Partial Differentiation of Real Binary Functions

Bing Xie
Qingdao University of Science
and Technology
China
Xiquan Liang
Qingdao University of Science
and Technology
China

Hongwei Li
Qingdao University of Science
and Technology
China

Abstract

Summary. In this article, we define two single-variable functions SVF1 and SVF2, then discuss partial differentiation of real binary functions by dint of one variable function SVF1 and SVF2. The main properties of partial differentiation are shown [7].

MML identifier: PDIFF_2, version: $\underline{7.9 .034 .104 .1021}$

The articles [14], [4], [15], [5], [1], [8], [10], [9], [2], [3], [13], [6], [12], [11], and [7] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: x, x_{0}, y, y_{0}, r are real numbers, z, z_{0} are elements of \mathcal{R}^{2}, Z is a subset of $\mathcal{R}^{2}, f, f_{1}, f_{2}$ are partial functions from \mathcal{R}^{2} to \mathbb{R}, R is a rest, and L is a linear function.

Next we state two propositions:
(1) $\quad \operatorname{dom} \operatorname{proj}(1,2)=\mathcal{R}^{2}$ and $\operatorname{rng} \operatorname{proj}(1,2)=\mathbb{R}$ and for all elements x, y of \mathbb{R} holds $(\operatorname{proj}(1,2))(\langle x, y\rangle)=x$.
(2) $\quad \operatorname{dom} \operatorname{proj}(2,2)=\mathcal{R}^{2}$ and $\operatorname{rng} \operatorname{proj}(2,2)=\mathbb{R}$ and for all elements x, y of \mathbb{R} holds $(\operatorname{proj}(2,2))(\langle x, y\rangle)=y$.

2. Partial Differentiation of Real Binary Functions

Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let z be an element of \mathcal{R}^{2}. The functor $\operatorname{SVF} 1(f, z)$ yielding a partial function from \mathbb{R} to \mathbb{R} is defined by:
(Def. 1) $\operatorname{SVF} 1(f, z)=f \cdot \operatorname{reproj}(1, z)$.
The functor $\operatorname{SVF} 2(f, z)$ yields a partial function from \mathbb{R} to \mathbb{R} and is defined as follows:
(Def. 2) $\quad \operatorname{SVF} 2(f, z)=f \cdot \operatorname{reproj}(2, z)$.
Next we state two propositions:
(3) If $z=\langle x, y\rangle$ and f is partially differentiable in z w.r.t. 1 coordinate, then $\operatorname{SVF} 1(f, z)$ is differentiable in x.
(4) If $z=\langle x, y\rangle$ and f is partially differentiable in z w.r.t. 2 coordinate, then $\operatorname{SVF} 2(f, z)$ is differentiable in y.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let z be an element of \mathcal{R}^{2}. We say that f is partial differentiable on 1st coordinate in z if and only if:
(Def. 3) There exist real numbers x_{0}, y_{0} such that $z=\left\langle x_{0}, y_{0}\right\rangle$ and $\operatorname{SVF} 1(f, z)$ is differentiable in x_{0}.
We say that f is partial differentiable on 2 nd coordinate in z if and only if:
(Def. 4) There exist real numbers x_{0}, y_{0} such that $z=\left\langle x_{0}, y_{0}\right\rangle$ and $\operatorname{SVF} 2(f, z)$ is differentiable in y_{0}.
Next we state two propositions:
(5) Suppose $z=\left\langle x_{0}, y_{0}\right\rangle$ and f is partial differentiable on 1st coordinate in z. Then there exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} \operatorname{SVF} 1(f, z)$ and there exist L, R such that for every x such that $x \in N$ holds $(\operatorname{SVF} 1(f, z))(x)-(\operatorname{SVF} 1(f, z))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
(6) Suppose $z=\left\langle x_{0}, y_{0}\right\rangle$ and f is partial differentiable on 2 nd coordinate in z. Then there exists a neighbourhood N of y_{0} such that $N \subseteq$ $\operatorname{dom} \operatorname{SVF} 2(f, z)$ and there exist L, R such that for every y such that $y \in N$ holds $(\operatorname{SVF} 2(f, z))(y)-(\operatorname{SVF} 2(f, z))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let z be an element of \mathcal{R}^{2}. Let us observe that f is partial differentiable on 1st coordinate in z if and only if the condition (Def. 5) is satisfied.
(Def. 5) There exist real numbers x_{0}, y_{0} such that
(i) $z=\left\langle x_{0}, y_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} \operatorname{SVF} 1(f, z)$ and there exist L, R such that for every x such that $x \in N$ holds $(\operatorname{SVF} 1(f, z))(x)-(\operatorname{SVF} 1(f, z))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let z be an element of \mathcal{R}^{2}. Let us observe that f is partial differentiable on 2 nd coordinate in z if and only if the condition (Def. 6) is satisfied.
(Def. 6) There exist real numbers x_{0}, y_{0} such that
(i) $z=\left\langle x_{0}, y_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq \operatorname{dom} \operatorname{SVF} 2(f, z)$ and there exist L, R such that for every y such that $y \in N$ holds $(\operatorname{SVF} 2(f, z))(y)-(\operatorname{SVF} 2(f, z))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
Next we state two propositions:
(7) Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and z be an element of \mathcal{R}^{2}. Then f is partial differentiable on 1st coordinate in z if and only if f is partially differentiable in z w.r.t. 1 coordinate.
(8) Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and z be an element of \mathcal{R}^{2}. Then f is partial differentiable on 2 nd coordinate in z if and only if f is partially differentiable in z w.r.t. 2 coordinate.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let z be an element of \mathcal{R}^{2}. The functor partdiff $1(f, z)$ yielding a real number is defined by:

The functor partdiff $2(f, z)$ yielding a real number is defined as follows:

One can prove the following propositions:
(9) Suppose $z=\left\langle x_{0}, y_{0}\right\rangle$ and f is partial differentiable on 1st coordinate in z. Then $r=\operatorname{partdiff}(f, z)$ if and only if there exist real numbers x_{0}, y_{0} such that $z=\left\langle x_{0}, y_{0}\right\rangle$ and there exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} \operatorname{SVF} 1(f, z)$ and there exist L, R such that $r=L(1)$ and for every x such that $x \in N$ holds $(\operatorname{SVF} 1(f, z))(x)-(\operatorname{SVF} 1(f, z))\left(x_{0}\right)=$ $L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
(10) Suppose $z=\left\langle x_{0}, y_{0}\right\rangle$ and f is partial differentiable on 2nd coordinate in z. Then $r=\operatorname{partdiff} 2(f, z)$ if and only if there exist real numbers x_{0}, y_{0} such that $z=\left\langle x_{0}, y_{0}\right\rangle$ and there exists a neighbourhood N of y_{0} such that $N \subseteq \operatorname{domSVF} 2(f, z)$ and there exist L, R such that $r=L(1)$ and for every y such that $y \in N$ holds $(\operatorname{SVF} 2(f, z))(y)-(\operatorname{SVF} 2(f, z))\left(y_{0}\right)=$ $L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
(11) If $z=\left\langle x_{0}, y_{0}\right\rangle$ and f is partial differentiable on 1st coordinate in z, then $\operatorname{partdiff} 1(f, z)=(\operatorname{SVF} 1(f, z))^{\prime}\left(x_{0}\right)$.
(12) If $z=\left\langle x_{0}, y_{0}\right\rangle$ and f is partial differentiable on 2nd coordinate in z, then $\operatorname{partdiff} 2(f, z)=(\operatorname{SVF} 2(f, z))^{\prime}\left(y_{0}\right)$.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let Z be a set. We say that f is partial differentiable w.r.t. 1st coordinate on Z if and only if:
(Def. 9) $\quad Z \subseteq \operatorname{dom} f$ and for every element z of \mathcal{R}^{2} such that $z \in Z$ holds $f \upharpoonright Z$ is partial differentiable on 1st coordinate in z.
We say that f is partial differentiable w.r.t. 2 nd coordinate on Z if and only if:
(Def. 10) $Z \subseteq \operatorname{dom} f$ and for every element z of \mathcal{R}^{2} such that $z \in Z$ holds $f \upharpoonright Z$ is partial differentiable on 2 nd coordinate in z.

