Block Diagonal Matrices

Karol Pąk
Institute of Computer Science
University of Białystok
Poland

Abstract

Summary. In this paper I present basic properties of block diagonal matrices over a set. In my approach the finite sequence of matrices in a block diagonal matrix is not restricted to square matrices. Moreover, the off-diagonal blocks need not be zero matrices, but also with another arbitrary fixed value.

MML identifier: MATRIXJ1, version: $\underline{7.9 .014 .103 .1019}$

The papers [19], [1], [2], [6], [7], [3], [17], [16], [12], [5], [8], [9], [20], [13], [18], [21], [4], [14], [15], [11], and [10] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: i, j, m, n, k denote natural numbers, x denotes a set, K denotes a field, a, a_{1}, a_{2} denote elements of K, D denotes a non empty set, d, d_{1}, d_{2} denote elements of D, M, M_{1}, M_{2} denote matrices over $D, A, A_{1}, A_{2}, B_{1}, B_{2}$ denote matrices over K, and f, g denote finite sequences of elements of \mathbb{N}.

One can prove the following propositions:
(1) Let K be a non empty additive loop structure and $f_{1}, f_{2}, g_{1}, g_{2}$ be finite sequences of elements of K. If len $f_{1}=\operatorname{len} f_{2}$, then $\left(f_{1}+f_{2}\right)^{\wedge}\left(g_{1}+g_{2}\right)=$ $f_{1} \wedge g_{1}+f_{2} \wedge g_{2}$.
(2) For all finite sequences f, g of elements of D such that $i \in \operatorname{dom} f$ holds $(f \wedge g)_{\Gamma i}=\left(f_{\mid i}\right)^{\wedge} g$.
(3) For all finite sequences f, g of elements of D such that $i \in \operatorname{dom} g$ holds $(f))_{\mid i+\operatorname{len} f}=f \wedge\left(g_{\mid i}\right)$.
(4) If $i \in \operatorname{Seg}(n+1)$, then $((n+1) \mapsto d)_{\upharpoonright i}=n \mapsto d$.
(5) $\Pi(n \mapsto a)=\operatorname{power}_{K}(a, n)$.

Let us consider f and let i be a natural number. Let us assume that $i \in$ $\operatorname{Seg}\left(\sum f\right)$. The functor $\min (f, i)$ yielding an element of \mathbb{N} is defined by:
(Def. 1) $i \leq \sum f \upharpoonright \min (f, i)$ and $\min (f, i) \in \operatorname{dom} f$ and for every j such that $i \leq \sum f \backslash j$ holds $\min (f, i) \leq j$.
One can prove the following propositions:
(6) If $i \in \operatorname{dom} f$ and $f(i) \neq 0$, then $\min \left(f, \sum f \upharpoonright i\right)=i$.
(7) If $i \in \operatorname{Seg}\left(\sum f\right)$, then $\min (f, i)-^{\prime} 1=\min (f, i)-1$ and $\sum f \upharpoonright\left(\min (f, i)-^{\prime}\right.$ $1)<i$.
(8) If $i \in \operatorname{Seg}\left(\sum f\right)$, then $\min \left(f^{\wedge} g, i\right)=\min (f, i)$.
(9) If $i \in \operatorname{Seg}\left(\left(\sum f\right)+\sum g\right) \backslash \operatorname{Seg}\left(\sum f\right)$, then $\min \left(f^{\wedge} g, i\right)=\min \left(g, i-^{\prime} \sum f\right)+$ len f and $i-^{\prime} \sum f=i-\sum f$.
(10) If $i \in \operatorname{dom} f$ and $j \in \operatorname{Seg}\left(f_{i}\right)$, then $j+\sum f \upharpoonright\left(i-^{\prime} 1\right) \in \operatorname{Seg}\left(\sum f \upharpoonright i\right)$ and $\min \left(f, j+\sum f \upharpoonright\left(i-^{\prime} 1\right)\right)=i$.
(11) For all i, j such that $i \leq \operatorname{len} f$ and $j \leq \operatorname{len} f$ and $\sum f \upharpoonright i=\sum f \upharpoonright j$ and if $i \in \operatorname{dom} f$, then $f(i) \neq 0$ and if $j \in \operatorname{dom} f$, then $f(j) \neq 0$ holds $i=j$.

