BCI-homomorphisms

Yuzhong Ding
Qingdao University of Science
and Technology
China

Fuguo Ge
Qingdao University of Science
and Technology
China

Chenglong Wu
Qingdao University of Science
and Technology
China

Abstract

Summary. In this article the notion of the power of an element of BCIalgebra and its period in the book [11], sections 1.4 to 1.5 are firstly given. Then the definition of BCI-homomorphism is defined and the fundamental theorem of homomorphism, the first isomorphism theorem and the second isomorphism theorem are proved following the book [9], section 1.6.

MML identifier: BCIALG_6, version: 7.9.03 4.108.1028

The notation and terminology used in this paper have been introduced in the following articles: [6], [14], [3], [15], [5], [4], [2], [7], [10], [1], [13], [8], and [12].

1. The Power of an Element of BCI-algebras

In this paper X is a BCI-algebra and n is an element of \mathbb{N}.
Let D be a set, let f be a function from \mathbb{N} into D, and let n be a natural number. Then $f(n)$ is an element of D.

Let G be a non empty BCI structure with 0 . The functor BCI-power G yielding a function from (the carrier of $G) \times \mathbb{N}$ into the carrier of G is defined as follows:
(Def. 1) For every element x of G holds (BCI-power $G)(x, 0)=0_{G}$ and for every n holds (BCI-power $G)(x, n+1)=x \backslash($ BCI-power $G)(x, n)^{\mathrm{c}}$.

For simplicity, we adopt the following convention: x, y are elements of X, a, b are elements of AtomSet X, m, n are natural numbers, and i, j are integers.

Let us consider X, i, x. The functor x^{i} yielding an element of X is defined by:
(Def. 2) $\quad x^{i}=\left\{\begin{array}{l}(\text { BCI-power } X)(x,|i|), \text { if } 0 \leq i, \\ (\text { BCI-power } X)\left(x^{\mathrm{c}},|i|\right), \text { otherwise. }\end{array}\right.$
Let us consider X, n, x. Then x^{n} can be characterized by the condition:
(Def. 3) $\quad x^{n}=($ BCI-power $X)(x, n)$.
One can prove the following propositions:
(1) $a \backslash(x \backslash b)=b \backslash(x \backslash a)$.
(2) $x^{n+1}=x \backslash\left(x^{n}\right)^{\mathrm{c}}$.
(3) $x^{0}=0_{X}$.
(4) $x^{1}=x$.
(5) $x^{-1}=x^{\mathrm{c}}$.
(6) $x^{2}=x \backslash x^{\mathrm{c}}$.
(7) $\left(0_{X}\right)^{n}=0_{X}$.
(8) $\left(a^{-1}\right)^{-1}=a$.
(9) $x^{-n}=\left(\left(x^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{-n}$.
(10) $\quad\left(a^{\mathrm{c}}\right)^{n}=a^{-n}$.
(11) If $x \in$ BCK-part X and $n \geq 1$, then $x^{n}=x$.
(12) If $x \in$ BCK-part X, then $x^{-n}=0_{X}$.
(13) $a^{i} \in$ AtomSet X.
(14) $\left(a^{n+1}\right)^{\mathrm{c}}=\left(a^{n}\right)^{\mathrm{c}} \backslash a$.
(15) $\quad(a \backslash b)^{n}=a^{n} \backslash b^{n}$.
(16) $(a \backslash b)^{-n}=a^{-n} \backslash b^{-n}$.
(17) $\left(a^{\mathrm{c}}\right)^{n}=\left(a^{n}\right)^{\mathrm{c}}$.
(18) $\quad\left(x^{c}\right)^{n}=\left(x^{n}\right)^{\mathrm{c}}$.
(19) $\quad\left(a^{\mathrm{c}}\right)^{-n}=\left(a^{-n}\right)^{\mathrm{c}}$.
(20) $x^{n} \in \operatorname{BranchV}\left(\left(\left(x^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{n}\right)$.
(21) $\quad\left(x^{n}\right)^{\mathrm{c}}=\left(\left(\left(x^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{n}\right)^{\mathrm{c}}$.
(22) $a^{i} \backslash a^{j}=a^{i-j}$.
(23) $\left(a^{i}\right)^{j}=a^{i \cdot j}$.
(24) $a^{i+j}=a^{i} \backslash\left(a^{j}\right)^{\mathrm{c}}$.

