Fatou's Lemma and the Lebesgue's Convergence Theorem

Noboru Endou
Gifu National College of Technology
Japan
Yasunari Shidama
Shinshu University
Nagano, Japan

Keiko Narita
Hirosaki-city
Aomori, Japan

Summary. In this article we prove the Fatou's Lemma and Lebesgue's Convergence Theorem [10].

MML identifier: MESFUN10, version: $\underline{7.9 .014 .101 .1015}$

The articles [15], [1], [16], [14], [11], [5], [12], [2], [3], [4], [8], [9], [13], [6], [7], and [17] provide the terminology and notation for this paper.

1. Fatou's Lemma

For simplicity, we adopt the following rules: X denotes a non empty set, F denotes a sequence of partial functions from X into $\overline{\mathbb{R}}$ with the same dom, s_{1}, s_{2}, s_{3} denote sequences of extended reals, x denotes an element of X, a, r denote extended real numbers, and n, m, k denote natural numbers.

We now state several propositions:
(1) If for every natural number n holds $s_{2}(n) \leq s_{3}(n)$, then $\inf \operatorname{rng} s_{2} \leq$ $\inf \mathrm{rng} s_{3}$.
(2) Suppose that for every natural number n holds $s_{2}(n) \leq s_{3}(n)$. Then
(i) (the inferior real sequence of $\left.s_{2}\right)(k) \leq$ (the inferior real sequence of $\left.s_{3}\right)(k)$, and
(ii) (the superior real sequence of $\left.s_{2}\right)(k) \leq$ (the superior real sequence of $\left.s_{3}\right)(k)$.
(3) If for every natural number n holds $s_{2}(n) \leq s_{3}(n)$, then $\lim \inf s_{2} \leq$ $\lim \inf s_{3}$ and $\lim \sup s_{2} \leq \lim \sup s_{3}$.
(4) If for every natural number n holds $s_{1}(n) \geq a$, then $\inf s_{1} \geq a$.
(5) If for every natural number n holds $s_{1}(n) \leq a$, then $\sup s_{1} \leq a$.
(6) For every element n of \mathbb{N} such that $x \in \operatorname{dominf}(F \uparrow n) \operatorname{holds}(\inf (F \uparrow$ $n))(x)=\inf ((F \# x) \uparrow n)$.
In the sequel S is a σ-field of subsets of X, M is a σ-measure on S, and E is an element of S.

We now state the proposition
(7) Suppose $E=\operatorname{dom} F(0)$ and for every n holds $F(n)$ is non-negative and $F(n)$ is measurable on E. Then there exists a sequence I of extended reals such that for every n holds $I(n)=\int F(n) \mathrm{d} M$ and $\int \lim \inf F \mathrm{~d} M \leq$ $\lim \inf I$.

2. Lebesgue's Convergence Theorem

We now state three propositions:
(8) For all non empty subsets X, Y of $\overline{\mathbb{R}}$ and for every extended real number r such that $X=\{r\}$ and $r \in \mathbb{R}$ holds $\sup (X+Y)=\sup X+\sup Y$.
(9) For all non empty subsets X, Y of $\overline{\mathbb{R}}$ and for every extended real number r such that $X=\{r\}$ and $r \in \mathbb{R}$ holds $\inf (X+Y)=\inf X+\inf Y$.
(10) If $r \in \mathbb{R}$ and for every natural number n holds $s_{2}(n)=r+s_{3}(n)$, then $\lim \inf s_{2}=r+\lim \inf s_{3}$ and $\limsup s_{2}=r+\limsup s_{3}$.
We follow the rules: F_{1}, F_{2} are sequences of partial functions from X into $\overline{\mathbb{R}}$ and f, g, P are partial functions from X to $\overline{\mathbb{R}}$.

We now state several propositions:
(11) Suppose that
(i) $\operatorname{dom} F_{1}(0)=\operatorname{dom} F_{2}(0)$,
(ii) F_{1} has the same dom,
(iii) $\quad F_{2}$ has the same dom,
(iv) $f^{-1}(\{+\infty\})=\emptyset$,
(v) $f^{-1}(\{-\infty\})=\emptyset$, and
(vi) for every natural number n holds $F_{1}(n)=f+F_{2}(n)$.

