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Introduction to Matroids!
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Summary. The paper includes elements of the theory of matroids [23].
The formalization is done according to [12].
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The articles [7], [22], [17], [15], [8], [5], [6], [19], [9], [3], [2], [4], [1], [21], [11],
[20], [18], [16], [10], [13], and [14] provide the terminology and notation for this
paper.

1. DEFINITION BY INDEPENDENT SETS

A subset family structure is a topological structure.
Let M be a subset family structure and let A be a subset of M. We introduce
A is independent as a synonym of A is open. We introduce A is dependent as
an antonym of A is open.
Let M be a subset family structure. The family of M yielding a family of
subsets of M is defined as follows:
(Def. 1) The family of M = the topology of M.

Let M be a subset family structure and let A be a subset of M. Let us
observe that A is independent if and only if:
(Def. 2) A € the family of M.
Let M be a subset family structure. We say that M is subset-closed if and
only if:
(Def. 3) The family of M is subset-closed.
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We say that M has exchange property if and only if the condition (Def. 4) is
satisfied.

(Def. 4) Let A, B be finite subsets of M. Suppose A € the family of M and
B € the family of M and card B = card A + 1. Then there exists an
element e of M such that e € B\ A and AU {e} € the family of M.

One can check that there exists a subset family structure which is strict, non
empty, non void, finite, and subset-closed and has exchange property.

Let M be a non void subset family structure. One can verify that there exists
a subset of M which is independent.

Let M be a subset-closed subset family structure. One can verify that the
family of M is subset-closed.

We now state the proposition

(1) Let M be a non void subset-closed subset family structure, A be an inde-

pendent subset of M, and B be a set. If B C A, then B is an independent
subset of M.

Let M be a non void subset-closed subset family structure. Note that there
exists a subset of M which is finite and independent.

A matroid is a non empty non void subset-closed subset family structure
with exchange property.

One can prove the following proposition

(2) For every subset-closed subset family structure M holds M is non void
iff () € the family of M.

Let M be a non void subset-closed subset family structure. Note that
(Dthe carrier of M 18 independent'
The following proposition is true
(3) Let M be a non void subset family structure. Then M is subset-closed

if and only if for all subsets A, B of M such that A is independent and
B C A holds B is independent.

Let M be a non void subset-closed subset family structure, let A be an
independent subset of M, and let B be a set. One can check the following
observations:

* AN B is independent,

% BN A is independent, and

x A\ B is independent.

Next we state the proposition

(4) Let M be a non void non empty subset family structure. Then M has
exchange property if and only if for all finite subsets A, B of M such that
A is independent and B is independent and card B = card A + 1 there
exists an element e of M such that e € B\ A and AU {e} is independent.
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Let A be a set. We introduce A is finite-membered as a synonym of A has
finite elements.
Let A be a set. Let us observe that A is finite-membered if and only if:
(Def. 5) For every set B such that B € A holds B is finite.

Let M be a subset family structure. We say that M is finite-membered if
and only if:

(Def. 6) The family of M is finite-membered.
Let M be a subset family structure. We say that M is finite-degree if and
only if the conditions (Def. 7) are satisfied.
(Def. 7)(i) M is finite-membered, and
(ii)  there exists a natural number n such that for every finite subset A of
M such that A is independent holds card A < n.
Let us note that every subset family structure which is finite-degree is also
finite-membered and every subset family structure which is finite is also finite-
degree.

