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Poland

Summary. The article presents well known facts about eigenvalues of line-
ar transformation of a vector space (see [13]). I formalize main dependencies be-
tween eigenvalues and the diagram of the matrix of a linear transformation over a

finite-dimensional vector space. Finally, I formalize the subspace
∞⋃
i=0

Ker(f−λI)i

called a generalized eigenspace for the eigenvalue λ and show its basic properties.

MML identifier: VECTSP11, version: 7.9.03 4.108.1028

The articles [11], [33], [2], [3], [12], [34], [8], [10], [9], [5], [31], [27], [15], [7], [14],
[32], [35], [25], [30], [29], [28], [26], [6], [22], [16], [23], [20], [1], [19], [4], [21], [17],
[18], and [24] provide the notation and terminology for this paper.

1. Preliminaries

We adopt the following convention: i, j, m, n denote natural numbers, K
denotes a field, and a denotes an element of K.
Next we state several propositions:

(1) Let A, B be matrices over K, n1 be an element of Nn, and m1 be an
element of Nm. If rng n1 × rngm1 ⊆ the indices of A, then Segm(A +
B,n1,m1) = Segm(A,n1,m1) + Segm(B,n1,m1).

(2) For every without zero finite subset P of N such that P ⊆ Seg n holds
Segm(In×nK , P, P ) = IcardP×cardPK .

(3) Let A, B be matrices over K and P , Q be without zero finite subsets of
N. If P ×Q ⊆ the indices of A, then Segm(A+B,P,Q) = Segm(A,P,Q)+
Segm(B,P,Q).
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(4) For all square matrices A, B overK of dimension n such that i, j ∈ Seg n
holds Delete(A+B, i, j) = Delete(A, i, j) + Delete(B, i, j).

(5) For every square matrix A over K of dimension n such that i, j ∈ Seg n
holds Delete(a ·A, i, j) = a ·Delete(A, i, j).

(6) If i ∈ Seg n, then Delete(In×nK , i, i) = I(n−
′1)×(n−′1)

K .

(7) Let A, B be square matrices over K of dimension n. Then there exists
a polynomial P of K such that lenP ≤ n + 1 and for every element x of
K holds eval(P, x) = Det(A+ x ·B).

(8) Let A be a square matrix over K of dimension n. Then there exists a
polynomial P of K such that lenP = n+ 1 and for every element x of K
holds eval(P, x) = Det(A+ x · In×nK ).

Let us consider K. Observe that there exists a vector space over K which is
non trivial and finite dimensional.

2. Maps with Eigenvalues

Let R be a non empty double loop structure, let V be a non empty vector
space structure over R, and let I1 be a function from V into V . We say that I1
has eigenvalues if and only if:

(Def. 1) There exists a vector v of V and there exists a scalar a of R such that
v 6= 0V and I1(v) = a · v.
For simplicity, we follow the rules: V denotes a non trivial vector space over

K, V1, V2 denote vector spaces over K, f denotes a linear transformation from
V1 to V1, v, w denote vectors of V , v1 denotes a vector of V1, and L denotes a
scalar of K.
Let us considerK, V . One can verify that there exists a linear transformation

from V to V which has eigenvalues.
Let R be a non empty double loop structure, let V be a non empty vector

space structure over R, and let f be a function from V into V . Let us assume
that f has eigenvalues. An element of R is called an eigenvalue of f if:

(Def. 2) There exists a vector v of V such that v 6= 0V and f(v) = it · v.
Let R be a non empty double loop structure, let V be a non empty vector

space structure over R, let f be a function from V into V , and let L be a scalar
of R. Let us assume that f has eigenvalues and L is an eigenvalue of f . A vector
of V is called an eigenvector of f and L if:

(Def. 3) f(it) = L · it.
We now state several propositions:

(9) Let given a. Suppose a 6= 0K . Let f be a function from V into V with
eigenvalues and L be an eigenvalue of f . Then
(i) a · f has eigenvalues,
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(ii) a · L is an eigenvalue of a · f, and
(iii) w is an eigenvector of f and L iff w is an eigenvector of a · f and a ·L.
(10) Let f1, f2 be functions from V into V with eigenvalues and L1, L2 be
scalars of K. Suppose that
(i) L1 is an eigenvalue of f1,
(ii) L2 is an eigenvalue of f2, and
(iii) there exists v such that v is an eigenvector of f1 and L1 and an eige-
nvector of f2 and L2 and v 6= 0V .
Then

(iv) f1 + f2 has eigenvalues,
(v) L1 + L2 is an eigenvalue of f1 + f2, and
(vi) for every w such that w is an eigenvector of f1 and L1 and an eigenvector
of f2 and L2 holds w is an eigenvector of f1 + f2 and L1 + L2.

(11) idV has eigenvalues and 1K is an eigenvalue of idV and every v is an
eigenvector of idV and 1K .

(12) For every eigenvalue L of idV holds L = 1K .

(13) If ker f is non trivial, then f has eigenvalues and 0K is an eigenvalue of
f .

(14) f has eigenvalues and L is an eigenvalue of f iff ker f + (−L) · id(V1) is
non trivial.

(15) Let V1 be a finite dimensional vector space over K, b1, b′1 be ordered
bases of V1, and f be a linear transformation from V1 to V1. Then f has
eigenvalues and L is an eigenvalue of f if and only if DetAutEqMt(f +
(−L) · id(V1), b1, b′1) = 0K .

(16) Let K be an algebraic-closed field and V1 be a non trivial finite dimen-
sional vector space over K. Then every linear transformation from V1 to
V1 has eigenvalues.

