Basic Properties and Concept of Selected Subsequence of Zero Based Finite Sequences

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Hisashi Ito
Shinshu University
Nagano, Japan

Abstract

Summary. Here, we develop the theory of zero based finite sequences, which are sometimes, more useful in applications than normal one based finite sequences. The fundamental function Sgm is introduced as well as in case of normal finite sequences and other notions are also introduced. However, many theorems are a modification of old theorems of normal finite sequences, they are basically important and are necessary for applications. A new concept of selected subsequence is introduced. This concept came from the individual Ergodic theorem (see [7]) and it is the preparation for its proof.

MML identifier: AFINSQ_2, version: $\underline{7.9 .03 \text { 4.104.1021 }}$

The articles [12], [1], [14], [5], [8], [2], [6], [4], [3], [13], [10], [9], and [11] provide the notation and terminology for this paper.

1. Preliminaries

In this paper D is a set.
One can prove the following proposition
(1) For every set x and for every natural number i such that $x \in i$ holds x is an element of \mathbb{N}.

Let us observe that every natural number is natural-membered.

2. Additional Properties of Zero Based Finite Sequence

One can prove the following propositions:
(2) For every finite natural-membered set X_{0} there exists a natural number m such that $X_{0} \subseteq m$.
(3) Let p be a finite 0 -sequence and b be a set. If $b \in \operatorname{rng} p$, then there exists an element i of \mathbb{N} such that $i \in \operatorname{dom} p$ and $p(i)=b$.
(4) Let D be a set and p be a finite 0 -sequence. Suppose that for every natural number i such that $i \in \operatorname{dom} p$ holds $p(i) \in D$. Then p is a finite 0 -sequence of D.
The scheme $X \operatorname{SeqLambdaD}$ deals with a natural number \mathcal{A}, a non empty set \mathcal{B}, and a unary functor \mathcal{F} yielding an element of \mathcal{B}, and states that: There exists a finite 0 -sequence z of \mathcal{B} such that len $z=\mathcal{A}$ and for every natural number j such that $j \in \mathcal{A}$ holds $z(j)=\mathcal{F}(j)$ for all values of the parameters.

One can prove the following proposition
(5) Let p, q be finite 0 -sequences. Suppose len $p=\operatorname{len} q$ and for every natural number j such that $j \in \operatorname{dom} p$ holds $p(j)=q(j)$. Then $p=q$.
Let f be a finite 0 -sequence of \mathbb{R} and let a be an element of \mathbb{R}. Then $f+a$ is a finite 0 -sequence of \mathbb{R}.

We now state two propositions:
(6) Let f be a finite 0 -sequence of \mathbb{R} and a be an element of \mathbb{R}. Then $\operatorname{len}(f+$ $a)=\operatorname{len} f$ and for every natural number i such that $i<\operatorname{len} f$ holds $(f+a)(i)=f(i)+a$.
(7) For all finite 0 -sequences f_{1}, f_{2} and for every natural number i such that $i<\operatorname{len} f_{1}$ holds $\left(f_{1} \wedge f_{2}\right)(i)=f_{1}(i)$.
Let f be a finite 0 -sequence. The functor $\operatorname{Rev}(f)$ yielding a finite 0 -sequence is defined as follows:
(Def. 1) $\operatorname{len} \operatorname{Rev}(f)=\operatorname{len} f$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} \operatorname{Rev}(f)$ holds $(\operatorname{Rev}(f))(i)=f(\operatorname{len} f-(i+1))$.
We now state the proposition
(8) For every finite 0 -sequence f holds $\operatorname{dom} f=\operatorname{dom} \operatorname{Rev}(f)$ and $\operatorname{rng} f=$ rng $\operatorname{Rev}(f)$.
Let D be a set and let f be a finite 0 -sequence of D. Then $\operatorname{Rev}(f)$ is a finite 0 -sequence of D.

