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Summary. This article contains some definitions and properties refering
to function spaces formed by partial functions defined over a measurable space.
We formalized a function space, the so-called L1 space and proved that the
space turns out to be a normed space. The formalization of a real function space
was given in [16]. The set of all function forms additive group. Here addition
is defined by point-wise addition of two functions. However it is not true for
partial functions. The set of partial functions does not form an additive group
due to lack of right zeroed condition. Therefore, firstly we introduced a kind of a
quasi-linear space, then, we introduced the definition of an equivalent relation of
two functions which are almost everywhere equal (=a.e.), thirdly we formalized a
linear space by taking the quotient of a quasi-linear space by the relation (=a.e.).

MML identifier: LPSPACE1, version: 7.9.03 4.108.1028

The papers [11], [24], [4], [5], [3], [8], [25], [10], [9], [14], [7], [20], [13], [23], [22], [1],
[17], [21], [18], [15], [6], [12], [19], and [2] provide the notation and terminology
for this paper.

1. Preliminaries of Real Linear Space

Let V be a non empty RLS structure and let V1 be a subset of V . We say
that V1 is multiplicatively-closed if and only if:
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(Def. 1) For every real number a and for every vector v of V such that v ∈ V1
holds a · v ∈ V1.
The following proposition is true

(1) Let V be a real linear space and V1 be a subset of V . Then V1 is linearly
closed if and only if V1 is add closed and multiplicatively-closed.

Let V be a non empty RLS structure. Observe that there exists a subset of
V which is add closed, multiplicatively-closed, and non empty.
Let X be a non empty RLS structure and let X1 be a multiplicatively-closed

non empty subset of X. The functor ·(X1) yields a function from R × X1 into
X1 and is defined by:

(Def. 2) ·(X1) = (the external multiplication of X)�(R×X1).
In the sequel a, b, r denote real numbers.
Next we state four propositions:

(2) Let V be an Abelian add-associative right zeroed real linear space-like
non empty RLS structure, V1 be a non empty subset of V , d1 be an element
of V1, A be a binary operation on V1, andM be a function from R×V1 into
V1. Suppose d1 = 0V and A = (the addition of V ) � (V1) and M = (the
external multiplication of V )�(R × V1). Then 〈V1, d1, A,M〉 is Abelian,
add-associative, right zeroed, and real linear space-like.

(3) Let V be an Abelian add-associative right zeroed real linear space-
like non empty RLS structure and V1 be an add closed multiplicatively-
closed non empty subset of V . Suppose 0V ∈ V1. Then 〈V1, 0V (∈
V1), add |(V1, V ), ·(V1)〉 is Abelian, add-associative, right zeroed, and real
linear space-like.

(4) Let V be a non empty RLS structure, V1 be an add closed
multiplicatively-closed non empty subset of V , v, u be vectors of V , and w1,
w2 be vectors of 〈V1, 0V (∈ V1), add |(V1, V ), ·(V1)〉. If w1 = v and w2 = u,
then w1 + w2 = v + u.

(5) Let V be a non empty RLS structure, V1 be an add closed
multiplicatively-closed non empty subset of V , a be a real number, v be
a vector of V , and w be a vector of 〈V1, 0V (∈ V1), add |(V1, V ), ·(V1)〉. If
w = v, then a · w = a · v.

2. Quasi-Real Linear Space of Partial Functions

We adopt the following convention: A, B denote non empty sets and f , g, h
denote elements of A→̇R.
Let us consider A, B, let F be a binary operation on A→̇B, and let f , g be

elements of A→̇B. Then F (f, g) is an element of A→̇B.
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Let us consider A. The functor ·A→̇R yielding a binary operation on A→̇R
is defined as follows:

(Def. 3) For all elements f , g of A→̇R holds ·A→̇R(f, g) = f g.

Let us consider A. The functor ·RA→̇R yielding a function from R × (A→̇R)
into A→̇R is defined as follows:
(Def. 4) For every real number a and for every element f of A→̇R holds ·RA→̇R(a,

f) = a f.

Let us consider A. The functor 0A→̇R yielding an element of A→̇R is defined
as follows:

(Def. 5) 0A→̇R = A 7−→ 0.
Let us consider A. The functor 1A→̇R yields an element of A→̇R and is

defined as follows:

(Def. 6) 1A→̇R = A 7−→ 1.
The following propositions are true:

(6) h = +A→̇R(f, g) iff domh = dom f ∩ dom g and for every element x of
A such that x ∈ domh holds h(x) = f(x) + g(x).

