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Summary. The article presents well known facts about eigenvalues of line-
ar transformation of a vector space (see [13]). I formalize main dependencies be-
tween eigenvalues and the diagram of the matrix of a linear transformation over a

finite-dimensional vector space. Finally, I formalize the subspace U Ker(f—AI )Z

i=0
called a generalized eigenspace for the eigenvalue A and show its basic properties.
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The articles [11], [33], [2], [3], [12], [34], [8], [10], [9], [5], [31], [27], [15], [7], [14],
[32], [35], [25], [30], [29], [28], [26], [6], [22], [16], [23], [20], [1], [19], [4], [21], [17],
[18], and [24] provide the notation and terminology for this paper.

1. PRELIMINARIES

We adopt the following convention: i, j, m, n denote natural numbers, K
denotes a field, and a denotes an element of K.
Next we state several propositions:

(1) Let A, B be matrices over K, n; be an element of N”, and m; be an
element of N”. If rngn; x rngm; C the indices of A, then Segm(A +
B,n1,my) = Segm(A, ny, my) + Segm (B, ny,my).

(2) For every without zero finite subset P of N such that P C Segn holds
Segm([?(X",P, P) — I}:{ardchardP'

(3) Let A, B be matrices over K and P, () be without zero finite subsets of
N. If P x @ C the indices of A, then Segm(A+ B, P, Q) = Segm(A, P, Q)+
Segm(B, P, Q).
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(4) For all square matrices A, B over K of dimension n such that i, j € Segn
holds Delete(A + B, i,j) = Delete(A, 1, j) + Delete(B, i, 7).

(5) For every square matrix A over K of dimension n such that i, j € Segn
holds Delete(a - A,1,j) = a - Delete(A,1, 7).

(6) Ifi e Segn, then Delete(I",4,1) = I}?Jl)x(n_’l).

(7) Let A, B be square matrices over K of dimension n. Then there exists
a polynomial P of K such that len P < n + 1 and for every element = of
K holds eval(P,z) = Det(A + z - B).

(8) Let A be a square matrix over K of dimension n. Then there exists a
polynomial P of K such that len P = n + 1 and for every element x of K
holds eval(P,z) = Det(A + x - I").

Let us consider K. Observe that there exists a vector space over K which is
non trivial and finite dimensional.

2. MAPS WITH EIGENVALUES

Let R be a non empty double loop structure, let V' be a non empty vector
space structure over R, and let I; be a function from V into V. We say that I
has eigenvalues if and only if:

(Def. 1) There exists a vector v of V' and there exists a scalar a of R such that
v# 0y and [1(v) =a-v.

For simplicity, we follow the rules: V' denotes a non trivial vector space over
K, V1, V5 denote vector spaces over K, f denotes a linear transformation from
V1 to Vi, v, w denote vectors of V, v; denotes a vector of V1, and L denotes a
scalar of K.

Let us consider K, V. One can verify that there exists a linear transformation
from V to V which has eigenvalues.

Let R be a non empty double loop structure, let V' be a non empty vector
space structure over R, and let f be a function from V into V. Let us assume
that f has eigenvalues. An element of R is called an eigenvalue of f if:

(Def. 2) There exists a vector v of V' such that v # Oy and f(v) =it - v.

Let R be a non empty double loop structure, let V' be a non empty vector
space structure over R, let f be a function from V into V', and let L be a scalar
of R. Let us assume that f has eigenvalues and L is an eigenvalue of f. A vector
of V is called an eigenvector of f and L if:

(Def. 3) f(it) = L - it.
We now state several propositions:

(9) Let given a. Suppose a # Og. Let f be a function from V into V' with
eigenvalues and L be an eigenvalue of f. Then
(i) a- f has eigenvalues,



EIGENVALUES OF A LINEAR TRANSFORMATION 291

(ii) a- L is an eigenvalue of a - f, and
(ili) w is an eigenvector of f and L iff w is an eigenvector of a- f and a - L.
(10) Let f1, fo be functions from V into V' with eigenvalues and Li, Ly be
scalars of K. Suppose that
(i)  Lj is an eigenvalue of fi,
(ii) Lg is an eigenvalue of fo, and
(ili)  there exists v such that v is an eigenvector of fi and L; and an eige-
nvector of fo and Lo and v # Oy .
Then
(iv)  f1 + fo has eigenvalues,
(v) L1+ Lo is an eigenvalue of f; + f2, and
(vi) for every w such that w is an eigenvector of f; and L; and an eigenvector
of fo and Ly holds w is an eigenvector of fi + fo and Li + Lo.
(11) idy has eigenvalues and 1g is an eigenvalue of idy and every v is an
eigenvector of idy and 1.
(12) For every eigenvalue L of idy holds L = 1.
(13) 1If ker f is non trivial, then f has eigenvalues and O is an eigenvalue of
I
(14)  f has eigenvalues and L is an eigenvalue of f iff ker f + (—L) - id(y;) is
non trivial.

(15) Let Vi be a finite dimensional vector space over K, by, b} be ordered
bases of V7, and f be a linear transformation from V; to V1. Then f has
eigenvalues and L is an eigenvalue of f if and only if Det AutEqMt(f +
(L) -idgyyy, b1, b1) = Ox.

(16) Let K be an algebraic-closed field and V; be a non trivial finite dimen-
sional vector space over K. Then every linear transformation from Vj to
V1 has eigenvalues.

