Eigenvalues of a Linear Transformation

Karol Pąk
Institute of Computer Science
University of Białystok
Poland

Abstract

Summary. The article presents well known facts about eigenvalues of linear transformation of a vector space (see [13]). I formalize main dependencies between eigenvalues and the diagram of the matrix of a linear transformation over a finite-dimensional vector space. Finally, I formalize the subspace $\bigcup_{i=0}^{\infty} \operatorname{Ker}(f-\lambda I)^{i}$ called a generalized eigenspace for the eigenvalue λ and show its basic properties.

MML identifier: VECTSP11, version: $\underline{7.9 .034 .108 .1028}$

The articles [11], [33], [2], [3], [12], [34], [8], [10], [9], [5], [31], [27], [15], [7], [14], [32], [35], [25], [30], [29], [28], [26], [6], [22], [16], [23], [20], [1], [19], [4], [21], [17], [18], and [24] provide the notation and terminology for this paper.

1. Preliminaries

We adopt the following convention: i, j, m, n denote natural numbers, K denotes a field, and a denotes an element of K.

Next we state several propositions:
(1) Let A, B be matrices over K, n_{1} be an element of \mathbb{N}^{n}, and m_{1} be an element of \mathbb{N}^{m}. If $\operatorname{rng} n_{1} \times \operatorname{rng} m_{1} \subseteq$ the indices of A, then $\operatorname{Segm}(A+$ $\left.B, n_{1}, m_{1}\right)=\operatorname{Segm}\left(A, n_{1}, m_{1}\right)+\operatorname{Segm}\left(B, n_{1}, m_{1}\right)$.
(2) For every without zero finite subset P of \mathbb{N} such that $P \subseteq \operatorname{Seg} n$ holds $\operatorname{Segm}\left(I_{K}^{n \times n}, P, P\right)=I_{K}^{\operatorname{card} P \times \operatorname{card} P}$.
(3) Let A, B be matrices over K and P, Q be without zero finite subsets of \mathbb{N}. If $P \times Q \subseteq$ the indices of A, then $\operatorname{Segm}(A+B, P, Q)=\operatorname{Segm}(A, P, Q)+$ $\operatorname{Segm}(B, P, Q)$.
(4) For all square matrices A, B over K of dimension n such that $i, j \in \operatorname{Seg} n$ holds $\operatorname{Delete}(A+B, i, j)=\operatorname{Delete}(A, i, j)+\operatorname{Delete}(B, i, j)$.
(5) For every square matrix A over K of dimension n such that $i, j \in \operatorname{Seg} n$ holds Delete $(a \cdot A, i, j)=a \cdot \operatorname{Delete}(A, i, j)$.
(6) If $i \in \operatorname{Seg} n$, then $\operatorname{Delete}\left(I_{K}^{n \times n}, i, i\right)=I_{K}^{\left(n-{ }^{\prime} 1\right) \times\left(n-^{\prime} 1\right)}$.
(7) Let A, B be square matrices over K of dimension n. Then there exists a polynomial P of K such that len $P \leq n+1$ and for every element x of K holds eval $(P, x)=\operatorname{Det}(A+x \cdot B)$.
(8) Let A be a square matrix over K of dimension n. Then there exists a polynomial P of K such that len $P=n+1$ and for every element x of K $\operatorname{holds} \operatorname{eval}(P, x)=\operatorname{Det}\left(A+x \cdot I_{K}^{n \times n}\right)$.
Let us consider K. Observe that there exists a vector space over K which is non trivial and finite dimensional.

2. Maps with Eigenvalues

Let R be a non empty double loop structure, let V be a non empty vector space structure over R, and let I_{1} be a function from V into V. We say that I_{1} has eigenvalues if and only if:
(Def. 1) There exists a vector v of V and there exists a scalar a of R such that $v \neq 0_{V}$ and $I_{1}(v)=a \cdot v$.
For simplicity, we follow the rules: V denotes a non trivial vector space over K, V_{1}, V_{2} denote vector spaces over K, f denotes a linear transformation from V_{1} to V_{1}, v, w denote vectors of V, v_{1} denotes a vector of V_{1}, and L denotes a scalar of K.

Let us consider K, V. One can verify that there exists a linear transformation from V to V which has eigenvalues.