Then $\liminf F_{1}=f+\liminf F_{2}$ and $\limsup F_{1}=f+\limsup F_{2}$.
(12) $s_{1} \uparrow 0=s_{1}$.
(13) If f is integrable on M and g is integrable on M, then $f-g$ is integrable on M.
(14) Suppose f is integrable on M and g is integrable on M. Then there exists an element E of S such that $E=\operatorname{dom} f \cap \operatorname{dom} g$ and $\int f-g \mathrm{~d} M=$ $\int f \upharpoonright E \mathrm{~d} M+\int(-g) \upharpoonright E \mathrm{~d} M$.
(15) If for every natural number n holds $s_{2}(n)=-s_{3}(n)$, then $\liminf s_{3}=$ $-\lim \sup s_{2}$ and $\lim \sup s_{3}=-\lim \inf s_{2}$.
(16) Suppose dom $F_{1}(0)=\operatorname{dom} F_{2}(0)$ and F_{1} has the same dom and F_{2} has the same dom and for every natural number n holds $F_{1}(n)=-F_{2}(n)$. Then $\lim \inf F_{1}=-\limsup F_{2}$ and $\limsup F_{1}=-\lim \inf F_{2}$.
(17) Suppose that
(i) $E=\operatorname{dom} F(0)$,
(ii) $E=\operatorname{dom} P$,
(iii) for every natural number n holds $F(n)$ is measurable on E,
(iv) $\quad P$ is integrable on M,
(v) P is non-negative, and
(vi) for every element x of X and for every natural number n such that $x \in E$ holds $|F(n)|(x) \leq P(x)$.
Then
(vii) for every natural number n holds $|F(n)|$ is integrable on M,
(viii) $|\liminf F|$ is integrable on M, and
(ix) $|\lim \sup F|$ is integrable on M.
(18) Suppose that
(i) $E=\operatorname{dom} F(0)$,
(ii) $E=\operatorname{dom} P$,
(iii) for every natural number n holds $F(n)$ is measurable on E,
(iv) P is integrable on M,
(v) P is non-negative, and
(vi) for every element x of X and for every natural number n such that $x \in E$ holds $|F(n)|(x) \leq P(x)$.
Then there exists a sequence I of extended reals such that
(vii) for every natural number n holds $I(n)=\int F(n) \mathrm{d} M$,
(viii) $\quad \lim \inf I \geq \int \lim \inf F \mathrm{~d} M$,
(ix) $\lim \sup I \leq \int \lim \sup F \mathrm{~d} M$, and
(x) if for every element x of X such that $x \in E$ holds $F \# x$ is convergent, then I is convergent and $\lim I=\int \lim F \mathrm{~d} M$.
(19) Suppose that
(i) $E=\operatorname{dom} F(0)$,
(ii) for every n holds $F(n)$ is non-negative and $F(n)$ is measurable on E,
(iii) for all x, n, m such that $x \in E$ and $n \leq m$ holds $F(n)(x) \geq F(m)(x)$, and
(iv) $\int F(0) \upharpoonright E \mathrm{~d} M<+\infty$.

Then there exists a sequence I of extended reals such that for every natural number n holds $I(n)=\int F(n) \mathrm{d} M$ and I is convergent and $\lim I=\int \lim F \mathrm{~d} M$.

Let X be a set and let F be a sequence of partial functions from X into $\overline{\mathbb{R}}$. We say that F is uniformly bounded if and only if:
(Def. 1) There exists a real number K such that for every natural number n and for every set x such that $x \in \operatorname{dom} F(0)$ holds $|F(n)(x)| \leq K$.

Next we state the proposition
(20) Suppose that
(i) $M(E)<+\infty$,
(ii) $E=\operatorname{dom} F(0)$,
(iii) for every natural number n holds $F(n)$ is measurable on E,
(iv) F is uniformly bounded, and
(v) for every element x of X such that $x \in E$ holds $F \# x$ is convergent. Then
(vi) for every natural number n holds $F(n)$ is integrable on M,
(vii) $\lim F$ is integrable on M, and
(viii) there exists a sequence I of extended reals such that for every natural number n holds $I(n)=\int F(n) \mathrm{d} M$ and I is convergent and $\lim I=$ $\int \lim F \mathrm{~d} M$.
Let X be a set, let F be a sequence of partial functions from X into $\overline{\mathbb{R}}$, and let f be a partial function from X to $\overline{\mathbb{R}}$. We say that F is uniformly convergent to f if and only if the conditions (Def. 2) are satisfied.
(Def. 2)(i) $\quad F$ has the same dom,
(ii) $\operatorname{dom} F(0)=\operatorname{dom} f$, and
(iii) for every real number e such that $e>0$ there exists a natural number N such that for every natural number n and for every set x such that $n \geq N$ and $x \in \operatorname{dom} F(0)$ holds $|F(n)(x)-f(x)|<e$.
One can prove the following two propositions:
(21) Suppose F_{1} is uniformly convergent to f. Let x be an element of X. If $x \in \operatorname{dom} F_{1}(0)$, then $F_{1} \# x$ is convergent and $\lim \left(F_{1} \# x\right)=f(x)$.
(22) Suppose that
(i) $M(E)<+\infty$,
(ii) $E=\operatorname{dom} F(0)$,
(iii) for every natural number n holds $F(n)$ is integrable on M, and
(iv) $\quad F$ is uniformly convergent to f.

Then
(v) $\quad f$ is integrable on M, and
(vi) there exists a sequence I of extended reals such that for every natural number n holds $I(n)=\int F(n) \mathrm{d} M$ and I is convergent and $\lim I=$ $\int f \mathrm{~d} M$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[3] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[4] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006.
[7] Noboru Endou, Yasunari Shidama, and Keiko Narita. Egoroff's theorem. Formalized Mathematics, 16(1):57-63, 2008.
[8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.
[9] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.
[10] P. R. Halmos. Measure Theory. Springer-Verlag, 1987.
[11] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[12] Andrzej Nȩdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[13] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.
[14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[17] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007.

Received July 22, 2008