(17) Let given f, L. Suppose f has eigenvalues and L is an eigenvalue of f.
Then vy is an eigenvector of f and L if and only if v1 € ker f+(—L)-id).

Let S be a 1-sorted structure, let F' be a function from S into S, and let
n be a natural number. The functor F™ yields a function from S into S and is
defined as follows:

(Def. 4) For every element F’ of the semigroup of functions onto the carrier of S
such that F/ = F holds F" = [[(n — F).

In the sequel S denotes a 1-sorted structure and F' denotes a function from
S into S.
Next we state several propositions:

(18) F° =idg.
(19) F'=F.
(20) Fit =F'. FJ.
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(21) For all elements s1, so of S and for all n, m such that F(s1) = s2 and
F"(s3) = s holds F™Ti7(s1) = s9.

(22) Let K be an add-associative right zeroed right complementable Abelian
associative well unital distributive non empty double loop structure, V;
be an Abelian add-associative right zeroed right complementable vector
space-like non empty vector space structure over K, W be a subspace of
V1, f be a function from V; into Vi, and f3 be a function from W into W.
If f3 = fIW, then f"[W = f3".

Let us consider K, Vi, let f be a linear transformation from V; to V4, and
let n be a natural number. Then f is a linear transformation from Vj to V;.
We now state the proposition

(23) If f(v1) = Oy, then f7 (v1) = Ogyy).

3. GENERALIZED EIGENSPACE OF A LINEAR TRANSFORMATION

Let us consider K, Vi, f. The functor UnionKers f yielding a strict subspace
of V; is defined by:

(Def. 5) The carrier of UnionKers f = {v; v ranges over vectors of V1:\/,, f™(v) =
Ocviy}-
We now state a number of propositions:

v1 € UnionKers f iff there exists n such that f"(vi) = O(y;).

[\
IS
S~—

25)
26) ker f? is a subspace of ker fi*7.
27)

(
( ker f is a subspace of UnionKers f.

(

( Let V' be a finite dimensional vector space over K and f be a linear
transformation from V' to V. Then there exists n such that UnionKers f =
ker f.

(28) flker f™ is a linear transformation from ker f™ to ker f™.

(29) flker (f+ L-id(y,))" is alinear transformation from ker (f + L - id(y;))"
to ker (f + L - id(vl))n.

(30) f|UnionKers f is a linear transformation from UnionKersf to
UnionKers f.

(31)  fIUnionKers(f+L-idy,)) is a linear transformation from UnionKers( f+
L- id(V1)) to UnionKers(f +L- id(vl)).

(32) flim(f™) is a linear transformation from im(f") to im(f").

(33) fHim((f + L -id(y,))") is a linear transformation from im((f + L - idy;))"™)
to 1m((f + L - id(vl))n).

(34) 1If UnionKers f = ker f", then ker f™ Nim(f") = Oy,).
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(35) Let V be a finite dimensional vector space over K, f be a linear trans-
formation from V to V, and given n. If UnionKers f = ker f", then V is
the direct sum of ker f™ and im(f").

(36) For every linear complement I of UnionKers f holds f[I is one-to-one.

(37) Let I be a linear complement of UnionKers(f + (—L) -id(y;)) and f4 be
a linear transformation from I to I. If f4 = f[I, then for every vector v
of I such that fi(v) = L -v holds v = Oy).

(38) Suppose n > 1. Then there exists a linear transformation h from V; to
Vi such that (f + L-idw,))" = f-h+ (L-idy,))" and for every i holds
ff-h=nh-f"

(39) Let Ly, Lo be scalars of K. Suppose f has eigenvalues and L # Lo
and L; is an eigenvalue of f and Lo is an eigenvalue of f. Let I be a
linear complement of UnionKers(f + (—L1) - id(y,)) and f4 be a linear
transformation from I to I. Suppose f4 = f[I. Then f; has eigenvalu-
es and L; is not an eigenvalue of f; and Lo is an eigenvalue of f; and
UnionKers(f + (—Lz) -id(y;)) is a subspace of I.

(40) Let U be a finite subset of V;. Suppose U is linearly independent. Let u
be a vector of V. Suppose u € U. Let L be a linear combination of U\ {u}.
Then U = (U \ {u})U{u+ Y L} and (U \ {u}) U {u+ > L} is linearly
independent.

(41) Let A be a subset of V;, L be a linear combination of V3, and f be a
linear transformation from Vj to Va. Suppose the support of L C f°A.
Then there exists a linear combination M of A such that f(3>° M) =73 L.

(42) Let f be a linear transformation from V; to V4, A be a subset of Vi, and
B be a subset of V. If f°A = B, then f°(the carrier of Lin(A)) = the
carrier of Lin(B).

(43) Let L be a linear combination of Vi, F' be a finite sequence of elements
of V1, and f be a linear transformation from Vj to V5. Suppose f[((the
support of L) Nrng F') is one-to-one and rng F' C the support of L. Then
there exists a linear combination Lg of V5 such that

(i)  the support of L = f°((the support of L) Nrng F),
(i) f-(LF)=Ls(f - F), and
(ili)  for every vy such that vy € (the support of L) Nrng F holds L(vy) =
L3(f(v1))-

(44) Let A, B be subsets of V; and L be a linear combination of V;. Suppose
the support of L C AUB and 37 L = O(y;). Let f be a linear function from
V1 into V5. Suppose f[B is one-to-one and f°B is a linearly independent
subset of V3 and f°A C {0(y;)}. Then the support of L C A.
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