Eigenvalues of a Linear Transformation

Karol Pąk
Institute of Computer Science
University of Białystok
Poland

Summary. The article presents well known facts about eigenvalues of linear transformation of a vector space (see [13]). I formalize main dependencies between eigenvalues and the diagram of the matrix of a linear transformation over a finite-dimensional vector space. Finally, I formalize the subspace $\bigcup_{i=0}^{\infty} \operatorname{Ker}(f-\lambda I)^i$ called a generalized eigenspace for the eigenvalue λ and show its basic properties.

MML identifier: VECTSP11, version: 7.9.03 4.108.1028

The articles [11], [33], [2], [3], [12], [34], [8], [10], [9], [5], [31], [27], [15], [7], [14], [32], [35], [25], [30], [29], [28], [26], [6], [22], [16], [23], [20], [1], [19], [4], [21], [17], [18], and [24] provide the notation and terminology for this paper.

1. Preliminaries

We adopt the following convention: i, j, m, n denote natural numbers, K denotes a field, and a denotes an element of K.

Next we state several propositions:

- (1) Let A, B be matrices over K, n_1 be an element of \mathbb{N}^n , and m_1 be an element of \mathbb{N}^m . If $\operatorname{rng} n_1 \times \operatorname{rng} m_1 \subseteq \operatorname{the indices of} A$, then $\operatorname{Segm}(A + B, n_1, m_1) = \operatorname{Segm}(A, n_1, m_1) + \operatorname{Segm}(B, n_1, m_1)$.
- (2) For every without zero finite subset P of $\mathbb N$ such that $P\subseteq \operatorname{Seg} n$ holds $\operatorname{Segm}(I_K^{n\times n},P,P)=I_K^{\operatorname{card} P\times\operatorname{card} P}.$
- (3) Let A, B be matrices over K and P, Q be without zero finite subsets of \mathbb{N} . If $P \times Q \subseteq$ the indices of A, then $\operatorname{Segm}(A+B,P,Q) = \operatorname{Segm}(A,P,Q) + \operatorname{Segm}(B,P,Q)$.

- (4) For all square matrices A, B over K of dimension n such that $i, j \in \operatorname{Seg} n$ holds $\operatorname{Delete}(A + B, i, j) = \operatorname{Delete}(A, i, j) + \operatorname{Delete}(B, i, j)$.
- (5) For every square matrix A over K of dimension n such that $i, j \in \operatorname{Seg} n$ holds $\operatorname{Delete}(a \cdot A, i, j) = a \cdot \operatorname{Delete}(A, i, j)$.
- (6) If $i \in \operatorname{Seg} n$, then $\operatorname{Delete}(I_K^{n \times n}, i, i) = I_K^{(n-'1) \times (n-'1)}$.
- (7) Let A, B be square matrices over K of dimension n. Then there exists a polynomial P of K such that len $P \le n+1$ and for every element x of K holds $\operatorname{eval}(P,x) = \operatorname{Det}(A+x\cdot B)$.
- (8) Let A be a square matrix over K of dimension n. Then there exists a polynomial P of K such that len P = n + 1 and for every element x of K holds $eval(P, x) = Det(A + x \cdot I_K^{n \times n})$.

Let us consider K. Observe that there exists a vector space over K which is non trivial and finite dimensional.

2. Maps with Eigenvalues

Let R be a non empty double loop structure, let V be a non empty vector space structure over R, and let I_1 be a function from V into V. We say that I_1 has eigenvalues if and only if:

(Def. 1) There exists a vector v of V and there exists a scalar a of R such that $v \neq 0_V$ and $I_1(v) = a \cdot v$.

For simplicity, we follow the rules: V denotes a non trivial vector space over K, V_1 , V_2 denote vector spaces over K, f denotes a linear transformation from V_1 to V_1 , v, w denote vectors of V, v_1 denotes a vector of V_1 , and V_2 denotes a scalar of V_2 .