Let us consider X, x. We say that x is finite-period if and only if:
(Def. 4) There exists an element n of \mathbb{N} such that $n \neq 0$ and $x^{n} \in$ BCK-part X. One can prove the following proposition
(25) If x is finite-period, then $\left(x^{\mathrm{c}}\right)^{\mathrm{c}}$ is finite-period.

Let us consider X, x. Let us assume that x is finite-period. The functor $\operatorname{ord}(x)$ yielding an element of \mathbb{N} is defined as follows:
(Def. 5) $\quad x^{\operatorname{ord}(x)} \in \operatorname{BCK}$-part X and $\operatorname{ord}(x) \neq 0$ and for every element m of \mathbb{N} such that $x^{m} \in$ BCK-part X and $m \neq 0$ holds ord $(x) \leq m$.
One can prove the following propositions:
(26) If a is finite-period and $\operatorname{ord}(a)=n$, then $a^{n}=0_{X}$.
(27) $\quad X$ is a BCK-algebra iff for every x holds x is finite-period and $\operatorname{ord}(x)=1$.
(28) If x is finite-period and a is finite-period and $x \in \operatorname{BranchV} a$, then $\operatorname{ord}(x)=\operatorname{ord}(a)$.
(29) If x is finite-period and $\operatorname{ord}(x)=n$, then $x^{m} \in$ BCK-part X iff $n \mid m$.
(30) If x is finite-period and x^{m} is finite-period and $\operatorname{ord}(x)=n$ and $m>0$, then $\operatorname{ord}\left(x^{m}\right)=n \div(m \operatorname{gcd} n)$.
(31) If x is finite-period and x^{c} is finite-period, then $\operatorname{ord}(x)=\operatorname{ord}\left(x^{\mathrm{c}}\right)$.
(32) If $x \backslash y$ is finite-period and $x, y \in \operatorname{BranchV} a$, then $\operatorname{ord}(x \backslash y)=1$.
(33) Suppose that $x \backslash y$ is finite-period and $a \backslash b$ is finite-period and x is finite-period and y is finite-period and a is finite-period and b is finiteperiod and $a \neq b$ and $x \in \operatorname{BranchV} a$ and $y \in \operatorname{BranchV} b$. Then ord $(a \backslash b) \mid$ $\operatorname{lcm}(\operatorname{ord}(x), \operatorname{ord}(y))$.

2. Definition of BCI-homomorphisms

For simplicity, we follow the rules: X, X^{\prime}, Y, Z, W are BCI-algebras, H^{\prime} denotes a subalgebra of X^{\prime}, G denotes a subalgebra of X, A^{\prime} denotes a non empty subset of X^{\prime}, I denotes an ideal of X, C_{1}, K are closed ideals of X, x, y are elements of X, R_{1} denotes an I-congruence of X by I, and R_{2} denotes an I-congruence of X by K.

One can prove the following proposition
(34) Let X be a BCI-algebra, Y be a subalgebra of X, x, y be elements of X, and x^{\prime}, y^{\prime} be elements of Y. If $x=x^{\prime}$ and $y=y^{\prime}$, then $x \backslash y=x^{\prime} \backslash y^{\prime}$.
Let X, X^{\prime} be non empty BCI structures with 0 and let f be a function from X into X^{\prime}. We say that f is multiplicative if and only if:
(Def. 6) For all elements a, b of X holds $f(a \backslash b)=f(a) \backslash f(b)$.
Let X, X^{\prime} be BCI-algebras. Note that there exists a function from X into X^{\prime} which is multiplicative.

Let X, X^{\prime} be BCI-algebras. A BCI-homomorphism from X to X^{\prime} is a multiplicative function from X into X^{\prime}.

In the sequel f denotes a BCI-homomorphism from X to X^{\prime}, g denotes a BCI-homomorphism from X^{\prime} to X, and h denotes a BCI-homomorphism from X^{\prime} to Y.

Let us consider X, X^{\prime}, f. We say that f is isotonic if and only if:
(Def. 7) For all x, y such that $x \leq y$ holds $f(x) \leq f(y)$.
Let us consider X. An endomorphism of X is a BCI-homomorphism from X to X.