We now state several propositions:
(9) For every finite 0 -sequence p such that $p \neq \emptyset$ there exists a finite 0 sequence q and there exists a set x such that $p=q^{\wedge}\langle x\rangle$.
(10) For every natural number n and for every finite 0 -sequence f such that len $f \leq n$ holds $f \upharpoonright n=f$.
(11) For every finite 0 -sequence f and for all natural numbers n, m such that $n \leq \operatorname{len} f$ and $m \in n$ holds $(f \upharpoonright n)(m)=f(m)$ and $m \in \operatorname{dom} f$.
(12) For every element i of \mathbb{N} and for every finite 0 -sequence q such that $i \leq \operatorname{len} q$ holds len $(q \upharpoonright i)=i$.
(13) For every element i of \mathbb{N} and for every finite 0 -sequence q holds $\operatorname{len}(q\lceil i) \leq$ i.
(14) For every finite 0 -sequence f and for every element n of \mathbb{N} such that len $f=n+1$ holds $f=(f \backslash n)^{\wedge}\langle f(n)\rangle$.
Let f be a finite 0 -sequence and let n be a natural number. The functor $f_{\text {ln }}$ yielding a finite 0 -sequence is defined by:
(Def. 2) $\operatorname{len}\left(f_{\llcorner n}\right)=\operatorname{len} f-^{\prime} n$ and for every natural number m such that $m \in$ $\operatorname{dom}\left(f_{\text {ln }}\right)$ holds $f_{\text {ln }}(m)=f(m+n)$.
One can prove the following three propositions:
(15) For every finite 0 -sequence f and for every natural number n such that $n \geq \operatorname{len} f$ holds $f_{l n}=\emptyset$.
(16) For every finite 0 -sequence f and for every natural number n such that $n<\operatorname{len} f$ holds $\operatorname{len}\left(f_{\text {ln }}\right)=\operatorname{len} f-n$.
(17) For every finite 0 -sequence f and for all natural numbers n, m such that $m+n<\operatorname{len} f$ holds $f_{\text {ln }}(m)=f(m+n)$.
Let f be an one-to-one finite 0 -sequence and let n be a natural number. Note that $f_{\text {ln }}$ is one-to-one.

We now state several propositions:
(18) For every finite 0 -sequence f and for every natural number n holds $\operatorname{rng}\left(f_{\ln }\right) \subseteq \operatorname{rng} f$.
(19) For every finite 0 -sequence f holds $f_{l 0}=f$.
(20) For every natural number i and for all finite 0 -sequences f, g holds $\left(f{ }^{\wedge} g\right)_{\operatorname{len} f+i}=g_{\mid i}$.
(21) For all finite 0 -sequences f, g holds $\left(f^{\wedge} g\right)_{l \operatorname{len} f}=g$.
(22) For every finite 0 -sequence f and for every element n of \mathbb{N} holds $(f \upharpoonright n)^{\wedge}$ $\left(f_{\text {ln }}\right)=f$.
Let D be a set, let f be a finite 0 -sequence of D, and let n be a natural number. Then $f_{\text {ln }}$ is a finite 0 -sequence of D.

Let f be a finite 0 -sequence and let k_{1}, k_{2} be natural numbers. The functor $\operatorname{mid}\left(f, k_{1}, k_{2}\right)$ yields a finite 0 -sequence and is defined as follows:
(Def. 3) For all elements k_{11}, k_{21} of \mathbb{N} such that $k_{11}=k_{1}$ and $k_{21}=k_{2}$ holds $\operatorname{mid}\left(f, k_{1}, k_{2}\right)=\left(f \upharpoonright k_{21}\right)_{\mid k_{11}-_{1}^{\prime}}$.
We now state several propositions:
(23) For every finite 0 -sequence f and for all natural numbers k_{1}, k_{2} such that $k_{1}>k_{2}$ holds $\operatorname{mid}\left(f, k_{1}, k_{2}\right)=\emptyset$.
(24) For every finite 0 -sequence f and for all natural numbers k_{1}, k_{2} such that $1 \leq k_{1}$ and $k_{2} \leq \operatorname{len} f$ holds $\operatorname{mid}\left(f, k_{1}, k_{2}\right)=f_{\left\lfloor k_{1}-^{\prime} 1\right.} \uparrow\left(\left(k_{2}+1\right)-^{\prime} k_{1}\right)$.
(25) For every finite 0 -sequence f and for every natural number k_{2} holds $\operatorname{mid}\left(f, 1, k_{2}\right)=f \upharpoonright k_{2}$.
(26) For every finite 0 -sequence f of D and for every natural number k_{2} such that len $f \leq k_{2}$ holds $\operatorname{mid}\left(f, 1, k_{2}\right)=f$.
(27) For every finite 0 -sequence f and for every element k_{2} of \mathbb{N} holds $\operatorname{mid}\left(f, 0, k_{2}\right)=\operatorname{mid}\left(f, 1, k_{2}\right)$.
(28) For all finite 0 -sequences f, g holds $\operatorname{mid}(f \frown g, \operatorname{len} f+1, \operatorname{len} f+\operatorname{len} g)=g$.

Let D be a set, let f be a finite 0 -sequence of D, and let k_{1}, k_{2} be natural numbers. Then $\operatorname{mid}\left(f, k_{1}, k_{2}\right)$ is a finite 0 -sequence of D.