Let us consider K, V. One can verify that there exists a linear transformation from V to V which has eigenvalues.

Let R be a non empty double loop structure, let V be a non empty vector space structure over R, and let f be a function from V into V. Let us assume that f has eigenvalues. An element of R is called an eigenvalue of f if:

(Def. 2) There exists a vector v of V such that $v \neq 0_V$ and $f(v) = it \cdot v$.

Let R be a non empty double loop structure, let V be a non empty vector space structure over R, let f be a function from V into V, and let L be a scalar of R. Let us assume that f has eigenvalues and L is an eigenvalue of f. A vector of V is called an eigenvector of f and L if:

(Def. 3) $f(it) = L \cdot it$.

We now state several propositions:

- (9) Let given a. Suppose $a \neq 0_K$. Let f be a function from V into V with eigenvalues and L be an eigenvalue of f. Then
- (i) $a \cdot f$ has eigenvalues,

- (ii) $a \cdot L$ is an eigenvalue of $a \cdot f$, and
- (iii) w is an eigenvector of f and L iff w is an eigenvector of $a \cdot f$ and $a \cdot L$.
- (10) Let f_1 , f_2 be functions from V into V with eigenvalues and L_1 , L_2 be scalars of K. Suppose that
 - (i) L_1 is an eigenvalue of f_1 ,
- (ii) L_2 is an eigenvalue of f_2 , and
- (iii) there exists v such that v is an eigenvector of f_1 and L_1 and an eigenvector of f_2 and L_2 and $v \neq 0_V$.

Then

- (iv) $f_1 + f_2$ has eigenvalues,
- (v) $L_1 + L_2$ is an eigenvalue of $f_1 + f_2$, and
- (vi) for every w such that w is an eigenvector of f_1 and L_1 and an eigenvector of f_2 and L_2 holds w is an eigenvector of $f_1 + f_2$ and $L_1 + L_2$.
- (11) id_V has eigenvalues and $\mathbf{1}_K$ is an eigenvalue of id_V and every v is an eigenvector of id_V and $\mathbf{1}_K$.
- (12) For every eigenvalue L of id_V holds $L = \mathbf{1}_K$.
- (13) If ker f is non trivial, then f has eigenvalues and 0_K is an eigenvalue of f.
- (14) f has eigenvalues and L is an eigenvalue of f iff $\ker f + (-L) \cdot \mathrm{id}_{(V_1)}$ is non trivial.
- (15) Let V_1 be a finite dimensional vector space over K, b_1 , b'_1 be ordered bases of V_1 , and f be a linear transformation from V_1 to V_1 . Then f has eigenvalues and L is an eigenvalue of f if and only if Det AutEqMt($f + (-L) \cdot id_{(V_1)}, b_1, b'_1$) = 0_K .
- (16) Let K be an algebraic-closed field and V_1 be a non trivial finite dimensional vector space over K. Then every linear transformation from V_1 to V_1 has eigenvalues.
- (17) Let given f, L. Suppose f has eigenvalues and L is an eigenvalue of f. Then v_1 is an eigenvector of f and L if and only if $v_1 \in \ker f + (-L) \cdot \mathrm{id}_{(V_1)}$.

Let S be a 1-sorted structure, let F be a function from S into S, and let n be a natural number. The functor F^n yields a function from S into S and is defined as follows:

(Def. 4) For every element F' of the semigroup of functions onto the carrier of S such that F' = F holds $F^n = \prod (n \mapsto F')$.

In the sequel S denotes a 1-sorted structure and F denotes a function from S into S.