Let us consider X, X^{\prime}, f. The functor $\operatorname{Ker} f$ is defined by:
(Def. 8) Ker $f=\left\{x \in X: f(x)=0_{X^{\prime}}\right\}$.
The following proposition is true
(35) $f\left(0_{X}\right)=0_{X^{\prime}}$.

Let us consider X, X^{\prime}, f. Observe that $\operatorname{Ker} f$ is non empty.
We now state several propositions:
(36) If $x \leq y$, then $f(x) \leq f(y)$.
(37) f is one-to-one iff $\operatorname{Ker} f=\left\{0_{X}\right\}$.
(38) If f is bijective and $g=f^{-1}$, then g is bijective.
(39) $h \cdot f$ is a BCI-homomorphism from X to Y.
(40) Let f be a BCI-homomorphism from X to Y, g be a BCI-homomorphism from Y to Z, and h be a BCI-homomorphism from Z to W. Then $h \cdot(g \cdot f)=$ $(h \cdot g) \cdot f$.
(41) For every subalgebra Z of X^{\prime} such that the carrier of $Z=\operatorname{rng} f$ holds f is a BCI-homomorphism from X to Z.
(42) $\operatorname{Ker} f$ is a closed ideal of X.

Let us consider X, X^{\prime}, f. Observe that $\operatorname{Ker} f$ is closed.
Next we state several propositions:
(43) If f is onto, then for every element c of X^{\prime} there exists x such that $c=f(x)$.
(44) For every element a of X such that a is minimal holds $f(a)$ is minimal.
(45) For every element a of AtomSet X and for every element b of AtomSet X^{\prime} such that $b=f(a)$ holds f° BranchV $a \subseteq \operatorname{BranchV} b$.
(46) If A^{\prime} is an ideal of X^{\prime}, then $f^{-1}\left(A^{\prime}\right)$ is an ideal of X.
(47) If A^{\prime} is a closed ideal of X^{\prime}, then $f^{-1}\left(A^{\prime}\right)$ is a closed ideal of X.
(48) If f is onto, then $f^{\circ} I$ is an ideal of X^{\prime}.
(49) If f is onto, then $f^{\circ} C_{1}$ is a closed ideal of X^{\prime}.

Let X, X^{\prime} be BCI-algebras. We say that X and X^{\prime} are isomorphic if and only if:
(Def. 9) There exists a BCI-homomorphism from X to X^{\prime} which is bijective.
Let us consider X, let I be an ideal of X, and let R_{1} be an I-congruence of X by I. Note that ${ }^{X} / R_{1}$ is strict, B, C, I, and BCI-4.

Let us consider X, let I be an ideal of X, and let R_{1} be an I-congruence of X by I. The canonical homomorphism onto cosets of R_{1} yielding a BCIhomomorphism from X to ${ }^{X} / R_{1}$ is defined as follows:
(Def. 10) For every x holds (the canonical homomorphism onto cosets of $\left.R_{1}\right)(x)=$ $[x]_{\left(R_{1}\right)}$.

3. Fundamental Theorem of Homomorphisms

The following four propositions are true:
(50) The canonical homomorphism onto cosets of R_{1} is onto.
(51) Suppose $I=\operatorname{Ker} f$. Then there exists a BCI-homomorphism h from ${ }^{X} / R_{1}$ to X^{\prime} such that $f=h$. the canonical homomorphism onto cosets of R_{1} and h is one-to-one.
(52) Let given $X, X^{\prime}, I, R_{1}, f$. Suppose $I=\operatorname{Ker} f$. Then there exists a BCI-homomorphism h from ${ }^{X} / R_{1}$ to X^{\prime} such that $f=h \cdot$ the canonical homomorphism onto cosets of R_{1} and h is one-to-one.
(53) $\quad \operatorname{Ker}\left(\right.$ the canonical homomorphism onto cosets of $\left.R_{2}\right)=K$.

4. First Isomorphism Theorem

One can prove the following propositions:
(54) If $I=\operatorname{Ker} f$ and the carrier of $H^{\prime}=\operatorname{rng} f$, then ${ }^{X} / R_{1}$ and H^{\prime} are isomorphic.
(55) If $I=\operatorname{Ker} f$ and f is onto, then ${ }^{X} / R_{1}$ and X^{\prime} are isomorphic.

