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Poland

Summary. In this paper I present basic properties of block diagonal matri-
ces over a set. In my approach the finite sequence of matrices in a block diagonal
matrix is not restricted to square matrices. Moreover, the off-diagonal blocks
need not be zero matrices, but also with another arbitrary fixed value.
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The papers [19], [1], [2], [6], [7], [3], [17], [16], [12], [5], [8], [9], [20], [13], [18],
[21], [4], [14], [15], [11], and [10] provide the terminology and notation for this
paper.

1. Preliminaries

For simplicity, we adopt the following rules: i, j, m, n, k denote natural
numbers, x denotes a set, K denotes a field, a, a1, a2 denote elements of K, D
denotes a non empty set, d, d1, d2 denote elements of D, M , M1, M2 denote
matrices over D, A, A1, A2, B1, B2 denote matrices over K, and f , g denote
finite sequences of elements of N.
One can prove the following propositions:

(1) Let K be a non empty additive loop structure and f1, f2, g1, g2 be finite
sequences of elements of K. If len f1 = len f2, then (f1 + f2) a (g1 + g2) =
f1

a g1 + f2 a g2.

(2) For all finite sequences f , g of elements of D such that i ∈ dom f holds
(f a g)�i = (f�i) a g.

(3) For all finite sequences f , g of elements of D such that i ∈ dom g holds
(f a g)�i+len f = f a (g�i).

259
c© 2008 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://fm.mizar.org/miz/matrixj1.miz
http://ftp.mizar.org/


260 karol pąk

(4) If i ∈ Seg(n+ 1), then ((n+ 1) 7→ d)�i = n 7→ d.
(5)

∏
(n 7→ a) = powerK(a, n).

Let us consider f and let i be a natural number. Let us assume that i ∈
Seg(
∑
f). The functor min(f, i) yielding an element of N is defined by:

(Def. 1) i ≤
∑
f�min(f, i) and min(f, i) ∈ dom f and for every j such that

i ≤
∑
f�j holds min(f, i) ≤ j.

One can prove the following propositions:

(6) If i ∈ dom f and f(i) 6= 0, then min(f,
∑
f�i) = i.

(7) If i ∈ Seg(
∑
f), then min(f, i)−′ 1 = min(f, i)−1 and

∑
f�(min(f, i)−′

1) < i.

(8) If i ∈ Seg(
∑
f), then min(f a g, i) = min(f, i).

(9) If i ∈ Seg((
∑
f)+
∑
g)\Seg(

∑
f), then min(f ag, i) = min(g, i−′

∑
f)+

len f and i−′
∑
f = i−

∑
f.

(10) If i ∈ dom f and j ∈ Seg(fi), then j +
∑
f�(i −′ 1) ∈ Seg(

∑
f�i) and

min(f, j +
∑
f�(i−′ 1)) = i.

(11) For all i, j such that i ≤ len f and j ≤ len f and
∑
f�i =

∑
f�j and if

i ∈ dom f, then f(i) 6= 0 and if j ∈ dom f, then f(j) 6= 0 holds i = j.

2. Finite Sequences of Matrices

Let us consider D and let F be a finite sequence of elements of (D∗)∗. We
say that F is matrix-yielding if and only if:

(Def. 2) For every i such that i ∈ domF holds F (i) is a matrix over D.
Let us consider D. Observe that there exists a finite sequence of elements of

(D∗)∗ which is matrix-yielding.
Let us consider D. A finite sequence of matrices over D is a matrix-yielding

finite sequence of elements of (D∗)∗.
Let us consider K. A finite sequence of matrices over K is a matrix-yielding

finite sequence of elements of ((the carrier of K)∗)∗.
We now state the proposition

(12) ∅ is a finite sequence of matrices over D.
We adopt the following rules: F , F1, F2 are finite sequences of matrices over

D and G, G′, G1, G2 are finite sequences of matrices over K.
Let us consider D, F , x. Then F (x) is a matrix over D.
Let us consider D, F1, F2. Then F1 a F2 is a finite sequence of matrices over

D.
Let us consider D, M1. Then 〈M1〉 is a finite sequence of matrices over D.

Let us consider M2. Then 〈M1,M2〉 is a finite sequence of matrices over D.
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Let us consider D, F , n. Then F �n is a finite sequence of matrices over D.
Then F�n is a finite sequence of matrices over D.

