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Summary. In this article the notion of the power of an element of BCI-
algebra and its period in the book [11], sections 1.4 to 1.5 are firstly given. Then
the definition of BCI-homomorphism is defined and the fundamental theorem
of homomorphism, the first isomorphism theorem and the second isomorphism
theorem are proved following the book [9], section 1.6.
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The notation and terminology used in this paper have been introduced in the
following articles: [6], [14], [3], [15], [5], [4], [2], [7], [10], [1], [13], [8], and [12].

1. The Power of an Element of BCI-algebras

In this paper X is a BCI-algebra and n is an element of N.
Let D be a set, let f be a function from N into D, and let n be a natural

number. Then f(n) is an element of D.
Let G be a non empty BCI structure with 0. The functor BCI-powerG

yielding a function from (the carrier of G) × N into the carrier of G is defined
as follows:

(Def. 1) For every element x of G holds (BCI-powerG)(x, 0) = 0G and for every
n holds (BCI-powerG)(x, n+ 1) = x \ (BCI-powerG)(x, n)c.
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For simplicity, we adopt the following convention: x, y are elements of X, a,
b are elements of AtomSetX, m, n are natural numbers, and i, j are integers.
Let us consider X, i, x. The functor xi yielding an element of X is defined

by:

(Def. 2) xi =

{
(BCI-powerX)(x, |i|), if 0 ≤ i,
(BCI-powerX)(xc, |i|), otherwise.

Let us consider X, n, x. Then xn can be characterized by the condition:

(Def. 3) xn = (BCI-powerX)(x, n).

One can prove the following propositions:

(1) a \ (x \ b) = b \ (x \ a).
(2) xn+1 = x \ (xn)c.
(3) x0 = 0X .

(4) x1 = x.

(5) x−1 = xc.

(6) x2 = x \ xc.
(7) (0X)

n = 0X .

(8) (a−1)−1 = a.

(9) x−n = ((xc)c)−n.

(10) (ac)n = a−n.

(11) If x ∈ BCK-partX and n ≥ 1, then xn = x.
(12) If x ∈ BCK-partX, then x−n = 0X .
(13) ai ∈ AtomSetX.
(14) (an+1)c = (an)c \ a.
(15) (a \ b)n = an \ bn.
(16) (a \ b)−n = a−n \ b−n.
(17) (ac)n = (an)c.

(18) (xc)n = (xn)c.

(19) (ac)−n = (a−n)c.

(20) xn ∈ BranchV(((xc)c)n).
(21) (xn)c = (((xc)c)n)c.

(22) ai \ aj = ai−j .
(23) (ai)j = ai·j .

(24) ai+j = ai \ (aj)c.
Let us consider X, x. We say that x is finite-period if and only if:

(Def. 4) There exists an element n of N such that n 6= 0 and xn ∈ BCK-partX.
One can prove the following proposition

(25) If x is finite-period, then (xc)c is finite-period.
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Let us consider X, x. Let us assume that x is finite-period. The functor
ord(x) yielding an element of N is defined as follows:
(Def. 5) xord(x) ∈ BCK-partX and ord(x) 6= 0 and for every element m of N such

that xm ∈ BCK-partX and m 6= 0 holds ord(x) ≤ m.
One can prove the following propositions:

(26) If a is finite-period and ord(a) = n, then an = 0X .

(27) X is a BCK-algebra iff for every x holds x is finite-period and ord(x) = 1.

(28) If x is finite-period and a is finite-period and x ∈ BranchV a, then
ord(x) = ord(a).

(29) If x is finite-period and ord(x) = n, then xm ∈ BCK-partX iff n | m.
(30) If x is finite-period and xm is finite-period and ord(x) = n and m > 0,
then ord(xm) = n÷ (m gcdn).

(31) If x is finite-period and xc is finite-period, then ord(x) = ord(xc).

(32) If x \ y is finite-period and x, y ∈ BranchV a, then ord(x \ y) = 1.
(33) Suppose that x \ y is finite-period and a \ b is finite-period and x is
finite-period and y is finite-period and a is finite-period and b is finite-
period and a 6= b and x ∈ BranchV a and y ∈ BranchV b. Then ord(a \ b) |
lcm(ord(x), ord(y)).

2. Definition of BCI-homomorphisms

For simplicity, we follow the rules: X, X ′, Y , Z, W are BCI-algebras, H ′

denotes a subalgebra of X ′, G denotes a subalgebra of X, A′ denotes a non
empty subset of X ′, I denotes an ideal of X, C1, K are closed ideals of X, x,
y are elements of X, R1 denotes an I-congruence of X by I, and R2 denotes an
I-congruence of X by K.
One can prove the following proposition

(34) Let X be a BCI-algebra, Y be a subalgebra of X, x, y be elements of
X, and x′, y′ be elements of Y . If x = x′ and y = y′, then x \ y = x′ \ y′.
Let X, X ′ be non empty BCI structures with 0 and let f be a function from

X into X ′. We say that f is multiplicative if and only if:

(Def. 6) For all elements a, b of X holds f(a \ b) = f(a) \ f(b).
Let X, X ′ be BCI-algebras. Note that there exists a function from X into

X ′ which is multiplicative.
Let X, X ′ be BCI-algebras. A BCI-homomorphism from X to X ′ is a mul-

tiplicative function from X into X ′.
In the sequel f denotes a BCI-homomorphism from X to X ′, g denotes a

BCI-homomorphism from X ′ to X, and h denotes a BCI-homomorphism from
X ′ to Y .
Let us consider X, X ′, f . We say that f is isotonic if and only if:
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(Def. 7) For all x, y such that x ≤ y holds f(x) ≤ f(y).
Let us consider X. An endomorphism of X is a BCI-homomorphism from

X to X.
Let us consider X, X ′, f . The functor Ker f is defined by:

(Def. 8) Ker f = {x ∈ X: f(x) = 0X′}.
The following proposition is true

(35) f(0X) = 0X′ .

