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Summary. In this article, we formalized the notion of the integral of a
complex-valued function considered as a sum of its real and imaginary parts.
Then we defined the measurability and integrability in this context, and proved
the linearity and several other basic properties of complex-valued measurable
functions. The set of properties showed in this paper is based on [15], where the
case of real-valued measurable functions is considered.
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The notation and terminology used here are introduced in the following papers:
[17], [1], [11], [18], [6], [19], [7], [2], [12], [14], [16], [5], [4], [3], [9], [10], [13], [8],
and [15].

1. Definitions for Complex-valued Functions

One can prove the following proposition

(1) For all real numbers a, b holds R(a)+R(b) = a+ b and −R(a) = −a and
R(a)− R(b) = a− b and R(a) · R(b) = a · b.
Let X be a non empty set and let f be a partial function from X to C. The

functor <(f) yields a partial function from X to R and is defined as follows:
(Def. 1) dom<(f) = dom f and for every element x of X such that x ∈ dom<(f)

holds <(f)(x) = <(f(x)).
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The functor =(f) yields a partial function from X to R and is defined as follows:
(Def. 2) dom=(f) = dom f and for every element x of X such that x ∈ dom=(f)

holds =(f)(x) = =(f(x)).

2. The Measurability of Complex-valued Functions

For simplicity, we use the following convention: X is a non empty set, Y is
a set, S is a σ-field of subsets of X, M is a σ-measure on S, f , g are partial
functions from X to C, r is a real number, c is a complex number, and E, A, B
are elements of S.
Let X be a non empty set, let S be a σ-field of subsets of X, let f be a

partial function from X to C, and let E be an element of S. We say that f is
measurable on E if and only if:

(Def. 3) <(f) is measurable on E and =(f) is measurable on E.
One can prove the following propositions:

(2) r<(f) = <(r f) and r=(f) = =(r f).
(3) <(c f) = <(c)<(f)−=(c)=(f) and =(c f) = =(c)<(f) + <(c)=(f).
(4) −=(f) = <(i f) and <(f) = =(i f).
(5) <(f + g) = <(f) + <(g) and =(f + g) = =(f) + =(g).
(6) <(f − g) = <(f)−<(g) and =(f − g) = =(f)−=(g).
(7) <(f)�A = <(f�A) and =(f)�A = =(f�A).
(8) f = <(f) + i=(f).
(9) If B ⊆ A and f is measurable on A, then f is measurable on B.
(10) If f is measurable on A and f is measurable on B, then f is measurable
on A ∪B.

(11) If f is measurable on A and g is measurable on A, then f+g is measurable
on A.

(12) If f is measurable on A and g is measurable on A and A ⊆ dom g, then
f − g is measurable on A.

(13) If Y ⊆ dom(f+g), then dom(f�Y +g�Y ) = Y and (f+g)�Y = f�Y +g�Y.
(14) If f is measurable on B and A = dom f ∩B, then f�B is measurable on
A.

(15) If dom f , dom g ∈ S, then dom(f + g) ∈ S.
(16) If dom f = A, then f is measurable on B iff f is measurable on A ∩B.
(17) If f is measurable on A and A ⊆ dom f, then c f is measurable on A.
(18) Given an element A of S such that dom f = A. Let c be a complex
number and B be an element of S. If f is measurable on B, then c f is
measurable on B.
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3. The Integral of a Complex-valued Measurable Function

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a
σ-measure on S, and let f be a partial function from X to C. We say that f is
integrable on M if and only if:

(Def. 4) <(f) is integrable on M and =(f) is integrable on M .
Let X be a non empty set, let S be a σ-field of subsets of X, let M be a

σ-measure on S, and let f be a partial function from X to C. Let us assume
that f is integrable on M . The functor

∫
f dM yielding a complex number is

defined by:

(Def. 5) There exist real numbers R, I such that R =
∫
<(f) dM and I =∫

=(f) dM and
∫
f dM = R+ I · i.

We now state several propositions:

(19) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, f be a partial function from X to R, and A be an element
of S. Suppose there exists an element E of S such that E = dom f and f
is measurable on E and M(A) = 0. Then f�A is integrable on M .

(20) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, f be a partial function from X to R, and E, A be elements
of S. Suppose there exists an element E of S such that E = dom f and f
is measurable on E and M(A) = 0. Then f�A is integrable on M .

(21) Suppose there exists an element E of S such that E = dom f and f
is measurable on E and M(A) = 0. Then f�A is integrable on M and∫
f�AdM = 0.

(22) If E = dom f and f is integrable on M and M(A) = 0, then
∫
f�(E \

A) dM =
∫
f dM.

(23) If f is integrable on M , then f�A is integrable on M .