Let R be a non empty double loop structure, let V be a non empty vector space structure over R, and let f be a function from V into V. Let us assume that f has eigenvalues. An element of R is called an eigenvalue of f if:
(Def. 2) There exists a vector v of V such that $v \neq 0_{V}$ and $f(v)=\mathrm{it} \cdot v$.
Let R be a non empty double loop structure, let V be a non empty vector space structure over R, let f be a function from V into V, and let L be a scalar of R. Let us assume that f has eigenvalues and L is an eigenvalue of f. A vector of V is called an eigenvector of f and L if:
(Def. 3) $\quad f(\mathrm{it})=L \cdot \mathrm{it}$.
We now state several propositions:
(9) Let given a. Suppose $a \neq 0_{K}$. Let f be a function from V into V with eigenvalues and L be an eigenvalue of f. Then
(i) $a \cdot f$ has eigenvalues,
(ii) $a \cdot L$ is an eigenvalue of $a \cdot f$, and
(iii) $\quad w$ is an eigenvector of f and L iff w is an eigenvector of $a \cdot f$ and $a \cdot L$.
(10) Let f_{1}, f_{2} be functions from V into V with eigenvalues and L_{1}, L_{2} be scalars of K. Suppose that
(i) $\quad L_{1}$ is an eigenvalue of f_{1},
(ii) $\quad L_{2}$ is an eigenvalue of f_{2}, and
(iii) there exists v such that v is an eigenvector of f_{1} and L_{1} and an eigenvector of f_{2} and L_{2} and $v \neq 0_{V}$.
Then
(iv) $f_{1}+f_{2}$ has eigenvalues,
(v) $\quad L_{1}+L_{2}$ is an eigenvalue of $f_{1}+f_{2}$, and
(vi) for every w such that w is an eigenvector of f_{1} and L_{1} and an eigenvector of f_{2} and L_{2} holds w is an eigenvector of $f_{1}+f_{2}$ and $L_{1}+L_{2}$.
(11) id_{V} has eigenvalues and $\mathbf{1}_{K}$ is an eigenvalue of id_{V} and every v is an eigenvector of id_{V} and $\mathbf{1}_{K}$.
(12) For every eigenvalue L of id_{V} holds $L=\mathbf{1}_{K}$.
(13) If ker f is non trivial, then f has eigenvalues and 0_{K} is an eigenvalue of f.
(14) f has eigenvalues and L is an eigenvalue of f iff ker $f+(-L) \cdot \operatorname{id}_{\left(V_{1}\right)}$ is non trivial.
(15) Let V_{1} be a finite dimensional vector space over K, b_{1}, b_{1}^{\prime} be ordered bases of V_{1}, and f be a linear transformation from V_{1} to V_{1}. Then f has eigenvalues and L is an eigenvalue of f if and only if $\operatorname{Det} \operatorname{AutEqMt}(f+$ $\left.(-L) \cdot \mathrm{id}_{\left(V_{1}\right)}, b_{1}, b_{1}^{\prime}\right)=0_{K}$.
(16) Let K be an algebraic-closed field and V_{1} be a non trivial finite dimensional vector space over K. Then every linear transformation from V_{1} to V_{1} has eigenvalues.
(17) Let given f, L. Suppose f has eigenvalues and L is an eigenvalue of f. Then v_{1} is an eigenvector of f and L if and only if $v_{1} \in \operatorname{ker} f+(-L) \cdot \mathrm{id}_{\left(V_{1}\right)}$.
Let S be a 1 -sorted structure, let F be a function from S into S, and let n be a natural number. The functor F^{n} yields a function from S into S and is defined as follows:
(Def. 4) For every element F^{\prime} of the semigroup of functions onto the carrier of S such that $F^{\prime}=F$ holds $F^{n}=\Pi\left(n \mapsto F^{\prime}\right)$.
In the sequel S denotes a 1 -sorted structure and F denotes a function from S into S.

Next we state several propositions:

$$
\begin{align*}
& F^{0}=\operatorname{id}_{S} \tag{18}\\
& F^{1}=F \\
& F^{i+j}=F^{i} \cdot F^{j}
\end{align*}
$$

(21) For all elements s_{1}, s_{2} of S and for all n, m such that $F^{m}\left(s_{1}\right)=s_{2}$ and $F^{n}\left(s_{2}\right)=s_{2}$ holds $F^{m+i \cdot n}\left(s_{1}\right)=s_{2}$.
(22) Let K be an add-associative right zeroed right complementable Abelian associative well unital distributive non empty double loop structure, V_{1} be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over K, W be a subspace of V_{1}, f be a function from V_{1} into V_{1}, and f_{3} be a function from W into W. If $f_{3}=f \upharpoonright W$, then $f^{n} \upharpoonright W=f_{3}{ }^{n}$.
Let us consider K, V_{1}, let f be a linear transformation from V_{1} to V_{1}, and let n be a natural number. Then f^{n} is a linear transformation from V_{1} to V_{1}.

