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Summary. In this article we prove the Fatou’s Lemma and Lebesgue’s
Convergence Theorem [10].
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The articles [15], [1], [16], [14], [11], [5], [12], [2], [3], [4], [8], [9], [13], [6], [7], and
[17] provide the terminology and notation for this paper.

1. Fatou’s Lemma

For simplicity, we adopt the following rules: X denotes a non empty set,
F denotes a sequence of partial functions from X into R with the same dom,
s1, s2, s3 denote sequences of extended reals, x denotes an element of X, a, r
denote extended real numbers, and n, m, k denote natural numbers.
We now state several propositions:

(1) If for every natural number n holds s2(n) ≤ s3(n), then inf rng s2 ≤
inf rng s3.

(2) Suppose that for every natural number n holds s2(n) ≤ s3(n). Then
(i) (the inferior real sequence of s2)(k) ≤ (the inferior real sequence of
s3)(k), and

(ii) (the superior real sequence of s2)(k) ≤ (the superior real sequence of
s3)(k).
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(3) If for every natural number n holds s2(n) ≤ s3(n), then lim inf s2 ≤
lim inf s3 and lim sup s2 ≤ lim sup s3.

(4) If for every natural number n holds s1(n) ≥ a, then inf s1 ≥ a.
(5) If for every natural number n holds s1(n) ≤ a, then sup s1 ≤ a.
(6) For every element n of N such that x ∈ dom inf(F ↑ n) holds (inf(F ↑
n))(x) = inf((F#x) ↑ n).
In the sequel S is a σ-field of subsets of X, M is a σ-measure on S, and E

is an element of S.
We now state the proposition

(7) Suppose E = domF (0) and for every n holds F (n) is non-negative and
F (n) is measurable on E. Then there exists a sequence I of extended
reals such that for every n holds I(n) =

∫
F (n) dM and

∫
lim inf F dM ≤

lim inf I.

2. Lebesgue’s Convergence Theorem

We now state three propositions:

(8) For all non empty subsets X, Y of R and for every extended real number
r such that X = {r} and r ∈ R holds sup(X + Y ) = supX + supY.

(9) For all non empty subsets X, Y of R and for every extended real number
r such that X = {r} and r ∈ R holds inf(X + Y ) = infX + inf Y.

(10) If r ∈ R and for every natural number n holds s2(n) = r + s3(n), then
lim inf s2 = r + lim inf s3 and lim sup s2 = r + lim sup s3.

We follow the rules: F1, F2 are sequences of partial functions from X into R
and f , g, P are partial functions from X to R.
We now state several propositions:

(11) Suppose that
(i) domF1(0) = domF2(0),
(ii) F1 has the same dom,
(iii) F2 has the same dom,
(iv) f−1({+∞}) = ∅,
(v) f−1({−∞}) = ∅, and
(vi) for every natural number n holds F1(n) = f + F2(n).
Then lim inf F1 = f + lim inf F2 and lim supF1 = f + lim supF2.

(12) s1 ↑ 0 = s1.
(13) If f is integrable onM and g is integrable onM , then f −g is integrable
on M .

(14) Suppose f is integrable on M and g is integrable on M . Then there
exists an element E of S such that E = dom f ∩ dom g and

∫
f − g dM =∫

f�E dM +
∫
(−g)�E dM.
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(15) If for every natural number n holds s2(n) = −s3(n), then lim inf s3 =
−lim sup s2 and lim sup s3 = −lim inf s2.

(16) Suppose domF1(0) = domF2(0) and F1 has the same dom and F2 has
the same dom and for every natural number n holds F1(n) = −F2(n).
Then lim inf F1 = −lim supF2 and lim supF1 = −lim inf F2.

(17) Suppose that
(i) E = domF (0),
(ii) E = domP,
(iii) for every natural number n holds F (n) is measurable on E,
(iv) P is integrable on M ,
(v) P is non-negative, and
(vi) for every element x of X and for every natural number n such that
x ∈ E holds |F (n)|(x) ≤ P (x).
Then

(vii) for every natural number n holds |F (n)| is integrable on M ,
(viii) | lim inf F | is integrable on M , and
(ix) | lim supF | is integrable on M .
(18) Suppose that
(i) E = domF (0),
(ii) E = domP,
(iii) for every natural number n holds F (n) is measurable on E,
(iv) P is integrable on M ,
(v) P is non-negative, and
(vi) for every element x of X and for every natural number n such that
x ∈ E holds |F (n)|(x) ≤ P (x).
Then there exists a sequence I of extended reals such that

(vii) for every natural number n holds I(n) =
∫
F (n) dM,

(viii) lim inf I ≥
∫
lim inf F dM,

(ix) lim sup I ≤
∫
lim supF dM, and

(x) if for every element x of X such that x ∈ E holds F#x is convergent,
then I is convergent and lim I =

∫
limF dM.

(19) Suppose that
(i) E = domF (0),
(ii) for every n holds F (n) is non-negative and F (n) is measurable on E,
(iii) for all x, n, m such that x ∈ E and n ≤ m holds F (n)(x) ≥ F (m)(x),
and

(iv)
∫
F (0)�E dM < +∞.

Then there exists a sequence I of extended reals such that for every
natural number n holds I(n) =

∫
F (n) dM and I is convergent and

lim I =
∫
limF dM.
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Let X be a set and let F be a sequence of partial functions from X into R.
We say that F is uniformly bounded if and only if:

(Def. 1) There exists a real number K such that for every natural number n and
for every set x such that x ∈ domF (0) holds |F (n)(x)| ≤ K.
Next we state the proposition

(20) Suppose that
(i) M(E) < +∞,
(ii) E = domF (0),
(iii) for every natural number n holds F (n) is measurable on E,
(iv) F is uniformly bounded, and
(v) for every element x of X such that x ∈ E holds F#x is convergent.
Then

(vi) for every natural number n holds F (n) is integrable on M ,
(vii) limF is integrable on M , and
(viii) there exists a sequence I of extended reals such that for every natu-
ral number n holds I(n) =

∫
F (n) dM and I is convergent and lim I =∫

limF dM.

Let X be a set, let F be a sequence of partial functions from X into R, and
let f be a partial function from X to R. We say that F is uniformly convergent
to f if and only if the conditions (Def. 2) are satisfied.

(Def. 2)(i) F has the same dom,
(ii) domF (0) = dom f, and
(iii) for every real number e such that e > 0 there exists a natural number
N such that for every natural number n and for every set x such that
n ≥ N and x ∈ domF (0) holds |F (n)(x)− f(x)| < e.
One can prove the following two propositions:

(21) Suppose F1 is uniformly convergent to f . Let x be an element of X. If
x ∈ domF1(0), then F1#x is convergent and lim(F1#x) = f(x).

(22) Suppose that
(i) M(E) < +∞,
(ii) E = domF (0),
(iii) for every natural number n holds F (n) is integrable on M , and
(iv) F is uniformly convergent to f .
Then

(v) f is integrable on M , and
(vi) there exists a sequence I of extended reals such that for every natu-
ral number n holds I(n) =

∫
F (n) dM and I is convergent and lim I =∫

f dM.
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