(7) h = ·A→̇R(f, g) iff domh = dom f ∩ dom g and for every element x of A
such that x ∈ domh holds h(x) = f(x) · g(x).

(8) 0A→̇R 6= 1A→̇R.

(9) h = ·RA→̇R(a, f) iff domh = dom f and for every element x of A such
that x ∈ dom f holds h(x) = a · f(x).

(10) +A→̇R(f, g) = +A→̇R(g, f).

(11) +A→̇R(f, +A→̇R(g, h)) = +A→̇R(+A→̇R(f, g), h).

(12) ·A→̇R(f, g) = ·A→̇R(g, f).

(13) ·A→̇R(f, ·A→̇R(g, h)) = ·A→̇R(·A→̇R(f, g), h).

(14) ·A→̇R(1A→̇R, f) = f.

(15) +A→̇R(0A→̇R, f) = f.

(16) +A→̇R(f, ·RA→̇R(−1, f)) = 0A→̇R�dom f.

(17) ·RA→̇R(1, f) = f.

(18) ·RA→̇R(a, ·RA→̇R(b, f)) = ·RA→̇R(a · b, f).
(19) +A→̇R(·RA→̇R(a, f), ·RA→̇R(b, f)) = ·RA→̇R(a+ b, f).

(20) ·A→̇R(f, +A→̇R(g, h)) = +A→̇R(·A→̇R(f, g), ·A→̇R(f, h)).

(21) ·A→̇R(·RA→̇R(a, f), g) = ·RA→̇R(a, ·A→̇R(f, g)).

Let us consider A. The functor PFunctRLSA yields a non empty RLS struc-
ture and is defined by:

(Def. 7) PFunctRLSA = 〈A→̇R, 0A→̇R,+A→̇R, ·RA→̇R〉.
Let us consider A. One can verify that PFunctRLSA is strict, Abelian, add-

associative, right zeroed, and real linear space-like.
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3. Quasi-Real Linear Space of Integrable Functions

For simplicity, we use the following convention: X is a non empty set, x is
an element of X, S is a σ-field of subsets of X, M is a σ-measure on S, E is an
element of S, and f , g, h, f1, g1 are partial functions from X to R.
Next we state the proposition

(22) Let given X, S, M and f be a partial function from X to R. Suppose
there exists E such that E = dom f and for every x such that x ∈ dom f
holds 0 = f(x). Then f is integrable on M and

∫
f dM = 0.

Let X be a non empty set and let r be a real number. Then X 7−→ r is a
partial function from X to R.
Let X be a non empty set, let S be a σ-field of subsets of X, and let M

be a σ-measure on S. The L1 functions of M yielding a non empty subset of
PFunctRLSX is defined by the condition (Def. 8).

(Def. 8) The L1 functions of M = {f ; f ranges over partial functions from X to
R:
∨
N1 : element of S (M(N1) = 0 ∧ dom f = N1

c ∧ f is integrable onM)}.
We now state two propositions:

(23) Suppose f ∈ the L1 functions ofM and g ∈ the L1 functions ofM . Then
f + g ∈ the L1 functions of M .

(24) If f ∈ the L1 functions of M , then a f ∈ the L1 functions of M .
Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a

σ-measure on S. Observe that the L1 functions of M is multiplicatively-closed
and add closed.
Let X be a non empty set, let S be a σ-field of subsets of X, and let M

be a σ-measure on S. The functor L1-FunctRLSM yielding a non empty RLS
structure is defined by the condition (Def. 9).

(Def. 9) L1-FunctRLSM = 〈the L1 functions of M , 0PFunctRLSX(∈ the L1 func-
tions ofM), add |(the L1 functions ofM , PFunctRLSX), ·the L1 functions of M 〉.
Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a

σ-measure on S. Observe that L1-FunctRLSM is strict, Abelian, add-associative,
right zeroed, and real linear space-like.

4. Quotient Space of Quasi-Real Linear Space of Integrable
Functions

In the sequel v, u are vectors of L1-FunctRLSM.
Next we state two propositions:

(25) (v) + (u) = v + u.

(26) a (u) = a · u.
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Let X be a non empty set, let S be a σ-field of subsets of X, let M be a
σ-measure on S, and let f , g be partial functions from X to R. The predicate
f =Ma.e. g is defined by:

(Def. 10) There exists an element E of S such that M(E) = 0 and f�Ec = g�Ec.