One can prove the following two propositions:
(13) Suppose f is partial differentiable w.r.t. 1st coordinate on Z. Then $Z \subseteq$ dom f and for every z such that $z \in Z$ holds f is partial differentiable on 1st coordinate in z.
(14) Suppose f is partial differentiable w.r.t. 2nd coordinate on Z. Then $Z \subseteq \operatorname{dom} f$ and for every z such that $z \in Z$ holds f is partial differentiable on 2 nd coordinate in z.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let Z be a set. Let us assume that f is partial differentiable w.r.t. 1 st coordinate on Z. The functor $f_{\Gamma Z}^{1 \text { st }}$ yielding a partial function from \mathcal{R}^{2} to \mathbb{R} is defined as follows:
(Def. 11) $\operatorname{dom}\left(f_{\uparrow Z}^{1 \text { st }}\right)=Z$ and for every element z of \mathcal{R}^{2} such that $z \in Z$ holds $f_{\mid Z}^{1 \mathrm{st}}(z)=\operatorname{partdiff} 1(f, z)$.
Let f be a partial function from \mathcal{R}^{2} to \mathbb{R} and let Z be a set. Let us assume that f is partial differentiable w.r.t. 2 nd coordinate on Z. The functor $f_{\upharpoonright Z}^{2 \text { nd }}$ yielding a partial function from \mathcal{R}^{2} to \mathbb{R} is defined as follows:
(Def. 12) $\operatorname{dom}\left(f_{\Gamma Z}^{2 \text { nd }}\right)=Z$ and for every element z of \mathcal{R}^{2} such that $z \in Z$ holds $f_{\upharpoonright Z}^{2 \text { nd }}(z)=\operatorname{partdiff2}(f, z)$.