3. Sequences of Sizes of Matrices in a Finite Sequence

Let us consider D, F . The functor LenF yielding a finite sequence of ele-
ments of N is defined as follows:
(Def. 3) domLenF = domF and for every i such that i ∈ domLenF holds

(LenF )(i) = lenF (i).

The functor WidthF yields a finite sequence of elements of N and is defined by:
(Def. 4) domWidthF = domF and for every i such that i ∈ domWidthF holds

(WidthF )(i) = widthF (i).

Let us consider D, F . Then LenF is an element of NlenF . Then WidthF is
an element of NlenF .
The following propositions are true:

(13) If
∑
LenF = 0, then

∑
WidthF = 0.

(14) Len(F1 a F2) = (LenF1) a LenF2.

(15) Len〈M〉 = 〈lenM〉.
(16)

∑
Len〈M1,M2〉 = lenM1 + lenM2.

(17) Len(F1�n) = LenF1�n.

(18) Width(F1 a F2) = (WidthF1) aWidthF2.

(19) Width〈M〉 = 〈widthM〉.
(20)

∑
Width〈M1,M2〉 = widthM1 +widthM2.

(21) Width(F1�n) = WidthF1�n.

4. Block Diagonal Matrices

Let us consider D, let d be an element of D, and let F be a finite sequence
of matrices over D. The d-block diagonal of F is a matrix over D and is defined
by the conditions (Def. 5).

(Def. 5)(i) len (the d-block diagonal of F ) =
∑
LenF,

(ii) width (the d-block diagonal of F ) =
∑
WidthF, and

(iii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of the d-
block diagonal of F holds if j ≤

∑
WidthF �(min(LenF, i) −′

1) or j >
∑
WidthF �min(LenF, i), then (the d-block diagonal

of F )i,j = d and if
∑
WidthF �(min(LenF, i) −′ 1) < j ≤∑

WidthF �min(LenF, i), then (the d-block diagonal of F )i,j =
F (min(LenF, i))i−′

∑
LenF �(min(LenF,i)−′1),j−′

∑
WidthF �(min(LenF,i)−′1).
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Let us consider D, let d be an element of D, and let F be a finite sequence of
matrices over D. Then the d-block diagonal of F is a matrix over D of dimension∑
LenF ×

∑
WidthF.

Next we state a number of propositions:

(22) For every finite sequence F of matrices over D such that F = ∅ holds
the d-block diagonal of F = ∅.

(23) LetM be a matrix over D of dimension
∑
Len〈M1,M2〉 ×

∑
Width〈M1,

M2〉. ThenM = the d-block diagonal of 〈M1,M2〉 if and only if for every i
holds if i ∈ domM1, then Line(M, i) = Line(M1, i) a (widthM2 7→ d) and
if i ∈ domM2, then Line(M, i+ lenM1) = (widthM1 7→ d) a Line(M2, i).

(24) LetM be a matrix over D of dimension
∑
Len〈M1,M2〉 ×

∑
Width〈M1,

M2〉. Then M = the d-block diagonal of 〈M1,M2〉 if and only if for every
i holds if i ∈ SegwidthM1, then M�,i = ((M1)�,i) a (lenM2 7→ d) and if
i ∈ SegwidthM2, then M�,i+widthM1 = (lenM1 7→ d) a ((M2)�,i).

(25) The indices of the d1-block diagonal of F1 is a subset of the indices of
the d2-block diagonal of F1 a F2.

(26) Suppose 〈〈i, j〉〉 ∈ the indices of the d-block diagonal of F1. Then (the
d-block diagonal of F1)i,j = (the d-block diagonal of F1 a F2)i,j .

(27) 〈〈i, j〉〉 ∈ the indices of the d1-block diagonal of F2 if and only if i > 0 and
j > 0 and 〈〈i +

∑
LenF1, j +

∑
WidthF1〉〉 ∈ the indices of the d2-block

diagonal of F1 a F2.