Next we state several propositions:

- (18) $F^0 = id_S$.
- (19) $F^1 = F$.
- $(20) F^{i+j} = F^i \cdot F^j.$

292

- (21) For all elements s_1 , s_2 of S and for all n, m such that $F^m(s_1) = s_2$ and $F^n(s_2) = s_2$ holds $F^{m+i\cdot n}(s_1) = s_2$.
- (22) Let K be an add-associative right zeroed right complementable Abelian associative well unital distributive non empty double loop structure, V_1 be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over K, W be a subspace of V_1 , f be a function from V_1 into V_1 , and f_3 be a function from W into W. If $f_3 = f \upharpoonright W$, then $f^n \upharpoonright W = f_3^n$.

Let us consider K, V_1 , let f be a linear transformation from V_1 to V_1 , and let n be a natural number. Then f^n is a linear transformation from V_1 to V_1 .

We now state the proposition

(23) If
$$f^{i}(v_{1}) = 0_{(V_{1})}$$
, then $f^{i+j}(v_{1}) = 0_{(V_{1})}$.

3. Generalized Eigenspace of a Linear Transformation

Let us consider K, V_1 , f. The functor UnionKers f yielding a strict subspace of V_1 is defined by:

(Def. 5) The carrier of UnionKers $f = \{v; v \text{ ranges over vectors of } V_1: \bigvee_n f^n(v) = 0_{(V_1)}\}.$

We now state a number of propositions:

- (24) $v_1 \in \text{UnionKers } f \text{ iff there exists } n \text{ such that } f^n(v_1) = 0_{(V_1)}.$
- (25) $\ker f^i$ is a subspace of UnionKers f.
- (26) ker f^i is a subspace of ker f^{i+j} .
- (27) Let V be a finite dimensional vector space over K and f be a linear transformation from V to V. Then there exists n such that UnionKers $f = \ker f^n$.
- (28) $f \upharpoonright \ker f^n$ is a linear transformation from $\ker f^n$ to $\ker f^n$.
- (29) $f \upharpoonright \ker (f + L \cdot \mathrm{id}_{(V_1)})^n$ is a linear transformation from $\ker (f + L \cdot \mathrm{id}_{(V_1)})^n$ to $\ker (f + L \cdot \mathrm{id}_{(V_1)})^n$.
- (30) $f \upharpoonright \text{UnionKers } f$ is a linear transformation from UnionKers f to UnionKers f.
- (31) $f \upharpoonright \text{UnionKers}(f + L \cdot \text{id}_{(V_1)})$ is a linear transformation from UnionKers $(f + L \cdot \text{id}_{(V_1)})$ to UnionKers $(f + L \cdot \text{id}_{(V_1)})$.
- (32) $f \mid \operatorname{im}(f^n)$ is a linear transformation from $\operatorname{im}(f^n)$ to $\operatorname{im}(f^n)$.
- (33) $f \upharpoonright \operatorname{im}((f + L \cdot \operatorname{id}_{(V_1)})^n)$ is a linear transformation from $\operatorname{im}((f + L \cdot \operatorname{id}_{(V_1)})^n)$ to $\operatorname{im}((f + L \cdot \operatorname{id}_{(V_1)})^n)$.
- (34) If UnionKers $f = \ker f^n$, then $\ker f^n \cap \operatorname{im}(f^n) = \mathbf{0}_{(V_1)}$.