2. EXAMPLES

Let us note that there exists a set which is mutually-disjoint and non empty
and has non empty elements.
The following propositions are true:
(5) For all finite sets A, B such that card A < card B there exists a set x
such that =z € B\ A.
(6) For every mutually-disjoint non empty set P with non empty elements
holds every choice function of P is one-to-one.
Let us mention that every discrete subset family structure is non void and
subset-closed and has exchange property.
Next we state the proposition
(7) Every non empty discrete topological structure is a matroid.
Let P be a set. The functor ProdMatroid P yields a strict subset family
structure and is defined by the conditions (Def. 8).
(Def. 8)(i) The carrier of ProdMatroid P = |J P, and
(ii)  the family of ProdMatroidP = {A C UP : Ap.wt (D € P =
\/d:set AND - {d})}
Let P be a non empty set with non empty elements. One can verify that
ProdMatroid P is non empty.
Next we state the proposition
(8) Let P be aset and A be a subset of ProdMatroid P. Then A is indepen-
dent if and only if for every element D of P there exists an element d of
D such that An D C {d}.
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Let P be a set. One can verify that ProdMatroid P is non void and subset-
closed.

Next we state two propositions:
(9) Let P be a mutually-disjoint set and = be a subset of ProdMatroid P.

Then there exists a function f from z into P such that for every set a
such that a € = holds a € f(a).

(10) Let P be a mutually-disjoint set, x be a subset of ProdMatroid P, and f

be a function from x into P. Suppose that for every set a such that a € z
holds a € f(a). Then x is independent if and only if f is one-to-one.

Let P be a mutually-disjoint set. Observe that ProdMatroid P has exchange
property.

Let X be a finite set and let P be a subset of 2%. One can check that
ProdMatroid P is finite.

Let X be a set. Observe that every partition of X is mutually-disjoint.

One can check that there exists a matroid which is finite and strict.

Let M be a finite-membered non void subset family structure. Observe that
every independent subset of M is finite.

Let F be a field and let V' be a vector space over F'. The matroid of linearly
independent subsets of V is a strict subset family structure and is defined by
the conditions (Def. 9).

(Def. 9)(i)  The carrier of the matroid of linearly independent subsets of V' = the
carrier of V', and

(ii)  the family of the matroid of linearly independent subsets of V' = {A C
V: A is linearly independent}.

Let F be a field and let V' be a vector space over F. Note that the matroid

of linearly independent subsets of V' is non empty, non void, and subset-closed.

Let F' be a field and let V' be a vector space over F'. Observe that there
exists a subset of V' which is linearly independent and empty.

The following three propositions are true:
(11) Let F be a field, V' be a vector space over F', and A be a subset of the

matroid of linearly independent subsets of V. Then A is independent if
and only if A is a linearly independent subset of V.

(12) Let F be a field, V' be a vector space over F, and A, B be finite subsets
of V. Suppose B C A. Let v be a vector of V. Suppose v € Lin(A) and
v ¢ Lin(B). Then there exists a vector w of V such that w € A\ B and
w € Lin((A\ {w}) U {v}).

(13) Let F be a field, V' be a vector space over F'; and A be a subset of V.
Suppose A is linearly independent. Let a be an element of V. If a & the
carrier of Lin(A), then AU {a} is linearly independent.



INTRODUCTION TO MATROIDS 329

Let F be a field and let V be a vector space over F'. Observe that the matroid
of linearly independent subsets of V' has exchange property.

Let F' be a field and let V' be a finite dimensional vector space over F'. Note
that the matroid of linearly independent subsets of V' is finite-membered.

3. MAXIMAL INDEPENDENT SUBSETS, RANKS, AND BASIS

Let M be a subset family structure and let A, C' be subsets of M. We say
that A is maximal independent in C' if and only if:
(Def. 10) A is independent and A C C and for every subset B of M such that B
is independent and B C C and A C B holds A = B.
The following propositions are true:

(14) Let M be a non void finite-degree subset family structure and C, A be
subsets of M. Suppose A C C and A is independent. Then there exi-
sts an independent subset B of M such that A C B and B is maximal
independent in C.

(15) Let M be a non void finite-degree subset-closed subset family structure
and C be a subset of M. Then there exists an independent subset of M
which is maximal independent in C.

(16) Let M be a non empty non void subset-closed finite-degree subset family
structure. Then M is a matroid if and only if for every subset C' of M and
for all independent subsets A, B of M such that A is maximal independent
in C and B is maximal independent in C holds card A = card B.