Let f be a finite 0 -sequence of \mathbb{R}. The functor $\sum f$ yields an element of \mathbb{R} and is defined by the condition (Def. 4).
(Def. 4) There exists a finite 0 -sequence g of \mathbb{R} such that len $f=\operatorname{len} g$ and $f(0)=$ $g(0)$ and for every natural number i such that $i+1<\operatorname{len} f$ holds $g(i+1)=$ $g(i)+f(i+1)$ and $\sum f=g\left(\operatorname{len} f-^{\prime} 1\right)$.
Let f be an empty finite 0 -sequence of \mathbb{R}. Observe that $\sum f$ is zero.
We now state two propositions:
(29) For every empty finite 0 -sequence f of \mathbb{R} holds $\sum f=0$.
(30) For all finite 0 -sequences h_{1}, h_{2} of \mathbb{R} holds $\sum h_{1}{ }^{\wedge} h_{2}=\left(\sum h_{1}\right)+\sum h_{2}$.

3. Selected Subsequences

Let X be a finite natural-membered set. The functor $\operatorname{Sgm}_{0} X$ yields a finite 0 -sequence of \mathbb{N} and is defined as follows:
(Def. 5) $\operatorname{rng} \operatorname{Sgm}_{0} X=X$ and for all natural numbers l, m, k_{1}, k_{2} such that $l<m<\operatorname{len} \operatorname{Sgm}_{0} X$ and $k_{1}=\left(\operatorname{Sgm}_{0} X\right)(l)$ and $k_{2}=\left(\operatorname{Sgm}_{0} X\right)(m)$ holds $k_{1}<k_{2}$.
Let A be a finite natural-membered set. Note that $\operatorname{Sgm}_{0} A$ is one-to-one.
Next we state three propositions:
(31) For every finite natural-membered set A holds $\operatorname{len} \operatorname{Sgm}_{0} A=\overline{\bar{A}}$.
(32) For all finite natural-membered sets X, Y such that $X \subseteq Y$ and $X \neq \emptyset$ holds $\left(\operatorname{Sgm}_{0} Y\right)(0) \leq\left(\operatorname{Sgm}_{0} X\right)(0)$.
(33) For every natural number n holds $\left(\operatorname{Sgm}_{0}\{n\}\right)(0)=n$.

Let B_{1}, B_{2} be sets. The predicate $B_{1}<B_{2}$ is defined by:
(Def. 6) For all natural numbers n, m such that $n \in B_{1}$ and $m \in B_{2}$ holds $n<m$. Let B_{1}, B_{2} be sets. The predicate $B_{1} \leq B_{2}$ is defined by:
(Def. 7) For all natural numbers n, m such that $n \in B_{1}$ and $m \in B_{2}$ holds $n \leq m$.