We now state the proposition
(23) If $f^{i}\left(v_{1}\right)=0_{\left(V_{1}\right)}$, then $f^{i+j}\left(v_{1}\right)=0_{\left(V_{1}\right)}$.

3. Generalized Eigenspace of a Linear Transformation

Let us consider K, V_{1}, f. The functor UnionKers f yielding a strict subspace of V_{1} is defined by:
(Def. 5) The carrier of UnionKers $f=\left\{v ; v\right.$ ranges over vectors of $V_{1}: \bigvee_{n} f^{n}(v)=$ $\left.0_{\left(V_{1}\right)}\right\}$.
We now state a number of propositions:
(24) $\quad v_{1} \in$ UnionKers f iff there exists n such that $f^{n}\left(v_{1}\right)=0_{\left(V_{1}\right)}$.
(25) $\operatorname{ker} f^{i}$ is a subspace of UnionKers f.
(26) $\operatorname{ker} f^{i}$ is a subspace of $\operatorname{ker} f^{i+j}$.
(27) Let V be a finite dimensional vector space over K and f be a linear transformation from V to V. Then there exists n such that UnionKers $f=$ ker f^{n}.
(28) $\quad f \upharpoonright$ ker f^{n} is a linear transformation from $\operatorname{ker} f^{n}$ to $\operatorname{ker} f^{n}$.
(29) $\quad f \upharpoonright \operatorname{ker}\left(f+L \cdot \operatorname{id}_{\left(V_{1}\right)}\right)^{n}$ is a linear transformation from $\operatorname{ker}\left(f+L \cdot \mathrm{id}_{\left(V_{1}\right)}\right)^{n}$ to $\operatorname{ker}\left(f+L \cdot \operatorname{id}_{\left(V_{1}\right)}\right)^{n}$.
(30) $f \upharpoonright$ UnionKers f is a linear transformation from UnionKers f to UnionKers f.
(31) $\quad f \upharpoonright \operatorname{UnionKers}\left(f+L \cdot \operatorname{id}_{\left(V_{1}\right)}\right)$ is a linear transformation from $\operatorname{UnionKers}(f+$ $\left.L \cdot \operatorname{id}_{\left(V_{1}\right)}\right)$ to UnionKers $\left(f+L \cdot \mathrm{id}_{\left(V_{1}\right)}\right)$.
(32) $\quad f \upharpoonright \operatorname{im}\left(f^{n}\right)$ is a linear transformation from $\operatorname{im}\left(f^{n}\right)$ to $\operatorname{im}\left(f^{n}\right)$.
(33) $\quad f \upharpoonright \operatorname{im}\left(\left(f+L \cdot \operatorname{id}_{\left(V_{1}\right)}\right)^{n}\right)$ is a linear transformation from $\operatorname{im}\left(\left(f+L \cdot \operatorname{id}_{\left(V_{1}\right)}\right)^{n}\right)$ to $\operatorname{im}\left(\left(f+L \cdot \mathrm{id}_{\left(V_{1}\right)}\right)^{n}\right)$.
(34) If UnionKers $f=\operatorname{ker} f^{n}$, then ker $f^{n} \cap \operatorname{im}\left(f^{n}\right)=\mathbf{0}_{\left(V_{1}\right)}$.
(35) Let V be a finite dimensional vector space over K, f be a linear transformation from V to V, and given n. If UnionKers $f=\operatorname{ker} f^{n}$, then V is the direct sum of $\operatorname{ker} f^{n}$ and $\operatorname{im}\left(f^{n}\right)$.
(36) For every linear complement I of UnionKers f holds $f \upharpoonright I$ is one-to-one.
(37) Let I be a linear complement of $\operatorname{UnionKers}\left(f+(-L) \cdot \mathrm{id}_{\left(V_{1}\right)}\right)$ and f_{4} be a linear transformation from I to I. If $f_{4}=f \upharpoonright I$, then for every vector v of I such that $f_{4}(v)=L \cdot v$ holds $v=0_{\left(V_{1}\right)}$.
(38) Suppose $n \geq 1$. Then there exists a linear transformation h from V_{1} to V_{1} such that $\left(f+L \cdot \mathrm{id}_{\left(V_{1}\right)}\right)^{n}=f \cdot h+\left(L \cdot \mathrm{id}_{\left(V_{1}\right)}\right)^{n}$ and for every i holds $f^{i} \cdot h=h \cdot f^{i}$.
(39) Let L_{1}, L_{2} be scalars of K. Suppose f has eigenvalues and $L_{1} \neq L_{2}$ and L_{1} is an eigenvalue of f and L_{2} is an eigenvalue of f. Let I be a linear complement of UnionKers $\left(f+\left(-L_{1}\right) \cdot \operatorname{id}_{\left(V_{1}\right)}\right)$ and f_{4} be a linear transformation from I to I. Suppose $f_{4}=f \upharpoonright I$. Then f_{4} has eigenvalues and L_{1} is not an eigenvalue of f_{4} and L_{2} is an eigenvalue of f_{4} and UnionKers $\left(f+\left(-L_{2}\right) \cdot \operatorname{id}_{\left(V_{1}\right)}\right)$ is a subspace of I.