We now state several propositions:

(27) Suppose f = u. Then
(i) u+ (−1) · u = (X 7−→ 0)�dom f, and
(ii) there exist partial functions v, g from X to R such that v ∈ the L1
functions of M and g ∈ the L1 functions of M and v = u + (−1) · u and
g = X 7−→ 0 and v =Ma.e. g.

(28) f =Ma.e. f.

(29) If f =Ma.e. g, then g =
M
a.e. f.

(30) If f =Ma.e. g and g =
M
a.e. h, then f =

M
a.e. h.

(31) If f =Ma.e. f1 and g =
M
a.e. g1, then f + g =

M
a.e. f1 + g1.

(32) If f =Ma.e. g, then a f =
M
a.e. a g.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be
a σ-measure on S. The functor AlmostZeroFunctionsM yielding a non empty
subset of L1-FunctRLSM is defined as follows:

(Def. 11) AlmostZeroFunctionsM = {f ; f ranges over partial functions from X to
R: f ∈ the L1 functions of M ∧ f =Ma.e. X 7−→ 0}.
The following proposition is true

(33) (X 7−→ 0) + (X 7−→ 0) = X 7−→ 0 and a (X 7−→ 0) = X 7−→ 0.
Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a

σ-measure on S. One can check that AlmostZeroFunctionsM is add closed and
multiplicatively-closed.
Next we state the proposition

(34) 0L1-FunctRLSM = X 7−→ 0 and 0L1-FunctRLSM ∈ AlmostZeroFunctionsM.
Let X be a non empty set, let S be a σ-field of subsets of X, and let M be

a σ-measure on S. The functor AlmostZeroFunctRLSM yielding a non empty
RLS structure is defined as follows:

(Def. 12) AlmostZeroFunctRLSM = 〈AlmostZeroFunctionsM, 0L1-FunctRLSM (∈
AlmostZeroFunctionsM), add |(AlmostZeroFunctionsM,L1-FunctRLSM),
·AlmostZeroFunctionsM 〉.
Let X be a non empty set, let S be a σ-field of subsets of X, and let M

be a σ-measure on S. Note that L1-FunctRLSM is strict, strict, Abelian, add-
associative, right zeroed, and real linear space-like.
In the sequel v, u are vectors of AlmostZeroFunctRLSM.
Next we state two propositions:

(35) (v) + (u) = v + u.
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(36) a (u) = a · u.
Let X be a non empty set, let S be a σ-field of subsets of X, let M be a

σ-measure on S, and let f be a partial function from X to R. The functor [f ]Ma.e.
yielding a subset of the L1 functions of M is defined by the condition (Def. 13).

(Def. 13) [f ]Ma.e. = {g; g ranges over partial functions from X to R: g ∈ the L1
functions of M ∧ f ∈ the L1 functions of M ∧ f =Ma.e. g}.
The following propositions are true:

(37) If f ∈ the L1 functions of M and g ∈ the L1 functions of M , then
g =Ma.e. f iff g ∈ [f ]Ma.e..

(38) If f ∈ the L1 functions of M , then f ∈ [f ]Ma.e..
(39) If f ∈ the L1 functions of M and g ∈ the L1 functions of M , then
[f ]Ma.e. = [g]

M
a.e. iff f =

M
a.e. g.

(40) Suppose f ∈ the L1 functions ofM and g ∈ the L1 functions ofM . Then
[f ]Ma.e. = [g]

M
a.e. if and only if g ∈ [f ]Ma.e..

(41) Suppose that
(i) f ∈ the L1 functions of M ,
(ii) f1 ∈ the L1 functions of M ,
(iii) g ∈ the L1 functions of M ,
(iv) g1 ∈ the L1 functions of M ,
(v) [f ]Ma.e. = [f1]

M
a.e., and

(vi) [g]Ma.e. = [g1]
M
a.e..

Then [f + g]Ma.e. = [f1 + g1]
M
a.e..

(42) If f ∈ the L1 functions of M and g ∈ the L1 functions of M and
[f ]Ma.e. = [g]

M
a.e., then [a f ]

M
a.e. = [a g]

M
a.e..

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a
σ-measure on S. The functor CosetSetM yields a non empty family of subsets
of the L1 functions of M and is defined by:

(Def. 14) CosetSetM = {[f ]Ma.e.; f ranges over partial functions from X to R: f ∈
the L1 functions of M}.
Let X be a non empty set, let S be a σ-field of subsets of X, and let M

be a σ-measure on S. The functor addCosetM yields a binary operation on
CosetSetM and is defined by the condition (Def. 15).

