Jordan Matrix Decomposition

Karol Pąk
Institute of Computer Science
University of Białystok
Poland

Summary. In this paper I present the Jordan Matrix Decomposition Theorem which states that an arbitrary square matrix M over an algebraically closed field can be decomposed into the form

$$
M=S J S^{-1}
$$

where S is an invertible matrix and J is a matrix in a Jordan canonical form, i.e. a special type of block diagonal matrix in which each block consists of Jordan blocks (see [13]).

MML identifier: MATRIXJ2, version: $\underline{7.9 .014 .101 .1015}$

The terminology and notation used here are introduced in the following articles: [11], [2], [3], [12], [34], [7], [10], [8], [4], [28], [33], [30], [18], [6], [14], [15], [36], [23], [37], [35], [9], [29], [32], [31], [5], [19], [24], [22], [17], [1], [21], [20], [16], [25], [27], and [26].

1. Jordan Blocks

We follow the rules: i, j, m, n, k denote natural numbers, K denotes a field, and a, λ denote elements of K.

Let us consider K, λ, n. The Jordan block of λ and n yields a matrix over K and is defined by the conditions (Def. 1).
(Def. 1)(i) len (the Jordan block of λ and $n)=n$,
(ii) width (the Jordan block of λ and $n)=n$, and
(iii) for all i, j such that $\langle i, j\rangle \in$ the indices of the Jordan block of λ and n holds if $i=j$, then (the Jordan block of λ and $n)_{i, j}=\lambda$ and if $i+1=j$, then (the Jordan block of λ and $n)_{i, j}=\mathbf{1}_{K}$ and if $i \neq j$ and $i+1 \neq j$, then (the Jordan block of λ and $n)_{i, j}=0_{K}$.

Let us consider K, λ, n. Then the Jordan block of λ and n is an upper triangular matrix over K of dimension n.

The following propositions are true:
(1) The diagonal of the Jordan block of λ and $n=n \mapsto \lambda$.
(2) Det (the Jordan block of λ and $n)=\operatorname{power}_{K}(\lambda, n)$.
(3) The Jordan block of λ and n is invertible iff $n=0$ or $\lambda \neq 0_{K}$.
(4) If $i \in \operatorname{Seg} n$ and $i \neq n$, then Line(the Jordan block of λ and $n, i)=$ $\lambda \cdot \operatorname{Line}\left(I_{K}^{n \times n}, i\right)+\operatorname{Line}\left(I_{K}^{n \times n}, i+1\right)$.
(5) Line(the Jordan block of λ and $n, n)=\lambda \cdot \operatorname{Line}\left(I_{K}^{n \times n}, n\right)$.
(6) Let F be an element of (the carrier of $K)^{n}$ such that $i \in \operatorname{Seg} n$. Then
(i) if $i \neq n$, then Line(the Jordan block of λ and $n, i) \cdot F=\lambda \cdot F_{i}+F_{i+1}$, and
(ii) if $i=n$, then Line(the Jordan block of λ and $n, i) \cdot F=\lambda \cdot F_{i}$.
(7) Let F be an element of (the carrier of $K)^{n}$ such that $i \in \operatorname{Seg} n$. Then
(i) if $i=1$, then (the Jordan block of λ and $n)_{\square, i} \cdot F=\lambda \cdot F_{i}$, and
(ii) if $i \neq 1$, then (the Jordan block of λ and $n)_{\square, i} \cdot F=\lambda \cdot F_{i}+F_{i-1}$.
(8) Suppose $\lambda \neq 0_{K}$. Then there exists a square matrix M over K of dimension n such that
(i) (the Jordan block of λ and $n)^{\llcorner }=M$, and
(ii) for all i, j such that $\langle i, j\rangle \in$ the indices of M holds if $i>j$, then $M_{i, j}=0_{K}$ and if $i \leq j$, then $M_{i, j}=-\operatorname{power}_{K}\left(-\lambda^{-1},\left(j-^{\prime} i\right)+1\right)$.
(9) (The Jordan block of λ and $n)+a \cdot I_{K}^{n \times n}=$ the Jordan block of $\lambda+a$ and n.