5. Second Isomorphism Theorem

Let us consider X, G, K, R_{2}. The functor $\operatorname{Union}\left(G, R_{2}\right)$ yielding a non empty subset of X is defined by:
(Def. 11) Union $\left(G, R_{2}\right)=\bigcup\left\{[a]_{\left(R_{2}\right)} ; a\right.$ ranges over elements of $G:[a]_{\left(R_{2}\right)} \in$ the carrier of $\left.X / R_{2}\right\}$.
Let us consider X, G, K, R_{2}. The functor $\operatorname{HKOp}\left(G, R_{2}\right)$ yielding a binary operation on $\operatorname{Union}\left(G, R_{2}\right)$ is defined as follows:
(Def. 12) For all elements w_{1}, w_{2} of $\operatorname{Union}\left(G, R_{2}\right)$ and for all elements x, y of X such that $w_{1}=x$ and $w_{2}=y$ holds $\left(\operatorname{HKOp}\left(G, R_{2}\right)\right)\left(w_{1}, w_{2}\right)=x \backslash y$.
Let us consider X, G, K, R_{2}. The functor zeroHK $\left(G, R_{2}\right)$ yields an element of $\operatorname{Union}\left(G, R_{2}\right)$ and is defined as follows:
(Def. 13) zeroHK $\left(G, R_{2}\right)=0_{X}$.
Let us consider X, G, K, R_{2}. The functor $\operatorname{HK}\left(G, R_{2}\right)$ yielding a BCI structure with 0 is defined as follows:
(Def. 14) $\operatorname{HK}\left(G, R_{2}\right)=\left\langle\operatorname{Union}\left(G, R_{2}\right), \operatorname{HKOp}\left(G, R_{2}\right), \operatorname{zeroHK}\left(G, R_{2}\right)\right\rangle$.

Let us consider X, G, K, R_{2}. Observe that $\operatorname{HK}\left(G, R_{2}\right)$ is non empty.
Let us consider X, G, K, R_{2} and let w_{1}, w_{2} be elements of $\operatorname{Union}\left(G, R_{2}\right)$. The functor $w_{1} \backslash w_{2}$ yielding an element of $\operatorname{Union}\left(G, R_{2}\right)$ is defined by:
$\left(\right.$ Def. 15) $\quad w_{1} \backslash w_{2}=\left(\operatorname{HKOp}\left(G, R_{2}\right)\right)\left(w_{1}, w_{2}\right)$.
We now state the proposition
(56) $\operatorname{HK}\left(G, R_{2}\right)$ is a BCI-algebra.

Let us consider X, G, K, R_{2}. Observe that $\operatorname{HK}\left(G, R_{2}\right)$ is strict, B, C, I, and BCI-4.

We now state three propositions:
(57) $\operatorname{HK}\left(G, R_{2}\right)$ is a subalgebra of X.
(58) (The carrier of $G) \cap K$ is a closed ideal of G.
(59) Let K_{1} be an ideal of $\operatorname{HK}\left(G, R_{2}\right), R_{3}$ be an I-congruence of $\operatorname{HK}\left(G, R_{2}\right)$ by K_{1}, I be an ideal of G, and R_{1} be an I-congruence of G by I. Suppose $K_{1}=K$ and $R_{3}=R_{2}$ and $I=($ the carrier of $G) \cap K$. Then ${ }^{G} / R_{1}$ and $\operatorname{HK}\left(G, R_{2}\right) / R_{3}$ are isomorphic.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Yuzhong Ding. Several classes of BCI-algebras and their properties. Formalized Mathematics, 15(1):1-9, 2007.
[8] Yuzhong Ding and Zhiyong Pang. Congruences and quotient algebras of BCI-algebras. Formalized Mathematics, 15(4):175-180, 2007.
[9] Yisheng Huang. BCI-algebras. Science Press, 2006.
[10] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[11] Jie Meng and YoungLin Liu. An Introduction to BCI-algebras. Shaanxi Scientific and Technological Press, 2001.
[12] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[13] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[15] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