(28) Suppose 〈〈i, j〉〉 ∈ the indices of the d-block diagonal of F2. Then
(the d-block diagonal of F2)i,j = (the d-block diagonal of F1 a

F2)i+
∑
LenF1,j+

∑
WidthF1 .

(29) Suppose 〈〈i, j〉〉 ∈ the indices of the d-block diagonal of F1 a F2 but
i ≤
∑
LenF1 and j >

∑
WidthF1 or i >

∑
LenF1 and j ≤

∑
WidthF1.

Then (the d-block diagonal of F1 a F2)i,j = d.

(30) Let given i, j, k. Suppose i ∈ domF and 〈〈j, k〉〉 ∈ the indices of F (i).
Then
(i) 〈〈j +

∑
LenF �(i −′ 1), k +

∑
WidthF �(i −′ 1)〉〉 ∈ the indices of the

d-block diagonal of F , and
(ii) F (i)j,k = (the d-block diagonal of F )j+

∑
LenF �(i−′1),k+

∑
WidthF �(i−′1).

(31) If i ∈ domF, then F (i) = Segm(the d-block diagonal
of F , Seg(

∑
LenF �i) \ Seg(

∑
LenF �(i −′ 1)),Seg(

∑
WidthF �i) \

Seg(
∑
WidthF �(i−′ 1))).

(32) M = Segm(the d-block diagonal of 〈M〉 a F,Seg lenM,SegwidthM).

(33) M = Segm(the d-block diagonal of F a 〈M〉,Seg(lenM +
∑
LenF ) \

Seg(
∑
LenF ),Seg(widthM +

∑
WidthF ) \ Seg(

∑
WidthF )).

(34) The d-block diagonal of 〈M〉 =M.
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(35) The d-block diagonal of F1 a F2 = the d-block diagonal of 〈the d-block
diagonal of F1〉 a F2.

(36) The d-block diagonal of F1 a F2 = the d-block diagonal of F1 a 〈the
d-block diagonal of F2〉.

(37) If i ∈ Seg(
∑
LenF ) and m = min(LenF, i), then Line(the d-block

diagonal of F , i) = ((
∑
Width(F �(m −′ 1))) 7→ d) a Line(F (m), i −′∑

Len(F �(m−′ 1))) a (((
∑
WidthF )−′

∑
Width(F �m)) 7→ d).

(38) If i ∈ Seg(
∑
WidthF ) and m = min(WidthF, i), then (the

d-block diagonal of F )�,i = ((
∑
Len(F �(m −′ 1))) 7→ d) a

(F (m)�,i−′
∑
Width(F �(m−′1)))

a (((
∑
LenF )−′

∑
Len(F �m)) 7→ d).

(39) Let M1, M2, N1, N2 be matrices over D. Suppose lenM1 = lenN1 and
widthM1 = widthN1 and lenM2 = lenN2 and widthM2 = widthN2 and
the d1-block diagonal of 〈M1,M2〉 = the d2-block diagonal of 〈N1, N2〉.
Then M1 = N1 and M2 = N2.

(40) Suppose M = ∅. Then
(i) the d-block diagonal of F a 〈M〉 = the d-block diagonal of F , and
(ii) the d-block diagonal of 〈M〉 a F = the d-block diagonal of F .

(41) Suppose i ∈ domA and widthA = width (the deleting of i-row in A).
Then the deleting of i-row in the a-block diagonal of 〈A〉aG = the a-block
diagonal of 〈the deleting of i-row in A〉 a G.

(42) Suppose i ∈ domA and widthA = width (the deleting of i-row in A).
Then the deleting of (

∑
LenG)+i-row in the a-block diagonal of Ga〈A〉 =

the a-block diagonal of G a 〈the deleting of i-row in A〉.
(43) Suppose i ∈ SegwidthA. Then the deleting of i-column in the a-block
diagonal of 〈A〉 aG = the a-block diagonal of 〈the deleting of i-column in
A〉 a G.