- (35) Let V be a finite dimensional vector space over K, f be a linear transformation from V to V, and given n. If UnionKers $f = \ker f^n$, then V is the direct sum of $\ker f^n$ and $\operatorname{im}(f^n)$.
- (36) For every linear complement I of UnionKers f holds $f \upharpoonright I$ is one-to-one.
- (37) Let I be a linear complement of UnionKers $(f + (-L) \cdot id_{(V_1)})$ and f_4 be a linear transformation from I to I. If $f_4 = f | I$, then for every vector v of I such that $f_4(v) = L \cdot v$ holds $v = 0_{(V_1)}$.
- (38) Suppose $n \geq 1$. Then there exists a linear transformation h from V_1 to V_1 such that $(f + L \cdot id_{(V_1)})^n = f \cdot h + (L \cdot id_{(V_1)})^n$ and for every i holds $f^i \cdot h = h \cdot f^i$.
- (39) Let L_1 , L_2 be scalars of K. Suppose f has eigenvalues and $L_1 \neq L_2$ and L_1 is an eigenvalue of f and L_2 is an eigenvalue of f. Let I be a linear complement of UnionKers $(f + (-L_1) \cdot \mathrm{id}_{(V_1)})$ and f_4 be a linear transformation from I to I. Suppose $f_4 = f \upharpoonright I$. Then f_4 has eigenvalues and L_1 is not an eigenvalue of f_4 and L_2 is an eigenvalue of f_4 and UnionKers $(f + (-L_2) \cdot \mathrm{id}_{(V_1)})$ is a subspace of I.
- (40) Let U be a finite subset of V_1 . Suppose U is linearly independent. Let u be a vector of V_1 . Suppose $u \in U$. Let L be a linear combination of $U \setminus \{u\}$. Then $\overline{U} = \overline{(U \setminus \{u\}) \cup \{u + \sum L\}}$ and $(U \setminus \{u\}) \cup \{u + \sum L\}$ is linearly independent.
- (41) Let A be a subset of V_1 , L be a linear combination of V_2 , and f be a linear transformation from V_1 to V_2 . Suppose the support of $L \subseteq f^{\circ}A$. Then there exists a linear combination M of A such that $f(\sum M) = \sum L$.
- (42) Let f be a linear transformation from V_1 to V_2 , A be a subset of V_1 , and B be a subset of V_2 . If $f^{\circ}A = B$, then f° (the carrier of Lin(A)) = the carrier of Lin(B).
- (43) Let L be a linear combination of V_1 , F be a finite sequence of elements of V_1 , and f be a linear transformation from V_1 to V_2 . Suppose $f \upharpoonright ($ (the support of $L) \cap \operatorname{rng} F)$ is one-to-one and $\operatorname{rng} F \subseteq$ the support of L. Then there exists a linear combination L_3 of V_2 such that
 - (i) the support of $L_3 = f^{\circ}((\text{the support of } L) \cap \operatorname{rng} F),$
 - (ii) $f \cdot (LF) = L_3 (f \cdot F)$, and
- (iii) for every v_1 such that $v_1 \in \text{(the support of } L) \cap \operatorname{rng} F$ holds $L(v_1) = L_3(f(v_1))$.
- (44) Let A, B be subsets of V_1 and L be a linear combination of V_1 . Suppose the support of $L \subseteq A \cup B$ and $\sum L = 0_{(V_1)}$. Let f be a linear function from V_1 into V_2 . Suppose $f \upharpoonright B$ is one-to-one and $f \circ B$ is a linearly independent subset of V_2 and $f \circ A \subseteq \{0_{(V_2)}\}$. Then the support of $L \subseteq A$.

References

- [1] Jesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137–142, 2007.
- [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [4] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213–225, 1992.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [6] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
- [7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [13] I.N. Herstein and David J. Winter. Matrix Theory and Linear Algebra. Macmillan, 1988.
- [14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [15] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [16] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339–345, 1996.
- [17] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391–395, 2001.
- [18] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461–470, 2001.
- [19] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339–346, 2001.
- [20] Michał Muzalewski. Rings and modules part II. Formalized Mathematics, 2(4):579–585,
- [21] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97–104, 1991.
- [22] Karol Pak. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199–211, 2007.
- [23] Karol Pak and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3):143–150, 2007.
- [24] Karol Pak. Linear map of matrices. Formalized Mathematics, 16(3):269-275, 2008.
- [25] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [26] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883–885, 1990.
- [27] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [28] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877–882, 1990.
- [29] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871–876, 1990.
- [30] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865–870, 1990.
- [31] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [32] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41–47, 1991.
- [33] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

[35] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

Received July 11, 2008