(Def. 15) Let A, B be elements of CosetSetM and a, b be partial functions from
X to R. If a ∈ A and b ∈ B, then (addCosetM)(A, B) = [a+ b]Ma.e..
Let X be a non empty set, let S be a σ-field of subsets of X, and let M be

a σ-measure on S. The functor zeroCosetM yielding an element of CosetSetM
is defined by:

(Def. 16) There exists a partial function f from X to R such that f = X 7−→ 0
and f ∈ the L1 functions of M and zeroCosetM = [f ]Ma.e..
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Let X be a non empty set, let S be a σ-field of subsets of X, and let M
be a σ-measure on S. The functor lmultCosetM yields a function from R ×
CosetSetM into CosetSetM and is defined by the condition (Def. 17).

(Def. 17) Let z be an element of R, A be an element of CosetSetM, and f be
a partial function from X to R. If f ∈ A, then (lmultCosetM)(z, A) =
[z f ]Ma.e..

Let X be a non empty set, let S be a σ-field of subsets of X, and let M
be a σ-measure on S. The functor pre-L-SpaceM yields a strict Abelian add-
associative right zeroed right complementable real linear space-like non empty
RLS structure and is defined by the conditions (Def. 18).

(Def. 18)(i) The carrier of pre-L-SpaceM = CosetSetM,
(ii) the addition of pre-L-SpaceM = addCosetM,
(iii) 0pre-L-SpaceM = zeroCosetM, and
(iv) the external multiplication of pre-L-SpaceM = lmultCosetM.

5. Real Normed Space of Integrable Functions

One can prove the following propositions:

(43) If f ∈ the L1 functions ofM and g ∈ the L1 functions ofM and f =Ma.e. g,
then

∫
f dM =

∫
g dM.

(44) If f is integrable on M , then
∫
f dM ,

∫
|f |dM ∈ R and |f | is integrable

on M .

(45) Suppose f ∈ the L1 functions of M and g ∈ the L1 functions of M and
f =Ma.e. g. Then |f | =Ma.e. |g| and

∫
|f |dM =

∫
|g|dM.

(46) Given a vector x of pre-L-SpaceM such that f , g ∈ x. Then f =Ma.e. g
and f ∈ the L1 functions of M and g ∈ the L1 functions of M .

(47) There exists a function N2 from the carrier of pre-L-SpaceM into R
such that for every point x of pre-L-SpaceM holds there exists a partial
function f from X to R such that f ∈ x and N2(x) =

∫
|f |dM.

In the sequel x is a point of pre-L-SpaceM.
The following two propositions are true:

(48) If f ∈ x, then f is integrable on M and f ∈ the L1 functions of M and
|f | is integrable on M .

(49) If f , g ∈ x, then f =Ma.e. g and
∫
f dM =

∫
g dM and

∫
|f |dM =

∫
|g|dM.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be
a σ-measure on S. The functor L1-Norm(M) yields a function from the carrier
of pre-L-SpaceM into R and is defined by:

(Def. 19) For every point x of pre-L-SpaceM there exists a partial function f from
X to R such that f ∈ x and (L1-Norm(M))(x) =

∫
|f |dM.
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Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a
σ-measure on S. The functor L1-Space(M) yielding a non empty strict normed
structure is defined by:

(Def. 20) The RLS structure of L1-Space(M) = pre-L-SpaceM and the norm of
L1-Space(M) = L1-Norm(N).

In the sequel x, y are points of L1-Space(M).
Next we state several propositions:

(50)(i) There exists a partial function f from X to R such that f ∈ the L1
functions of M and x = [f ]Ma.e. and ‖x‖ =

∫
|f |dM, and

(ii) for every partial function f from X to R such that f ∈ x holds∫
|f |dM = ‖x‖.

(51) If f ∈ x, then x = [f ]Ma.e. and ‖x‖ =
∫
|f |dM.

(52) If f ∈ x and g ∈ y, then f + g ∈ x+ y and if f ∈ x, then a f ∈ a · x.
(53) If E = dom f and for every set x such that x ∈ dom f holds f(x) = r,
then f is measurable on E.

(54) If f ∈ the L1 functions of M and
∫
|f |dM = 0, then f =Ma.e. X 7−→ 0.

(55)
∫
|X 7−→ 0|dM = 0.

(56) If f is integrable on M and g is integrable on M , then
∫
|f + g|dM ≤∫

|f |dM +
∫
|g|dM.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be
a σ-measure on S. One can check that L1-Space(M) is real normed space-like,
real linear space-like, Abelian, add-associative, right zeroed, and right comple-
mentable.
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