(44) Suppose i ∈ SegwidthA. Then the deleting of i+
∑
WidthG-column in

the a-block diagonal of Ga 〈A〉 = the a-block diagonal of Ga 〈the deleting
of i-column in A〉.
Let us consider D and let F be a finite sequence of elements of (D∗)∗. We

say that F is square-matrix-yielding if and only if:

(Def. 6) For every i such that i ∈ domF there exists n such that F (i) is a square
matrix over D of dimension n.

Let us consider D. One can verify that there exists a finite sequence of
elements of (D∗)∗ which is square-matrix-yielding.
Let us consider D. Observe that every finite sequence of elements of (D∗)∗

which is square-matrix-yielding is also matrix-yielding.
Let us consider D. A finite sequence of square-matrices over D is a square-

matrix-yielding finite sequence of elements of (D∗)∗.
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Let us consider K. A finite sequence of square-matrices over K is a square-
matrix-yielding finite sequence of elements of ((the carrier of K)∗)∗.
We use the following convention: S, S1, S2 denote finite sequences of square-

matrices over D and R, R1, R2 denote finite sequences of square-matrices over
K.
One can prove the following proposition

(45) ∅ is a finite sequence of square-matrices over D.
Let us consider D, S, x. Then S(x) is a square matrix over D of dimension

lenS(x).
Let us consider D, S1, S2. Then S1aS2 is a finite sequence of square-matrices

over D.
Let us consider D, n and let M1 be a square matrix over D of dimension n.

Then 〈M1〉 is a finite sequence of square-matrices over D.
Let us consider D, n, m, let M1 be a square matrix over D of dimension

n, and let M2 be a square matrix over D of dimension m. Then 〈M1,M2〉 is a
finite sequence of square-matrices over D.
Let us consider D, S, n. Then S�n is a finite sequence of square-matrices

over D. Then S�n is a finite sequence of square-matrices over D.
The following proposition is true

(46) LenS = WidthS.

Let us consider D, let d be an element of D, and let S be a finite sequence
of square-matrices over D. Then the d-block diagonal of S is a square matrix
over D of dimension

∑
LenS.

One can prove the following propositions:

(47) Let A be a square matrix over K of dimension n. Suppose i ∈ domA
and j ∈ Seg n. Then the deleting of i-row and j-column in the a-block
diagonal of 〈A〉 a R = the a-block diagonal of 〈the deleting of i-row and
j-column in A〉 a R.

(48) Let A be a square matrix over K of dimension n. Suppose i ∈ domA and
j ∈ Seg n. Then the deleting of i+

∑
LenR-row and j +

∑
LenR-column

in the a-block diagonal of R a 〈A〉 = the a-block diagonal of R a 〈the
deleting of i-row and j-column in A〉.
Let us consider K, R. The functor DetR yielding a finite sequence of ele-

ments of K is defined as follows:

(Def. 7) domDetR = domR and for every i such that i ∈ domDetR holds
(DetR)(i) = DetR(i).

Let us consider K, R. Then DetR is an element of (the carrier of K)lenR.
In the sequel N denotes a square matrix over K of dimension n and N1

denotes a square matrix over K of dimension m.
The following propositions are true:
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(49) Det〈N〉 = 〈DetN〉.
(50) Det(R1 a R2) = (DetR1) a DetR2.

(51) Det(R�n) = DetR�n.

(52) Det (the 0K-block diagonal of 〈N,N1〉) = DetN ·DetN1.
(53) Det (the 0K-block diagonal of R) =

∏
DetR.

(54) If lenA1 6= widthA1 and N = the 0K-block diagonal of 〈A1, A2〉, then
DetN = 0K .

(55) Suppose LenG 6= WidthG. Let M be a square matrix over K of dimen-
sion n. If M = the 0K-block diagonal of G, then DetM = 0K .

5. An Example of a Finite Sequence of Matrices

Let us considerK and let f be a finite sequence of elements of N. The functor
If×fK yielding a finite sequence of square-matrices over K is defined by:

(Def. 8) dom(If×fK ) = dom f and for every i such that i ∈ dom(If×fK ) holds

If×fK (i) = If(i)×f(i)K .

The following propositions are true:

(56) Len(If×fK ) = f and Width(If×fK ) = f.

(57) For every element i of N holds I〈i〉×〈i〉K = 〈Ii×iK 〉.

