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Poland

Summary. The paper is concerned with a generalization of concepts intro-
duced in [13], i.e. introduced are matrices of linear transformations over a finite-
dimensional vector space. Introduced are linear transformations over a finite-
dimensional vector space depending on a given matrix of the transformation.
Finally, I prove that the rank of linear transformations over a finite-dimensional
vector space is the same as the rank of the matrix of that transformation.
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The notation and terminology used here are introduced in the following papers:
[24], [2], [3], [9], [25], [6], [8], [7], [4], [23], [19], [12], [10], [27], [28], [26], [22], [20],
[18], [29], [5], [15], [13], [17], [11], [14], [21], [1], and [16].

1. Preliminaries

We adopt the following rules: i, j, m, n are natural numbers, K is a field,
and a is an element of K.
One can prove the following propositions:

(1) Let V be a vector space over K,W1,W2,W12 be subspaces of V , and U1,
U2 be subspaces ofW12. If U1 =W1 and U2 =W2, thenW1∩W2 = U1∩U2
and W1 +W2 = U1 + U2.

(2) Let V be a vector space over K and W1, W2 be subspaces of V . Suppose
W1∩W2 = 0V . Let B1 be a linearly independent subset ofW1 and B2 be a
linearly independent subset of W2. Then B1∪B2 is a linearly independent
subset of W1 +W2.
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(3) Let V be a vector space over K and W1, W2 be subspaces of V . Suppose
W1 ∩W2 = 0V . Let B1 be a basis of W1 and B2 be a basis of W2. Then
B1 ∪B2 is a basis of W1 +W2.

(4) For every finite dimensional vector space V over K holds every ordered
basis of ΩV is an ordered basis of V .

(5) Let V1 be a vector space over K and A be a finite subset of V1. If
dim(Lin(A)) = cardA, then A is linearly independent.

(6) For every vector space V over K and for every finite subset A of V holds
dim(Lin(A)) ≤ cardA.

2. More on the Product of Finite Sequence of Scalars and
Vectors

For simplicity, we follow the rules: V1, V2, V3 are finite dimensional vector
spaces over K, f is a function from V1 into V2, b1, b′1 are ordered bases of V1,
B1 is a finite sequence of elements of V1, b2 is an ordered basis of V2, B2 is a
finite sequence of elements of V2, B3 is a finite sequence of elements of V3, v1,
w1 are elements of V1, R, R1, R2 are finite sequences of elements of V1, and p,
p1, p2 are finite sequences of elements of K.
We now state a number of propositions:

(7) lmlt(p1 + p2, R) = lmlt(p1, R) + lmlt(p2, R).

(8) lmlt(p,R1 +R2) = lmlt(p,R1) + lmlt(p,R2).

(9) If len p1 = lenR1 and len p2 = lenR2, then lmlt(p1 a p2, R1
a R2) =

(lmlt(p1, R1)) a lmlt(p2, R2).

(10) If lenR1 = lenR2, then
∑
(R1 +R2) = (

∑
R1) +

∑
R2.

(11)
∑
lmlt(lenR 7→ a,R) = a ·

∑
R.

(12)
∑
lmlt(p, len p 7→ v1) = (

∑
p) · v1.

(13)
∑
lmlt(a · p,R) = a ·

∑
lmlt(p,R).

(14) Let B1 be a finite sequence of elements of V1, W1 be a subspace of
V1, and B2 be a finite sequence of elements of W1. If B1 = B2, then
lmlt(p,B1) = lmlt(p,B2).

(15) Let B1 be a finite sequence of elements of V1,W1 be a subspace of V1, and
B2 be a finite sequence of elements ofW1. If B1 = B2, then

∑
B1 =

∑
B2.

(16) If i ∈ domR, then
∑
lmlt(Line(I lenR×lenRK , i), R) = Ri.

3. More on the Decomposition of a Vector in a Basis

We now state a number of propositions:

(17) v1 + w1 → b1 = (v1 → b1) + (w1 → b1).
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(18) a · v1 → b1 = a · (v1 → b1).
(19) If i ∈ dom b1, then (b1)i → b1 = Line(I len b1×len b1K , i).

(20) 0(V1) → b1 = len b1 7→ 0K .
(21) len b1 = dim(V1).

(22)(i) rng(b1�m) is a linearly independent subset of V1, and
(ii) for every subset A of V1 such that A = rng(b1�m) holds b1�m is an
ordered basis of Lin(A).

(23)(i) rng((b1)�m) is a linearly independent subset of V1, and
(ii) for every subset A of V1 such that A = rng((b1)�m) holds (b1)�m is an
ordered basis of Lin(A).