Let M be a finite-degree matroid and let C' be a subset of M. The functor
Rnk C yields a natural number and is defined by:
(Def. 11) Rnk C = [J{card A; A ranges over independent subsets of M: A C C}.
One can prove the following propositions:

(17) Let M be a finite-degree matroid, C' be a subset of M, and A be an
independent subset of M. If A C C, then card A < Rnk C.

(18) Let M be a finite-degree matroid and C' be a subset of M. Then there
exists an independent subset A of M such that A C C' and card A = Rnk C.

(19) Let M be a finite-degree matroid, C' be a subset of M, and A be an
independent subset of M. Then A is maximal independent in C' if and
only if A C C and card A = Rnk C.

(20) For every finite-degree matroid M and for every finite subset C' of M
holds Rnk C < card C.

(21) Let M be a finite-degree matroid and C be a finite subset of M. Then
C is independent if and only if card C = Rnk C.

Let M be a finite-degree matroid. The functor Rnk M yielding a natural
number is defined by:
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(Def. 12) Rnk M = Rnk(Qy).

Let M be a non void finite-degree subset family structure. An independent
subset of M is said to be a basis of M if:

(Def. 13) It is maximal independent in ;.
One can prove the following propositions:

(22) For every finite-degree matroid M and for all bases By, Bz of M holds
card By = card Bs.

(23) For every finite-degree matroid M and for every independent subset A
of M there exists a basis B of M such that A C B.

We follow the rules: M is a finite-degree matroid, A, B, C are subsets of M,
and e, f are elements of M.
Next we state four propositions:

(24) If AC B, then Rnk A < Rnk B.

(25) Rnk(AU B)+ Rnk(AN B) < Rnk A + Rnk B.

(26) Rnk A < Rnk(AU B) and Rnk(A U {e}) < Rnk A+ 1.
(27)

If Rnk(A U{e}) = Rnk(A U {f}) and Rnk(A U {f}) = Rnk A, then
Rnk(A U {e, f}) = Rnk A.

27

4. DEPENDENCE ON A SET, SPANS, AND CYCLES

Let M be a finite-degree matroid, let e be an element of M, and let A be a
subset of M. We say that e is dependent on A if and only if:

(Def. 14) Rnk(AU{e}) = Rnk A.
We now state two propositions:
(28) If e € A, then e is dependent on A.
(29) If AC B and e is dependent on A, then e is dependent on B.

Let M be a finite-degree matroid and let A be a subset of M. The functor
Span A yielding a subset of M is defined as follows:

(Def. 15) Span A = {e € M: e is dependent on A}.

Next we state several propositions:

(30) e € Span A iff Rnk(A U {e}) = Rnk A.

(31) A C SpanA.

(32) If AC B, then Span A C Span B.

(33) RnkSpan A = Rnk A.

(34) 1If e is dependent on Span A, then e is dependent on A.

(35) SpanSpan A = Span A.

(36) If f ¢ Span A and f € Span(A U {e}), then e € Span(A U {f}).
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Let M be a subset family structure and let A be a subset of M. We say that
A is cycle if and only if:
(Def. 16) A is dependent and for every element e of M such that e € A holds
A\ {e} is independent.
Next we state the proposition
(37) 1If Ais cycle, then A is non empty and finite.
Let us consider M. Note that every subset of M which is cycle is also non
empty and finite.
One can prove the following propositions:

(38) Aiscycleiff Aisnon empty and for every e such that e € A holds A\ {e}
is maximal independent in A.

If A is cycle, then Rnk A+ 1 = A.

If Ais cycle and e € A, then e is dependent on A \ {e}.

If Ais cycle and B is cycle and A C B, then A = B.

If for every B such that B C A holds B is not cycle, then A is indepen-
dent.
(43) 1If Ais cycle and B is cycle and A # B and e € AN B, then there exists

C such that C' is cycle and C' C (AU B) \ {e}.

(44) If A is independent and B is cycle and C'is cycle and B C AU {e} and
C C AU {e}, then B =C.

39
40
41
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