2. Finite Sequences of Matrices

Let us consider D and let F be a finite sequence of elements of $\left(D^{*}\right)^{*}$. We say that F is matrix-yielding if and only if:
(Def. 2) For every i such that $i \in \operatorname{dom} F$ holds $F(i)$ is a matrix over D.
Let us consider D. Observe that there exists a finite sequence of elements of $\left(D^{*}\right)^{*}$ which is matrix-yielding.

Let us consider D. A finite sequence of matrices over D is a matrix-yielding finite sequence of elements of $\left(D^{*}\right)^{*}$.

Let us consider K. A finite sequence of matrices over K is a matrix-yielding finite sequence of elements of $\left((\text { the carrier of } K)^{*}\right)^{*}$.

We now state the proposition
(12) \emptyset is a finite sequence of matrices over D.

We adopt the following rules: F, F_{1}, F_{2} are finite sequences of matrices over D and $G, G^{\prime}, G_{1}, G_{2}$ are finite sequences of matrices over K.

Let us consider D, F, x. Then $F(x)$ is a matrix over D.
Let us consider D, F_{1}, F_{2}. Then $F_{1} \wedge F_{2}$ is a finite sequence of matrices over D.

Let us consider D, M_{1}. Then $\left\langle M_{1}\right\rangle$ is a finite sequence of matrices over D. Let us consider M_{2}. Then $\left\langle M_{1}, M_{2}\right\rangle$ is a finite sequence of matrices over D.

Let us consider D, F, n. Then $F \upharpoonright n$ is a finite sequence of matrices over D. Then $F_{l n}$ is a finite sequence of matrices over D.

3. Sequences of Sizes of Matrices in a Finite Sequence

Let us consider D, F. The functor Len F yielding a finite sequence of elements of \mathbb{N} is defined as follows:
(Def. 3) domLen $F=\operatorname{dom} F$ and for every i such that $i \in \operatorname{dom} \operatorname{Len} F$ holds $($ Len $F)(i)=\operatorname{len} F(i)$.
The functor Width F yields a finite sequence of elements of \mathbb{N} and is defined by: (Def. 4) dom Width $F=\operatorname{dom} F$ and for every i such that $i \in \operatorname{dom}$ Width F holds $($ Width $F)(i)=$ width $F(i)$.
Let us consider D, F. Then Len F is an element of $\mathbb{N}^{\operatorname{len} F}$. Then Width F is an element of $\mathbb{N}^{\operatorname{len} F}$.

The following propositions are true:
(13) If $\sum \operatorname{Len} F=0$, then \sum Width $F=0$.
(16) $\sum \operatorname{Len}\left\langle M_{1}, M_{2}\right\rangle=\operatorname{len} M_{1}+\operatorname{len} M_{2}$.
(17) $\operatorname{Len}\left(F_{1} \upharpoonright n\right)=\operatorname{Len} F_{1} \upharpoonright n$.
(18) $\operatorname{Width}\left(F_{1} \wedge F_{2}\right)=\left(\text { Width } F_{1}\right)^{\wedge}$ Width F_{2}.
(19) $\operatorname{Width}\langle M\rangle=\langle$ width $M\rangle$.
(20) $\sum \operatorname{Width}\left\langle M_{1}, M_{2}\right\rangle=$ width $M_{1}+$ width M_{2}.
(21) $\operatorname{Width}\left(F_{1} \upharpoonright n\right)=$ Width $F_{1} \upharpoonright n$.

4. Block Diagonal Matrices

Let us consider D, let d be an element of D, and let F be a finite sequence of matrices over D. The d-block diagonal of F is a matrix over D and is defined by the conditions (Def. 5).
(Def. 5)(i) \quad len (the d-block diagonal of $F)=\sum \operatorname{Len} F$,
(ii) \quad width (the d-block diagonal of F) $=\sum \mathrm{Width} F$, and
(iii) for all i, j such that $\langle i, j\rangle \in$ the indices of the d block diagonal of F holds if $j \leq \sum \operatorname{Width} F \upharpoonright\left(\min (\operatorname{Len} F, i)-^{\prime}\right.$ 1) or $j>\sum \operatorname{Width} F \upharpoonright \min (\operatorname{Len} F, i)$, then (the d-block diagonal of $F)_{i, j}=d$ and if $\sum \operatorname{Width} F \upharpoonright\left(\min (\operatorname{Len} F, i)-^{\prime} 1\right)<j \leq$ \sum Width $F \upharpoonright \min (\operatorname{Len} F, i)$, then (the d-block diagonal of $\left.F\right)_{i, j}=$ $F(\min (\operatorname{Len} F, i))_{i-^{\prime}} \sum \operatorname{Len} F \upharpoonright\left(\min (\operatorname{Len} F, i)-^{\prime} 1\right), j-^{\prime} \sum \operatorname{Width} F \upharpoonright\left(\min (\operatorname{Len} F, i)-^{\prime}\right)$.