Let us consider X, X ′, f . Observe that Ker f is non empty.
We now state several propositions:

(36) If x ≤ y, then f(x) ≤ f(y).
(37) f is one-to-one iff Ker f = {0X}.
(38) If f is bijective and g = f−1, then g is bijective.

(39) h · f is a BCI-homomorphism from X to Y .
(40) Let f be a BCI-homomorphism from X to Y , g be a BCI-homomorphism
from Y to Z, and h be a BCI-homomorphism from Z toW . Then h·(g·f) =
(h · g) · f.

(41) For every subalgebra Z of X ′ such that the carrier of Z = rng f holds f
is a BCI-homomorphism from X to Z.

(42) Ker f is a closed ideal of X.

Let us consider X, X ′, f . Observe that Ker f is closed.
Next we state several propositions:

(43) If f is onto, then for every element c of X ′ there exists x such that
c = f(x).

(44) For every element a of X such that a is minimal holds f(a) is minimal.

(45) For every element a of AtomSetX and for every element b of AtomSetX ′

such that b = f(a) holds f◦ BranchV a ⊆ BranchV b.
(46) If A′ is an ideal of X ′, then f−1(A′) is an ideal of X.

(47) If A′ is a closed ideal of X ′, then f−1(A′) is a closed ideal of X.

(48) If f is onto, then f◦I is an ideal of X ′.

(49) If f is onto, then f◦C1 is a closed ideal of X ′.

Let X, X ′ be BCI-algebras. We say that X and X ′ are isomorphic if and
only if:

(Def. 9) There exists a BCI-homomorphism from X to X ′ which is bijective.

Let us consider X, let I be an ideal of X, and let R1 be an I-congruence of
X by I. Note that X/R1 is strict, B, C, I, and BCI-4.
Let us consider X, let I be an ideal of X, and let R1 be an I-congruence

of X by I. The canonical homomorphism onto cosets of R1 yielding a BCI-
homomorphism from X to X/R1 is defined as follows:
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(Def. 10) For every x holds (the canonical homomorphism onto cosets of R1)(x) =
[x](R1).

3. Fundamental Theorem of Homomorphisms

The following four propositions are true:

(50) The canonical homomorphism onto cosets of R1 is onto.

(51) Suppose I = Ker f. Then there exists a BCI-homomorphism h from
X/R1 to X

′ such that f = h · the canonical homomorphism onto cosets of
R1 and h is one-to-one.

(52) Let given X, X ′, I, R1, f . Suppose I = Ker f. Then there exists a
BCI-homomorphism h from X/R1 to X

′ such that f = h · the canonical
homomorphism onto cosets of R1 and h is one-to-one.

(53) Ker (the canonical homomorphism onto cosets of R2) = K.

4. First Isomorphism Theorem

One can prove the following propositions:

(54) If I = Ker f and the carrier of H ′ = rng f, then X/R1 and H
′ are

isomorphic.

(55) If I = Ker f and f is onto, then X/R1 and X
′ are isomorphic.

5. Second Isomorphism Theorem

Let us considerX, G,K, R2. The functor Union(G,R2) yielding a non empty
subset of X is defined by:

(Def. 11) Union(G,R2) =
⋃
{[a](R2); a ranges over elements of G: [a](R2) ∈ the

carrier of X/R2}.
Let us consider X, G, K, R2. The functor HKOp(G,R2) yielding a binary

operation on Union(G,R2) is defined as follows:

(Def. 12) For all elements w1, w2 of Union(G,R2) and for all elements x, y of X
such that w1 = x and w2 = y holds (HKOp(G,R2))(w1, w2) = x \ y.
Let us consider X, G, K, R2. The functor zeroHK(G,R2) yields an element

of Union(G,R2) and is defined as follows:

(Def. 13) zeroHK(G,R2) = 0X .

Let us consider X, G, K, R2. The functor HK(G,R2) yielding a BCI struc-
ture with 0 is defined as follows:

(Def. 14) HK(G,R2) = 〈Union(G,R2),HKOp(G,R2), zeroHK(G,R2)〉.
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Let us consider X, G, K, R2. Observe that HK(G,R2) is non empty.
Let us consider X, G, K, R2 and let w1, w2 be elements of Union(G,R2).

The functor w1 \ w2 yielding an element of Union(G,R2) is defined by:
(Def. 15) w1 \ w2 = (HKOp(G,R2))(w1, w2).

We now state the proposition

(56) HK(G,R2) is a BCI-algebra.

Let us consider X, G, K, R2. Observe that HK(G,R2) is strict, B, C, I, and
BCI-4.
We now state three propositions:

(57) HK(G,R2) is a subalgebra of X.

(58) (The carrier of G) ∩K is a closed ideal of G.
(59) Let K1 be an ideal of HK(G,R2), R3 be an I-congruence of HK(G,R2)
by K1, I be an ideal of G, and R1 be an I-congruence of G by I. Suppose
K1 = K and R3 = R2 and I = (the carrier of G) ∩ K. Then G/R1 and
HK(G,R2)/R3 are isomorphic.
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