > 0.

Then
(i) 1

n (the function arccot)n is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
n (the function arccot)n )

′
�Z(x) =

1
((arccotx)n+1)·(1+x2) .

(71) Suppose Z ⊆ dom(2 (the function arctan)
1
2 ) and Z ⊆ ]−1, 1[ and for

every x such that x ∈ Z holds arctanx > 0. Then
(i) 2 (the function arctan)

1
2 is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (2 (the function arctan)
1
2 )′�Z(x) =

(arctanx)−
1
2

1+x2 .

(72) Suppose Z ⊆ dom(2 (the function arccot)
1
2 ) and Z ⊆ ]−1, 1[. Then

(i) 2 (the function arccot)
1
2 is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (2 (the function arccot)
1
2 )′�Z(x) =

− (arccotx)
− 12

1+x2 .
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(73) Suppose Z ⊆ dom(23 (the function arctan)
3
2 ) and Z ⊆ ]−1, 1[ and for

every x such that x ∈ Z holds arctanx > 0. Then
(i) 2

3 (the function arctan)
3
2 is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (23 (the function arctan)
3
2 )′�Z(x) =

(arctanx)
1
2

1+x2 .

(74) Suppose Z ⊆ dom(23 (the function arccot)
3
2 ) and Z ⊆ ]−1, 1[. Then

(i) 2
3 (the function arccot)

3
2 is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (23 (the function arccot)
3
2 )′�Z(x) =

− (arccotx)
1
2

1+x2 .
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