(58) I(f
ag)×(fag)

K = (If×fK ) a Ig×gK .

(59) I(f�n)×(f�n)K = If×fK �n.

(60) The 0K-block diagonal of 〈Ii×iK , I
j×j
K 〉 = I

(i+j)×(i+j)
K .

(61) The 0K-block diagonal of I
f×f
K = I

(
∑
f)×(
∑
f)

K .

In the sequel p, p1 are finite sequences of elements of K.

6. Operations on a Finite Sequence of Matrices

Let us consider K, G, p. The functor p • G yielding a finite sequence of
matrices over K is defined as follows:

(Def. 9) dom(p • G) = domG and for every i such that i ∈ dom(p • G) holds
(p •G)(i) = pi ·G(i).
Let us consider K and let us consider R, p. Then p • R is a finite sequence

of square-matrices over K.
The following propositions are true:

(62) Len(p •G) = LenG and Width(p •G) = WidthG.
(63) p • 〈A〉 = 〈p1 ·A〉.
(64) If lenG = len p and lenG1 ≤ len p1, then pap1•GaG1 = (p•G)a(p1•G1).
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(65) a·the a1-block diagonal ofG = the (a·a1)-block diagonal of lenG 7→ a•G.
Let us consider K and let G1, G2 be finite sequences of matrices over K.

The functor G1 ⊕G2 yields a finite sequence of matrices over K and is defined
by:

(Def. 10) dom(G1 ⊕ G2) = domG1 and for every i such that i ∈ dom(G1 ⊕ G2)
holds (G1 ⊕G2)(i) = G1(i) +G2(i).
Let us consider K and let us consider R, G. Then R⊕G is a finite sequence

of square-matrices over K.
The following propositions are true:

(66) Len(G1 ⊕G2) = LenG1 and Width(G1 ⊕G2) = WidthG1.
(67) If lenG = lenG′, then G a G1 ⊕G′ a G2 = (G⊕G′) a (G1 ⊕G2).
(68) 〈A〉 ⊕G = 〈A+G(1)〉.
(69) 〈A1〉 ⊕ 〈A2〉 = 〈A1 +A2〉.
(70) 〈A1, B1〉 ⊕ 〈A2, B2〉 = 〈A1 +A2, B1 +B2〉.
(71) Suppose lenA1 = lenB1 and lenA2 = lenB2 and widthA1 = widthB1
and widthA2 = widthB2. Then (the a1-block diagonal of 〈A1, A2〉)+ (the
a2-block diagonal of 〈B1, B2〉) = the (a1+a2)-block diagonal of 〈A1, A2〉⊕
〈B1, B2〉.

(72) Suppose LenR1 = LenR2 and WidthR1 = WidthR2. Then (the a1-
block diagonal of R1)+(the a2-block diagonal of R2) = the (a1+a2)-block
diagonal of R1 ⊕R2.
Let us consider K and let G1, G2 be finite sequences of matrices over K.

The functor G1G2 yielding a finite sequence of matrices over K is defined by:

(Def. 11) dom(G1G2) = domG1 and for every i such that i ∈ dom(G1G2) holds
(G1G2)(i) = G1(i) ·G2(i).
Next we state several propositions:

(73) If WidthG1 = LenG2, then Len(G1G2) = LenG1 and Width(G1G2) =
WidthG2.

(74) If lenG = lenG′, then (G a G1) (G′ a G2) = (GG′) a (G1G2).

(75) 〈A〉G = 〈A ·G(1)〉.
(76) 〈A1〉 〈A2〉 = 〈A1 ·A2〉.
(77) 〈A1, B1〉 〈A2, B2〉 = 〈A1 ·A2, B1 ·B2〉.
(78) Suppose widthA1 = lenB1 and widthA2 = lenB2. Then (the 0K-block
diagonal of 〈A1, A2〉) · (the 0K-block diagonal of 〈B1, B2〉) = the 0K-block
diagonal of 〈A1, A2〉 〈B1, B2〉.

(79) If WidthR1 = LenR2, then (the 0K-block diagonal of R1)·(the 0K-block
diagonal of R2) = the 0K-block diagonal of R1 R2.
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