2. Finite Sequences of Jordan Blocks

Let us consider K and let G be a finite sequence of elements of $\left((\text { the carrier of } K)^{*}\right)^{*}$. We say that G is Jordan-block-yielding if and only if:
(Def. 2) For every i such that $i \in \operatorname{dom} G$ there exist λ, n such that $G(i)=$ the Jordan block of λ and n.
Let us consider K. Observe that there exists a finite sequence of elements of $\left((\text { the carrier of } K)^{*}\right)^{*}$ which is Jordan-block-yielding.

Let us consider K. One can verify that every finite sequence of elements of $\left((\text { the carrier of } K)^{*}\right)^{*}$ which is Jordan-block-yielding is also square-matrixyielding.

Let us consider K. A finite sequence of Jordan blocks of K is a Jordan-blockyielding finite sequence of elements of $\left((\text { the carrier of } K)^{*}\right)^{*}$.

Let us consider K, λ. A finite sequence of Jordan blocks of K is said to be a finite sequence of Jordan blocks of λ and K if:
(Def. 3) For every i such that $i \in$ dom it there exists n such that $\operatorname{it}(i)=$ the Jordan block of λ and n.
Next we state two propositions:
(10) \emptyset is a finite sequence of Jordan blocks of λ and K.
(11) \langle the Jordan block of λ and $n\rangle$ is a finite sequence of Jordan blocks of λ and K.
Let us consider K, λ. Observe that there exists a finite sequence of Jordan blocks of λ and K which is non-empty.

Let us consider K. Note that there exists a finite sequence of Jordan blocks of K which is non-empty.

Next we state the proposition
(12) Let J be a finite sequence of Jordan blocks of λ and K. Then $J \oplus \operatorname{len} J \mapsto$ $a \bullet I_{K}^{\mathrm{Len} J \times \operatorname{Len} J}$ is a finite sequence of Jordan blocks of $\lambda+a$ and K.
Let us consider K and let J_{1}, J_{2} be fininte sequences of Jordan blocks of K. Then $J_{1} \frown J_{2}$ is a finite sequence of Jordan blocks of K.

Let us consider K, let J be a finite sequence of Jordan blocks of K, and let us consider n. Then $J\left\lceil n\right.$ is a finite sequence of Jordan blocks of K. Then $J_{\llcorner n}$ is a finite sequence of Jordan blocks of K.

Let us consider K, λ and let J_{1}, J_{2} be finite sequences of Jordan blocks of λ and K. Then $J_{1} \wedge J_{2}$ is a finite sequence of Jordan blocks of λ and K.

Let us consider K, λ, let J be a finite sequence of Jordan blocks of λ and K, and let us consider n. Then $J\lceil n$ is a finite sequence of Jordan blocks of λ and K. Then $J_{l n}$ is a finite sequence of Jordan blocks of λ and K.

3. Nilpotent Transformations

Let K be a double loop structure, let V be a non empty vector space structure over K, and let f be a function from V into V. We say that f is nilpotent if and only if:
(Def. 4) There exists n such that for every vector v of V holds $f^{n}(v)=0_{V}$.
We now state the proposition
(13) Let K be a double loop structure, V be a non empty vector space structure over K, and f be a function from V into V. Then f is nilpotent if and only if there exists n such that $f^{n}=\operatorname{ZeroMap}(V, V)$.
Let K be a double loop structure and let V be a non empty vector space structure over K. Observe that there exists a function from V into V which is nilpotent.

Let R be a ring and let V be a left module over R. Observe that there exists a function from V into V which is nilpotent and linear.

Next we state the proposition
(14) Let V be a vector space over K and f be a linear transformation from V to V. Then $f \upharpoonright$ ker f^{n} is a nilpotent linear transformation from $\operatorname{ker} f^{n}$ to ker f^{n}.
Let K be a double loop structure, let V be a non empty vector space structure over K, and let f be a nilpotent function from V into V. The degree of nilpotence of f yielding a natural number is defined by the conditions (Def. 5).
(Def. 5)(i) $\quad f^{\text {the degree of nilpotence of } f}=\operatorname{ZeroMap}(V, V)$, and
(ii) for every k such that $f^{k}=\operatorname{ZeroMap}(V, V)$ holds the degree of nilpotence of $f \leq k$.
Let K be a double loop structure, let V be a non empty vector space structure over K, and let f be a nilpotent function from V into V. We introduce $\operatorname{deg} f$ as a synonym of the degree of nilpotence of f.