3. Main Properties of Partial Differentiation of Real Binary Functions

We now state a number of propositions:
(15) Let z_{0} be an element of \mathcal{R}^{2} and N be a neighbourhood of $(\operatorname{proj}(1,2))\left(z_{0}\right)$. Suppose f is partial differentiable on 1st coordinate in z_{0} and $N \subseteq$ dom $\operatorname{SVF} 1\left(f, z_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(1,2))\left(z_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\operatorname{SVF} 1\left(f, z_{0}\right) \cdot(h+c)-\operatorname{SVF} 1\left(f, z_{0}\right) \cdot c\right)$ is convergent and partdiff1 $\left(f, z_{0}\right)=\lim \left(h^{-1}\left(\operatorname{SVF} 1\left(f, z_{0}\right) \cdot(h+c)-\operatorname{SVF} 1\left(f, z_{0}\right)\right.\right.$. c)).
(16) Let z_{0} be an element of \mathcal{R}^{2} and N be a neighbourhood of $(\operatorname{proj}(2,2))\left(z_{0}\right)$. Suppose f is partial differentiable on 2 nd coordinate in z_{0} and $N \subseteq$ dom SVF2 $\left(f, z_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(2,2))\left(z_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\operatorname{SVF} 2\left(f, z_{0}\right) \cdot(h+c)-\operatorname{SVF} 2\left(f, z_{0}\right) \cdot c\right)$ is convergent and partdiff2 $\left(f, z_{0}\right)=\lim \left(h^{-1}\left(\operatorname{SVF} 2\left(f, z_{0}\right) \cdot(h+c)-\operatorname{SVF} 2\left(f, z_{0}\right)\right.\right.$. c)).
(17) Suppose f_{1} is partial differentiable on 1 st coordinate in z_{0} and f_{2} is partial differentiable on 1 st coordinate in z_{0}. Then $f_{1}+f_{2}$ is par-
tial differentiable on 1 st coordinate in z_{0} and partdiff1 $\left(f_{1}+f_{2}, z_{0}\right)=$ $\operatorname{partdiff} 1\left(f_{1}, z_{0}\right)+\operatorname{partdiff} 1\left(f_{2}, z_{0}\right)$.
(18) Suppose f_{1} is partial differentiable on 2 nd coordinate in z_{0} and f_{2} is partial differentiable on 2 nd coordinate in z_{0}. Then $f_{1}+f_{2}$ is partial differentiable on 2 nd coordinate in z_{0} and partdiff2 $\left(f_{1}+f_{2}, z_{0}\right)=$ $\operatorname{partdiff} 2\left(f_{1}, z_{0}\right)+\operatorname{partdiff} 2\left(f_{2}, z_{0}\right)$.
(19) Suppose f_{1} is partial differentiable on 1 st coordinate in z_{0} and f_{2} is partial differentiable on 1 st coordinate in z_{0}. Then $f_{1}-f_{2}$ is partial differentiable on 1 st coordinate in z_{0} and partdiff $\left(f_{1}-f_{2}, z_{0}\right)=$ $\operatorname{partdiff1}\left(f_{1}, z_{0}\right)-\operatorname{partdiff} 1\left(f_{2}, z_{0}\right)$.
(20) Suppose f_{1} is partial differentiable on 2 nd coordinate in z_{0} and f_{2} is partial differentiable on 2 nd coordinate in z_{0}. Then $f_{1}-f_{2}$ is partial differentiable on 2 nd coordinate in z_{0} and partdiff2 $\left(f_{1}-f_{2}, z_{0}\right)=$ $\operatorname{partdiff} 2\left(f_{1}, z_{0}\right)-\operatorname{partdiff} 2\left(f_{2}, z_{0}\right)$.
(21) Suppose f is partial differentiable on 1 st coordinate in z_{0}. Then $r f$ is partial differentiable on 1 st coordinate in z_{0} and $\operatorname{partdiff} 1\left(r f, z_{0}\right)=$ $r \cdot \operatorname{partdiff} 1\left(f, z_{0}\right)$.
(22) Suppose f is partial differentiable on 2 nd coordinate in z_{0}. Then $r f$ is partial differentiable on 2 nd coordinate in z_{0} and $\operatorname{partdiff} 2\left(r f, z_{0}\right)=$ $r \cdot \operatorname{partdiff} 2\left(f, z_{0}\right)$.
(23) Suppose f_{1} is partial differentiable on 1 st coordinate in z_{0} and f_{2} is partial differentiable on 1 st coordinate in z_{0}. Then $f_{1} f_{2}$ is partial differentiable on 1 st coordinate in z_{0}.
(24) Suppose f_{1} is partial differentiable on 2 nd coordinate in z_{0} and f_{2} is partial differentiable on 2 nd coordinate in z_{0}. Then $f_{1} f_{2}$ is partial differentiable on 2 nd coordinate in z_{0}.
(25) Let z_{0} be an element of \mathcal{R}^{2}. Suppose f is partial differentiable on 1 st coordinate in z_{0}. Then $\operatorname{SVF} 1\left(f, z_{0}\right)$ is continuous in $(\operatorname{proj}(1,2))\left(z_{0}\right)$.
(26) Let z_{0} be an element of \mathcal{R}^{2}. Suppose f is partial differentiable on 2 nd coordinate in z_{0}. Then $\operatorname{SVF} 2\left(f, z_{0}\right)$ is continuous in $(\operatorname{proj}(2,2))\left(z_{0}\right)$.
(27) If f is partial differentiable on 1 st coordinate in z_{0}, then there exists R such that $R(0)=0$ and R is continuous in 0 .
(28) If f is partial differentiable on 2 nd coordinate in z_{0}, then there exists R such that $R(0)=0$ and R is continuous in 0 .

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces ∇^{n}. Formalized Mathematics, 15(2):65-72, 2007.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[11] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[12] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[15] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received August 5, 2008