(24) Let W1, W2 be subspaces of V1. Suppose W1 ∩W2 = 0(V1). Let b1 be an
ordered basis of W1, b2 be an ordered basis of W2, and b be an ordered
basis of W1+W2. Suppose b = b1a b2. Let v, v1, v2 be vectors of W1+W2,
w1 be a vector ofW1, and w2 be a vector ofW2. If v = v1+v2 and v1 = w1
and v2 = w2, then v → b = (w1 → b1) a (w2 → b2).

(25) Let W1 be a subspace of V1. Suppose W1 = Ω(V1). Let w be a vector of
W1, v be a vector of V1, and w1 be an ordered basis of W1. If v = w and
b1 = w1, then v → b1 = w → w1.

(26) Let W1, W2 be subspaces of V1. Suppose W1 ∩W2 = 0(V1). Let w1 be an
ordered basis of W1 and w2 be an ordered basis of W2. Then w1 a w2 is
an ordered basis of W1 +W2.

4. Properties of Matrices of Linear Transformations

Let us consider K, V1, V2, f , B1, b2. Then AutMt(f,B1, b2) is a matrix over
K of dimension lenB1 × len b2.
Let S be a 1-sorted structure and let R be a binary relation. The functor

R�S is defined as follows:

(Def. 1) R�S = R�the carrier of S.

The following proposition is true

(27) Let f be a linear transformation from V1 to V2, W1, W2 be subspaces
of V1, and U1, U2 be subspaces of V2. Suppose if dim(W1) = 0, then
dim(U1) = 0 and if dim(W2) = 0, then dim(U2) = 0 and V2 is the direct
sum of U1 and U2. Let f1 be a linear transformation from W1 to U1 and
f2 be a linear transformation from W2 to U2. Suppose f1 = f�W1 and
f2 = f�W2. Let w1 be an ordered basis of W1, w2 be an ordered basis
of W2, u1 be an ordered basis of U1, and u2 be an ordered basis of U2.
Suppose w1 a w2 = b1 and u1 a u2 = b2. Then AutMt(f, b1, b2) = the
0K-block diagonal of 〈AutMt(f1, w1, u1),AutMt(f2, w2, u2)〉.
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Let us consider K, V1, V2, let f be a function from V1 into V2, let B1 be a
finite sequence of elements of V1, and let b2 be an ordered basis of V2. Let us
assume that lenB1 = len b2. The functor AutEqMt(f,B1, b2) yielding a matrix
over K of dimension lenB1 × lenB1 is defined by:
(Def. 2) AutEqMt(f,B1, b2) = AutMt(f,B1, b2).

The following propositions are true:

(28) AutMt(id(V1), b1, b1) = I
len b1×len b1
K .

(29) AutEqMt(id(V1), b1, b
′
1) is invertible and AutEqMt(id(V1), b

′
1, b1) =

(AutEqMt(id(V1), b1, b
′
1))

`.

(30) If len p1 = len p2 and len p1 = lenB1 and len p1 > 0 and j ∈ dom b1
and for every i such that i ∈ dom p2 holds p2(i) = ((B1)i → b1)(j), then
p1 · p2 = (

∑
lmlt(p1, B1)→ b1)(j).

(31) If len b1 > 0 and f is linear, then LineVec2Mx(v1 → b1) ·
AutMt(f, b1, b2) = LineVec2Mx(f(v1)→ b2).

5. Linear Transformations of Matrices

Let us consider K, V1, V2, b1, B2 and letM be a matrix over K of dimension
len b1 × lenB2. The functor Mx2Tran(M, b1, B2) yielding a function from V1 into
V2 is defined by:

(Def. 3) For every vector v of V1 holds (Mx2Tran(M, b1, B2))(v) =∑
lmlt(Line(LineVec2Mx(v → b1) ·M, 1), B2).

Next we state two propositions:

(32) For every matrix M over K of dimension len b1 × len b2 such
that len b1 > 0 holds LineVec2Mx((Mx2Tran(M, b1, b2))(v1) → b2) =
LineVec2Mx(v1 → b1) ·M.

(33) For every matrix M over K of dimension len b1 × lenB2 such that
len b1 = 0 holds (Mx2Tran(M, b1, B2))(v1) = 0(V2).

Let us consider K, V1, V2, b1, B2 and letM be a matrix over K of dimension
len b1 × lenB2. Then Mx2Tran(M, b1, B2) is a linear transformation from V1 to
V2.
Next we state three propositions:

(34) If f is linear, then Mx2Tran(AutMt(f, b1, b2), b1, b2) = f.