(17) Let given f , L. Suppose f has eigenvalues and L is an eigenvalue of f .
Then v1 is an eigenvector of f and L if and only if v1 ∈ ker f+(−L) · id(V1).
Let S be a 1-sorted structure, let F be a function from S into S, and let

n be a natural number. The functor Fn yields a function from S into S and is
defined as follows:

(Def. 4) For every element F ′ of the semigroup of functions onto the carrier of S
such that F ′ = F holds Fn =

∏
(n 7→ F ′).

In the sequel S denotes a 1-sorted structure and F denotes a function from
S into S.
Next we state several propositions:

(18) F 0 = idS .

(19) F 1 = F.

(20) F i+j = F i · F j .
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(21) For all elements s1, s2 of S and for all n, m such that Fm(s1) = s2 and
Fn(s2) = s2 holds Fm+i·n(s1) = s2.

(22) Let K be an add-associative right zeroed right complementable Abelian
associative well unital distributive non empty double loop structure, V1
be an Abelian add-associative right zeroed right complementable vector
space-like non empty vector space structure over K, W be a subspace of
V1, f be a function from V1 into V1, and f3 be a function from W into W .
If f3 = f�W, then fn�W = f3n.

Let us consider K, V1, let f be a linear transformation from V1 to V1, and
let n be a natural number. Then fn is a linear transformation from V1 to V1.
We now state the proposition

(23) If f i(v1) = 0(V1), then f
i+j(v1) = 0(V1).

3. Generalized Eigenspace of a Linear Transformation

Let us consider K, V1, f . The functor UnionKers f yielding a strict subspace
of V1 is defined by:

(Def. 5) The carrier of UnionKers f = {v; v ranges over vectors of V1:
∨
n f
n(v) =

0(V1)}.
We now state a number of propositions:

(24) v1 ∈ UnionKers f iff there exists n such that fn(v1) = 0(V1).
(25) ker f i is a subspace of UnionKers f.

(26) ker f i is a subspace of ker f i+j .

(27) Let V be a finite dimensional vector space over K and f be a linear
transformation from V to V . Then there exists n such that UnionKers f =
ker fn.

(28) f� ker fn is a linear transformation from ker fn to ker fn.

(29) f� ker (f + L · id(V1))
n is a linear transformation from ker (f + L · id(V1))

n

to ker (f + L · id(V1))
n.

(30) f�UnionKers f is a linear transformation from UnionKers f to
UnionKers f.

(31) f�UnionKers(f+L·id(V1)) is a linear transformation from UnionKers(f+
L · id(V1)) to UnionKers(f + L · id(V1)).

(32) f� im(fn) is a linear transformation from im(fn) to im(fn).

(33) f� im((f + L · id(V1))
n) is a linear transformation from im((f + L · id(V1))

n)
to im((f + L · id(V1))

n).

(34) If UnionKers f = ker fn, then ker fn ∩ im(fn) = 0(V1).
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(35) Let V be a finite dimensional vector space over K, f be a linear trans-
formation from V to V , and given n. If UnionKers f = ker fn, then V is
the direct sum of ker fn and im(fn).

(36) For every linear complement I of UnionKers f holds f�I is one-to-one.

(37) Let I be a linear complement of UnionKers(f + (−L) · id(V1)) and f4 be
a linear transformation from I to I. If f4 = f�I, then for every vector v
of I such that f4(v) = L · v holds v = 0(V1).

(38) Suppose n ≥ 1. Then there exists a linear transformation h from V1 to
V1 such that (f + L · id(V1))

n = f · h + (L · id(V1))
n and for every i holds

f i · h = h · f i.
(39) Let L1, L2 be scalars of K. Suppose f has eigenvalues and L1 6= L2
and L1 is an eigenvalue of f and L2 is an eigenvalue of f . Let I be a
linear complement of UnionKers(f + (−L1) · id(V1)) and f4 be a linear
transformation from I to I. Suppose f4 = f�I. Then f4 has eigenvalu-
es and L1 is not an eigenvalue of f4 and L2 is an eigenvalue of f4 and
UnionKers(f + (−L2) · id(V1)) is a subspace of I.

(40) Let U be a finite subset of V1. Suppose U is linearly independent. Let u
be a vector of V1. Suppose u ∈ U. Let L be a linear combination of U \{u}.
Then U = (U \ {u}) ∪ {u+

∑
L} and (U \ {u}) ∪ {u +

∑
L} is linearly

independent.

(41) Let A be a subset of V1, L be a linear combination of V2, and f be a
linear transformation from V1 to V2. Suppose the support of L ⊆ f◦A.
Then there exists a linear combination M of A such that f(

∑
M) =

∑
L.

(42) Let f be a linear transformation from V1 to V2, A be a subset of V1, and
B be a subset of V2. If f◦A = B, then f◦(the carrier of Lin(A)) = the
carrier of Lin(B).

(43) Let L be a linear combination of V1, F be a finite sequence of elements
of V1, and f be a linear transformation from V1 to V2. Suppose f�((the
support of L) ∩ rngF ) is one-to-one and rngF ⊆ the support of L. Then
there exists a linear combination L3 of V2 such that
(i) the support of L3 = f◦((the support of L) ∩ rngF ),
(ii) f · (LF ) = L3 (f · F ), and
(iii) for every v1 such that v1 ∈ (the support of L) ∩ rngF holds L(v1) =
L3(f(v1)).

(44) Let A, B be subsets of V1 and L be a linear combination of V1. Suppose
the support of L ⊆ A∪B and

∑
L = 0(V1). Let f be a linear function from

V1 into V2. Suppose f�B is one-to-one and f◦B is a linearly independent
subset of V2 and f◦A ⊆ {0(V2)}. Then the support of L ⊆ A.
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