The following propositions are true:
(34) For all sets B_{1}, B_{2} such that $B_{1}<B_{2}$ holds $B_{1} \cap B_{2} \cap \mathbb{N}=\emptyset$.
(35) For all finite natural-membered sets B_{1}, B_{2} such that $B_{1}<B_{2}$ holds B_{1} misses B_{2}.
(36) For all sets A, B_{1}, B_{2} such that $B_{1}<B_{2}$ holds $A \cap B_{1}<A \cap B_{2}$.
(37) For all finite natural-membered sets X, Y such that $Y \neq \emptyset$ and there exists a set x such that $x \in X$ and $\{x\} \leq Y$ holds $\left(\operatorname{Sgm}_{0} X\right)(0) \leq$ $\left(\operatorname{Sgm}_{0} Y\right)(0)$.
(38) Let X_{0}, Y_{0} be finite natural-membered sets and i be a natural number. If $X_{0}<Y_{0}$ and $i<\operatorname{card} X_{0}$, then $\operatorname{rng}\left(\operatorname{Sgm}_{0}\left(X_{0} \cup Y_{0}\right) \upharpoonright \operatorname{card} X_{0}\right)=X_{0}$ and $\left(\operatorname{Sgm}_{0}\left(X_{0} \cup Y_{0}\right) \upharpoonright \operatorname{card} X_{0}\right)(i)=\left(\operatorname{Sgm}_{0}\left(X_{0} \cup Y_{0}\right)\right)(i)$.
(39) For all finite natural-membered sets X, Y and for every natural number i such that $X<Y$ and $i \in \overline{\bar{X}}$ holds $\left(\operatorname{Sgm}_{0}(X \cup Y)\right)(i) \in X$.
(40) Let X, Y be finite natural-membered sets and i be a natural number. If $X<Y$ and $i<\operatorname{len} \operatorname{Sgm}_{0} X$, then $\left(\operatorname{Sgm}_{0} X\right)(i)=\left(\operatorname{Sgm}_{0}(X \cup Y)\right)(i)$.
(41) Let X_{0}, Y_{0} be finite natural-membered sets and i be a natural number. If $X_{0}<Y_{0}$ and $i<\operatorname{card} Y_{0}$, then $\operatorname{rng}\left(\left(\operatorname{Sgm}_{0}\left(X_{0} \cup Y_{0}\right)\right)_{\mid \operatorname{card} X_{0}}\right)=Y_{0}$ and $\left(\operatorname{Sgm}_{0}\left(X_{0} \cup Y_{0}\right)\right)_{\mid c a r d} X_{0}(i)=\left(\operatorname{Sgm}_{0}\left(X_{0} \cup Y_{0}\right)\right)\left(i+\operatorname{card} X_{0}\right)$.
(42) Let X, Y be finite natural-membered sets and i be a natural number. If $X<Y$ and $i<\operatorname{len} \operatorname{Sgm}_{0} Y$, then $\left(\operatorname{Sgm}_{0} Y\right)(i)=\left(\operatorname{Sgm}_{0}(X \cup Y)\right)(i+$ len $\left.\operatorname{Sgm}_{0} X\right)$.
(43) For all finite natural-membered sets X, Y such that $Y \neq \emptyset$ and $X<Y$ holds $\left(\operatorname{Sgm}_{0} Y\right)(0)=\left(\operatorname{Sgm}_{0}(X \cup Y)\right)\left(\operatorname{len} \operatorname{Sgm}_{0} X\right)$.
(44) Let l, m, n, k be natural numbers and X be a finite natural-membered set. If $k<l$ and $m<\operatorname{len} \operatorname{Sgm}_{0} X$ and $\left(\operatorname{Sgm}_{0} X\right)(m)=k$ and $\left(\operatorname{Sgm}_{0} X\right)(n)=l$, then $m<n$.
(45) For all finite natural-membered sets X, Y such that $X \neq \emptyset$ and $X<Y$ holds $\left(\operatorname{Sgm}_{0} X\right)(0)=\left(\operatorname{Sgm}_{0}(X \cup Y)\right)(0)$.
(46) For all finite natural-membered sets X, Y holds $X<Y$ iff $\operatorname{Sgm}_{0}(X \cup$ $Y)=\left(\operatorname{Sgm}_{0} X\right)^{\wedge} \operatorname{Sgm}_{0} Y$.
Let f be a finite 0 -sequence and let B be a set. The B-subsequence of f yields a finite 0 -sequence and is defined as follows:
(Def. 8) The B-subsequence of $f=f \cdot \operatorname{Sgm}_{0}(B \cap \operatorname{len} f)$.
One can prove the following proposition
(47) Let f be a finite 0 -sequence and B be a set. Then
(i) len (the B-subsequence of $f)=\overline{\overline{B \cap \operatorname{len} f}}$, and
(ii) for every natural number i such that $i<\operatorname{len}$ (the B-subsequence of f) holds (the B-subsequence of $f)(i)=f\left(\left(\operatorname{Sgm}_{0}(B \cap \operatorname{len} f)\right)(i)\right)$.

Let D be a set, let f be a finite 0 -sequence of D, and let B be a set. Then the B-subsequence of f is a finite 0 -sequence of D.

Let f be a finite 0 -sequence. One can verify that the \emptyset-subsequence of f is empty.

Let B be a set. Observe that the B-subsequence of \emptyset is empty.
We now state the proposition
(48) Let B_{1}, B_{2} be finite natural-membered sets and f be a finite 0 -sequence of \mathbb{R}. Suppose $B_{1}<B_{2}$. Then \sum the $B_{1} \cup B_{2}$-subsequence of $f=\left(\sum\right.$ the B_{1}-subsequence of $\left.f\right)+\sum$ the B_{2}-subsequence of f.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. Increasing and continuous ordinal sequences. Formalized Mathematics, 1(4):711-714, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[7] Paul R. Halmos. Lectures on Ergodic Theory. The Mathematical Society of Japan, 1956. No. 3 .
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, $1(\mathbf{1}): 35-40,1990$.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Karol Pa̧k. Cardinal numbers and finite sets. Formalized Mathematics, 13(3):399-406, 2005.
[11] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341347, 2003.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[13] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
[14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, $1(\mathbf{1}): 73-83,1990$.

Received June 27, 2008