(24) If f is integrable on M and A misses B, then
∫
f�(A ∪ B) dM =∫

f�AdM +
∫
f�B dM.

(25) If f is integrable on M and B = dom f \ A, then f�A is integrable on
M and

∫
f dM =

∫
f�AdM +

∫
f�B dM.

Let k be a real number, let X be a non empty set, and let f be a partial
function from X to R. The functor fk yields a partial function from X to R and
is defined as follows:

(Def. 6) dom(fk) = dom f and for every element x of X such that x ∈ dom(fk)
holds fk(x) = f(x)k.

Let us consider X. Observe that there exists a partial function from X to R
which is non-negative.
Let k be a non negative real number, let us consider X, and let f be a

non-negative partial function from X to R. Observe that fk is non-negative.
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We now state a number of propositions:

(26) Let k be a real number, given X, S, E, and f be a partial function from
X to R. If f is non-negative and 0 ≤ k, then fk is non-negative.

(27) Let x be a set, given X, S, E, and f be a partial function from X to R.
If f is non-negative, then f(x)

1
2 =
√
f(x).

(28) For every partial function f from X to R and for every real number a
such that A ⊆ dom f holds A ∩ LE-dom(f, a) = A \A ∩GTE-dom(f, a).

(29) Let k be a real number, given X, S, E, and f be a partial function from
X to R. Suppose f is non-negative and 0 ≤ k and E ⊆ dom f and f is
measurable on E. Then fk is measurable on E.

(30) If f is measurable on A and A ⊆ dom f, then |f | is measurable on A.
(31) Given an element A of S such that A = dom f and f is measurable on
A. Then f is integrable on M if and only if |f | is integrable on M .

(32) If f is integrable on M and g is integrable on M , then dom(f + g) ∈ S.
(33) If f is integrable onM and g is integrable onM , then f +g is integrable
on M .

(34) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, and f , g be partial functions from X to R. Suppose f is
integrable on M and g is integrable on M . Then f − g is integrable on M .

(35) If f is integrable onM and g is integrable onM , then f −g is integrable
on M .

(36) Suppose f is integrable on M and g is integrable on M . Then there
exists an element E of S such that E = dom f ∩ dom g and

∫
f + g dM =∫

f�E dM +
∫
g�E dM.

(37) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, and f , g be partial functions from X to R. Suppose f is
integrable on M and g is integrable on M . Then there exists an element
E of S such that E = dom f ∩ dom g and

∫
f − g dM =

∫
f�E dM +∫

(−g)�E dM.
(38) If f is integrable on M , then r f is integrable on M and

∫
r f dM =

r ·
∫
f dM.

(39) If f is integrable on M , then i f is integrable on M and
∫
i f dM =

i ·
∫
f dM.

(40) If f is integrable on M , then c f is integrable on M and
∫
c f dM =

c ·
∫
f dM.

(41) For every partial function f from X to R and for all Y , r holds (r f)�Y =
r (f�Y ).

(42) Let f , g be partial functions from X to R. Suppose that
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(i) there exists an element A of S such that A = dom f ∩ dom g and f is
measurable on A and g is measurable on A,

(ii) f is integrable on M ,
(iii) g is integrable on M , and
(iv) g − f is non-negative.
Then there exists an element E of S such that E = dom f ∩ dom g and∫
f�E dM ≤

∫
g�E dM.

(43) Suppose there exists an element A of S such that A = dom f and f is
measurable on A and f is integrable on M . Then |

∫
f dM | ≤

∫
|f |dM.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be
a σ-measure on S, let f be a partial function from X to C, and let B be an
element of S. The functor

∫
B
f dM yields a complex number and is defined by:

(Def. 7)
∫
B
f dM =

∫
f�B dM.

Next we state two propositions:

(44) Suppose f is integrable onM and g is integrable onM and B ⊆ dom(f+
g). Then f + g is integrable on M and

∫
B
f + g dM =

∫
B
f dM +

∫
B
g dM.

(45) If f is integrable on M and f is measurable on B, then
∫
B
c f dM =

c ·
∫
B
f dM.

4. Several Properties of Real-valued Measurable Functions

In the sequel f denotes a partial function from X to R and a denotes a real
number.
One can prove the following four propositions:

(46) If A ⊆ dom f, then A ∩GTE-dom(f, a) = A \A ∩ LE-dom(f, a).
(47) If A ⊆ dom f, then A ∩GT-dom(f, a) = A \A ∩ LEQ-dom(f, a).
(48) If A ⊆ dom f, then A ∩ LEQ-dom(f, a) = A \A ∩GT-dom(f, a).
(49) A ∩ EQ-dom(f, a) = A ∩GTE-dom(f, a) ∩ LEQ-dom(f, a).
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