(35) For all matrices A, B over K such that i ∈ domA and widthA = lenB
holds LineVec2MxLine(A, i) ·B = LineVec2MxLine(A ·B, i).

(36) For every matrix M over K of dimension len b1 × len b2 holds
AutMt(Mx2Tran(M, b1, b2), b1, b2) =M.

Let us consider n, m, K, let A be a matrix over K of dimension n × m, and
let B be a matrix over K. Then A+B is a matrix over K of dimension n × m.
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The following propositions are true:

(37) For all matrices A, B over K of dimension len b1 × lenB2 holds
Mx2Tran(A+B, b1, B2) = Mx2Tran(A, b1, B2) +Mx2Tran(B, b1, B2).

(38) For every matrix A over K of dimension len b1 × lenB2 holds a ·
Mx2Tran(A, b1, B2) = Mx2Tran(a ·A, b1, B2).

(39) For all matrices A, B over K of dimension len b1 × len b2 such that
Mx2Tran(A, b1, b2) = Mx2Tran(B, b1, b2) holds A = B.

(40) Let A be a matrix over K of dimension len b1 × len b2 and B be a
matrix over K of dimension len b2 × lenB3. Suppose widthA = lenB. Let
A1 be a matrix over K of dimension len b1 × lenB3. If A1 = A · B, then
Mx2Tran(A1, b1, B3) = Mx2Tran(B, b2, B3) ·Mx2Tran(A, b1, b2).

(41) Let A be a matrix overK of dimension len b1 × len b2. Suppose len b1 > 0
and len b2 > 0. Then v1 ∈ kerMx2Tran(A, b1, b2) if and only if v1 → b1 ∈
the space of solutions of AT.

(42) V1 is trivial iff dim(V1) = 0.

(43) Let V1, V2 be vector spaces over K and f be a linear transformation
from V1 to V2. Then f is one-to-one if and only if ker f = 0(V1).

Let us consider K and let V1 be a vector space over K. Then id(V1) is a linear
transformation from V1 to V1.
Let us consider K, let V1, V2 be vector spaces over K, and let f , g be linear

transformations from V1 to V2. Then f + g is a linear transformation from V1
to V2.
Let us consider K, let V1, V2 be vector spaces over K, let f be a linear

transformation from V1 to V2, and let us consider a. Then a · f is a linear
transformation from V1 to V2.
Let us consider K, let V1, V2, V3 be vector spaces over K, let f3 be a linear

transformation from V1 to V2, and let f4 be a linear transformation from V2 to
V3. Then f4 · f3 is a linear transformation from V1 to V3.
One can prove the following propositions:

(44) For every matrix A overK of dimension len b1 × len b2 such that rk(A) =
len b1 holds Mx2Tran(A, b1, b2) is one-to-one.

(45) MX2FinS(In×nK ) is an ordered basis of the n-dimension vector space over
K.

(46) Let M be an ordered basis of the len b2-dimension vector space over K.
Suppose M = MX2FinS(I len b2×len b2K ). Let v1 be a vector of the len b2-
dimension vector space over K. Then v1 →M = v1.

(47) Let M be an ordered basis of the len b2-dimension vector space over
K. Suppose M = MX2FinS(I len b2×len b2K ). Let A be a matrix over K of
dimension len b1 × lenM. If A = AutMt(f, b1, b2) and f is linear, then
(Mx2Tran(A, b1,M))(v1) = f(v1)→ b2.
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Let K be an add-associative right zeroed right complementable Abelian as-
sociative well unital distributive non empty double loop structure, let V1, V2
be Abelian add-associative right zeroed right complementable vector space-like
non empty vector space structures over K, let W be a subspace of V1, and let
f be a function from V1 into V2. Then f�W is a function from W into V2.
Let K be a field, let V1, V2 be vector spaces over K, let W be a subspace

of V1, and let f be a linear transformation from V1 to V2. Then f�W is a linear
transformation from W to V2.

6. The Main Theorems

The following propositions are true:

(48) For every linear transformation f from V1 to V2 holds rank f =
rk(AutMt(f, b1, b2)).

(49) For every matrix M over K of dimension len b1 × len b2 holds
rankMx2Tran(M, b1, b2) = rk(M).

(50) For every linear transformation f from V1 to V2 such that dim(V1) =
dim(V2) holds ker f is non trivial iff DetAutEqMt(f, b1, b2) = 0K .

(51) Let f be a linear transformation from V1 to V2 and g be a linear trans-
formation from V2 to V3. If g� im f is one-to-one, then rank(g ·f) = rank f
and nullity(g · f) = nullity f.
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