One can prove the following propositions:
(15) Let K be a double loop structure, V be a non empty vector space structure over K, and f be a nilpotent function from V into V. Then $\operatorname{deg} f=0$ if and only if $\Omega_{V}=\left\{0_{V}\right\}$.
(16) Let K be a double loop structure, V be a non empty vector space structure over K, and f be a nilpotent function from V into V. Then there exists a vector v of V such that for every i such that $i<\operatorname{deg} f$ holds $f^{i}(v) \neq 0_{V}$.
(17) Let K be a field, V be a vector space over K, W be a subspace of V, and f be a nilpotent function from V into V. Suppose $f \upharpoonright W$ is a function from W into W. Then $f \upharpoonright W$ is a nilpotent function from W into W.
(18) Let K be a field, V be a vector space over K, W be a subspace of V, f be a nilpotent linear transformation from V to V, and f_{1} be a nilpotent function from $\operatorname{im}\left(f^{n}\right)$ into $\operatorname{im}\left(f^{n}\right)$. If $f_{1}=f \upharpoonright \operatorname{im}\left(f^{n}\right)$ and $n \leq \operatorname{deg} f$, then $\operatorname{deg} f_{1}+n=\operatorname{deg} f$.
For simplicity, we adopt the following convention: V_{1}, V_{2} denote finite dimensional vector spaces over K, W_{1}, W_{2} denote subspaces of V_{1}, U_{1}, U_{2} denote subspaces of V_{2}, b_{1} denotes an ordered basis of V_{1}, B_{1} denotes a finite sequence of elements of V_{1}, b_{2} denotes an ordered basis of V_{2}, B_{2} denotes a finite sequence of elements of V_{2}, b_{3} denotes an ordered basis of W_{1}, b_{4} denotes an ordered basis of W_{2}, B_{3} denotes a finite sequence of elements of U_{1}, and B_{4} denotes a finite sequence of elements of U_{2}.