(40) Let U be a finite subset of V_{1}. Suppose U is linearly independent. Let u be a vector of V_{1}. Suppose $u \in U$. Let L be a linear combination of $U \backslash\{u\}$. Then $\overline{\bar{U}}=\overline{\overline{(U \backslash\{u\}) \cup\left\{u+\sum L\right\}}}$ and $(U \backslash\{u\}) \cup\left\{u+\sum L\right\}$ is linearly independent.
(41) Let A be a subset of V_{1}, L be a linear combination of V_{2}, and f be a linear transformation from V_{1} to V_{2}. Suppose the support of $L \subseteq f^{\circ} A$. Then there exists a linear combination M of A such that $f\left(\sum M\right)=\sum L$.
(42) Let f be a linear transformation from V_{1} to V_{2}, A be a subset of V_{1}, and B be a subset of V_{2}. If $f^{\circ} A=B$, then $f^{\circ}($ the carrier of $\operatorname{Lin}(A))=$ the carrier of $\operatorname{Lin}(B)$.
(43) Let L be a linear combination of V_{1}, F be a finite sequence of elements of V_{1}, and f be a linear transformation from V_{1} to V_{2}. Suppose $f \upharpoonright(($ the support of $L) \cap \operatorname{rng} F)$ is one-to-one and $\operatorname{rng} F \subseteq$ the support of L. Then there exists a linear combination L_{3} of V_{2} such that
(i) the support of $L_{3}=f^{\circ}(($ the support of $L) \cap \operatorname{rng} F)$,
(ii) $f \cdot(L F)=L_{3}(f \cdot F)$, and
(iii) for every v_{1} such that $v_{1} \in($ the support of $L) \cap \operatorname{rng} F$ holds $L\left(v_{1}\right)=$ $L_{3}\left(f\left(v_{1}\right)\right)$.
(44) Let A, B be subsets of V_{1} and L be a linear combination of V_{1}. Suppose the support of $L \subseteq A \cup B$ and $\sum L=0_{\left(V_{1}\right)}$. Let f be a linear function from V_{1} into V_{2}. Suppose $f \upharpoonright B$ is one-to-one and $f^{\circ} B$ is a linearly independent subset of V_{2} and $f^{\circ} A \subseteq\left\{0_{\left(V_{2}\right)}\right\}$. Then the support of $L \subseteq A$.

References

[1] Jesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137-142, 2007.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[13] I.N. Herstein and David J. Winter. Matrix Theory and Linear Algebra. Macmillan, 1988.
[14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[15] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[16] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339345, 1996.
[17] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001.
[18] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461470, 2001.
[19] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.
[20] Michał Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579-585, 1991.
[21] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
[22] Karol Pa̧k. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007.
[23] Karol Pa̧k and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3):143150, 2007.
[24] Karol Pąk. Linear map of matrices. Formalized Mathematics, 16(3):269-275, 2008.
[25] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, $1(\mathbf{1}): 115-122,1990$.
[26] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
[27] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[28] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990.
[29] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871-876, 1990.
[30] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
[31] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[32] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
[33] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[35] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

Received July 11, 2008