Next we state a number of propositions:
(19) Let M be a matrix over K of dimension len $b_{1} \times \operatorname{len} B_{2}, M_{1}$ be a matrix over K of dimension len $b_{3} \times \operatorname{len} B_{3}$, and M_{2} be a matrix over K of dimension len $b_{4} \times$ len B_{4} such that $b_{1}=b_{3} \wedge b_{4}$ and $B_{2}=B_{3} \wedge B_{4}$ and $M=$ the 0_{K}-block diagonal of $\left\langle M_{1}, M_{2}\right\rangle$ and width $M_{1}=$ len B_{3} and width $M_{2}=\operatorname{len} B_{4}$. Then
(i) if $i \in \operatorname{dom} b_{3}$, then $\left(\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, B_{2}\right)\right)\left(\left(b_{1}\right)_{i}\right)=$ $\left(\operatorname{Mx} 2 \operatorname{Tran}\left(M_{1}, b_{3}, B_{3}\right)\right)\left(\left(b_{3}\right)_{i}\right)$, and
(ii) if $i \in \operatorname{dom} b_{4}$, then $\left(\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, B_{2}\right)\right)\left(\left(b_{1}\right)_{i+\operatorname{len} b_{3}}\right)=$ $\left(\operatorname{Mx2} 2 \operatorname{Tran}\left(M_{2}, b_{4}, B_{4}\right)\right)\left(\left(b_{4}\right)_{i}\right)$.
(20) Let M be a matrix over K of dimension len $b_{1} \times \operatorname{len} B_{2}$ and F be a finite sequence of matrices over K. Suppose $M=$ the 0_{K}-block diagonal of F. Let given i, m. Suppose $i \in \operatorname{dom} b_{1}$ and $m=\min (\operatorname{Len} F, i)$. Then $\left(\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, B_{2}\right)\right)\left(\left(b_{1}\right)_{i}\right)=\sum \operatorname{lmlt}\left(\operatorname{Line}\left(F(m), i-^{\prime} \sum \operatorname{Len}\left(F \upharpoonright\left(m-^{\prime}\right.\right.\right.\right.$ 1))), ($\left.\left.B_{2} \upharpoonright \sum \operatorname{Width}(F \upharpoonright m)\right)_{\left.\mid \sum \operatorname{Width}\left(F \upharpoonright\left(m-^{\prime}\right)\right)\right)}\right)$ and $\operatorname{len}\left(\left(B_{2} \upharpoonright \sum \operatorname{Width}(F \upharpoonright m)\right)_{\mid \sum \operatorname{Width}\left(F \upharpoonright\left(m^{\prime} 1\right)\right)}\right)=\operatorname{width} F(m)$.
(21) If len $B_{1} \in \operatorname{dom} B_{1}$, then $\sum \operatorname{lmlt}(L i n e(t h e ~ J o r d a n ~ b l o c k ~ o f ~ \lambda ~ a n d ~$ len B_{1}, len $\left.\left.B_{1}\right), B_{1}\right)=\lambda \cdot\left(B_{1}\right)_{\operatorname{len} B_{1}}$.
(22) If $i \in \operatorname{dom} B_{1}$ and $i \neq \operatorname{len} B_{1}$, then $\sum \operatorname{lmlt}(\operatorname{Line}($ the Jordan block of λ and len $\left.\left.B_{1}, i\right), B_{1}\right)=\lambda \cdot\left(B_{1}\right)_{i}+\left(B_{1}\right)_{i+1}$.
(23) Let M be a matrix over K of dimension len $b_{1} \times \operatorname{len} B_{2}$. Suppose $M=$ the Jordan block of λ and n. Let given i such that $i \in \operatorname{dom} b_{1}$. Then
(i) if $i=\operatorname{len} b_{1}$, then $\left(\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, B_{2}\right)\right)\left(\left(b_{1}\right)_{i}\right)=\lambda \cdot\left(B_{2}\right)_{i}$, and
(ii) if $i \neq \operatorname{len} b_{1}$, then $\left(\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, B_{2}\right)\right)\left(\left(b_{1}\right)_{i}\right)=\lambda \cdot\left(B_{2}\right)_{i}+\left(B_{2}\right)_{i+1}$.
(24) Let J be a finite sequence of Jordan blocks of λ and K and M be a matrix over K of dimension len $b_{1} \times$ len B_{2}. Suppose $M=$ the 0_{K}-block diagonal of J. Let given i, m such that $i \in \operatorname{dom} b_{1}$ and $m=\min (\operatorname{Len} J, i)$. Then
(i) if $i=\sum \operatorname{Len}(J \mid m)$, then $\left(\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, B_{2}\right)\right)\left(\left(b_{1}\right)_{i}\right)=\lambda \cdot\left(B_{2}\right)_{i}$, and
(ii) if $i \neq \sum \operatorname{Len}(J \mid m)$, then $\left(\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, B_{2}\right)\right)\left(\left(b_{1}\right)_{i}\right)=\lambda \cdot\left(B_{2}\right)_{i}+$ $\left(B_{2}\right)_{i+1}$.
(25) Let J be a finite sequence of Jordan blocks of 0_{K} and K and M be a matrix over K of dimension len $b_{1} \times \operatorname{len} b_{1}$. Suppose $M=$ the 0_{K}-block diagonal of J. Let given m. If for every i such that $i \in \operatorname{dom} J$ holds len $J(i) \leq m$, then $\left(\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, b_{1}\right)\right)^{m}=\operatorname{ZeroMap}\left(V_{1}, V_{1}\right)$.
(26) Let J be a finite sequence of Jordan blocks of λ and K and M be a matrix over K of dimension len $b_{1} \times \operatorname{len} b_{1}$. Suppose $M=$ the 0_{K}-block diagonal of J. Then $\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, b_{1}\right)$ is nilpotent if and only if len $b_{1}=0$ or $\lambda=0_{K}$.
(27) Let J be a finite sequence of Jordan blocks of 0_{K} and K and M be a matrix over K of dimension len $b_{1} \times \operatorname{len} b_{1}$. Suppose $M=$ the 0_{K}-block diagonal of J and len $b_{1}>0$. Let F be a nilpotent function from V_{1} into V_{1}. Suppose $F=\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, b_{1}\right)$. Then there exists i such that $i \in \operatorname{dom} J$ and len $J(i)=\operatorname{deg} F$ and for every i such that $i \in \operatorname{dom} J$ holds len $J(i) \leq \operatorname{deg} F$.
(28) Let given $V_{1}, V_{2}, b_{1}, b_{2}, \lambda$. Suppose len $b_{1}=\operatorname{len} b_{2}$. Let F be a linear
transformation from V_{1} to V_{2}. Suppose that for every i such that $i \in \operatorname{dom} b_{1}$ holds $F\left(\left(b_{1}\right)_{i}\right)=\lambda \cdot\left(b_{2}\right)_{i}$ or $i+1 \in \operatorname{dom} b_{1}$ and $F\left(\left(b_{1}\right)_{i}\right)=\lambda \cdot\left(b_{2}\right)_{i}+\left(b_{2}\right)_{i+1}$. Then there exists a non-empty finite sequence J of Jordan blocks of λ and K such that $\operatorname{AutMt}\left(F, b_{1}, b_{2}\right)=$ the 0_{K}-block diagonal of J.
(29) Let V_{1} be a finite dimensional vector space over K and F be a nilpotent linear transformation from V_{1} to V_{1}. Then there exists a non-empty finite sequence J of Jordan blocks of 0_{K} and K and there exists an ordered basis b_{1} of V_{1} such that $\operatorname{AutMt}\left(F, b_{1}, b_{1}\right)=$ the 0_{K}-block diagonal of J.
(30) Let V be a vector space over K, F be a linear transformation from V to V, V_{1} be a finite dimensional subspace of V, and F_{1} be a linear transformation from V_{1} to V_{1}. Suppose $V_{1}=\operatorname{ker}\left(F+(-\lambda) \cdot \mathrm{id}_{V}\right)^{n}$ and $F \upharpoonright V_{1}=F_{1}$. Then there exists a non-empty finite sequence J of Jordan blocks of λ and K and there exists an ordered basis b_{1} of V_{1} such that $\operatorname{AutMt}\left(F_{1}, b_{1}, b_{1}\right)=$ the 0_{K}-block diagonal of J.

4. The Main Theorem

The following two propositions are true:
(31) Let K be an algebraic-closed field, V be a non trivial finite dimensional vector space over K, and F be a linear transformation from V to V. Then there exists a non-empty finite sequence J of Jordan blocks of K and there exists an ordered basis b_{1} of V such that
(i) $\operatorname{AutMt}\left(F, b_{1}, b_{1}\right)=$ the 0_{K}-block diagonal of J, and
(ii) for every scalar λ of K holds λ is an eigenvalue of F iff there exists i such that $i \in \operatorname{dom} J$ and $J(i)=$ the Jordan block of λ and len $J(i)$.
(32) Let K be an algebraic-closed field and M be a square matrix over K of dimension n. Then there exists a non-empty finite sequence J of Jordan blocks of K and there exists a square matrix P over K of dimension n such that \sum Len $J=n$ and P is invertible and $M=P \cdot$ the 0_{K}-block diagonal of $J \cdot P^{\smile}$.

References

[1] Jesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137-142, 2007.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[13] Gene H. Golub and J. H. Wilkinson. Ill-conditioned eigensystems and the computation of the Jordan normal form. SIAM Review, vol. 18, nr. 4, pp. 5788211;619, 1976.
[14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[15] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[16] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573-577, 1997.
[17] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[18] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[19] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339345, 1996.
[20] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461470, 2001.
[21] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563-571, 1991.
[22] Michał Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579-585, 1991.
[23] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, $4(\mathbf{1}): 83-86,1993$.
[24] Karol Pạk and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3):143150, 2007.
[25] Karol Pąk. Block diagonal matrices. Formalized Mathematics, 16(3):259-267, 2008.
[26] Karol Pąk. Eigenvalues of a linear transformation. Formalized Mathematics, 16(4):289295, 2008.
[27] Karol Pąk. Linear map of matrices. Formalized Mathematics, 16(3):269-275, 2008.
[28] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[29] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[30] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[31] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990.
[32] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
[33] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[35] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541-547, 2005.
[36] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
[37] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