Let us consider D, let d be an element of D, and let F be a finite sequence of matrices over D. Then the d-block diagonal of F is a matrix over D of dimension \sum Len $F \times \sum$ Width F.

Next we state a number of propositions:
(22) For every finite sequence F of matrices over D such that $F=\emptyset$ holds the d-block diagonal of $F=\emptyset$.
(23) Let M be a matrix over D of dimension $\sum \operatorname{Len}\left\langle M_{1}, M_{2}\right\rangle \times \sum \operatorname{Width}\left\langle M_{1}\right.$, $\left.M_{2}\right\rangle$. Then $M=$ the d-block diagonal of $\left\langle M_{1}, M_{2}\right\rangle$ if and only if for every i holds if $i \in \operatorname{dom} M_{1}$, then $\operatorname{Line}(M, i)=\operatorname{Line}\left(M_{1}, i\right)^{\wedge}\left(\right.$ width $\left.M_{2} \mapsto d\right)$ and if $i \in \operatorname{dom} M_{2}$, then Line $\left(M, i+\operatorname{len} M_{1}\right)=\left(\right.$ width $\left.M_{1} \mapsto d\right) \wedge \operatorname{Line}\left(M_{2}, i\right)$.
(24) Let M be a matrix over D of dimension $\sum \operatorname{Len}\left\langle M_{1}, M_{2}\right\rangle \times \sum \operatorname{Width}\left\langle M_{1}\right.$, $\left.M_{2}\right\rangle$. Then $M=$ the d-block diagonal of $\left\langle M_{1}, M_{2}\right\rangle$ if and only if for every i holds if $i \in \operatorname{Seg}$ width M_{1}, then $M_{\square, i}=\left(\left(M_{1}\right)_{\square, i}\right)^{\wedge}\left(\operatorname{len} M_{2} \mapsto d\right)$ and if $i \in \operatorname{Seg}$ width M_{2}, then $M_{\square, i+\text { width } M_{1}}=\left(\operatorname{len} M_{1} \mapsto d\right) \wedge\left(\left(M_{2}\right)_{\square, i}\right)$.
(25) The indices of the d_{1}-block diagonal of F_{1} is a subset of the indices of the d_{2}-block diagonal of $F_{1} \wedge F_{2}$.
(26) Suppose $\langle i, j\rangle \in$ the indices of the d-block diagonal of F_{1}. Then (the d-block diagonal of $\left.F_{1}\right)_{i, j}=\left(\text { the } d \text {-block diagonal of } F_{1} \wedge F_{2}\right)_{i, j}$.
(27) $\langle i, j\rangle \in$ the indices of the d_{1}-block diagonal of F_{2} if and only if $i>0$ and $j>0$ and $\left\langle i+\sum \operatorname{Len} F_{1}, j+\sum\right.$ Width $\left.F_{1}\right\rangle \in$ the indices of the d_{2}-block diagonal of $F_{1}{ }^{\wedge} F_{2}$.
(28) Suppose $\langle i, j\rangle \in$ the indices of the d-block diagonal of F_{2}. Then (the d-block diagonal of $\left.F_{2}\right)_{i, j}=$ (the d-block diagonal of F_{1} $\left.F_{2}\right)_{i+\sum \operatorname{Len} F_{1}, j+\sum \text { Width } F_{1}}$.
(29) Suppose $\langle i, j\rangle \in$ the indices of the d-block diagonal of $F_{1} \wedge F_{2}$ but $i \leq \sum \operatorname{Len} F_{1}$ and $j>\sum$ Width F_{1} or $i>\sum \operatorname{Len} F_{1}$ and $j \leq \sum$ Width F_{1}. Then (the d-block diagonal of $\left.F_{1} \wedge F_{2}\right)_{i, j}=d$.
(30) Let given i, j, k. Suppose $i \in \operatorname{dom} F$ and $\langle j, k\rangle \in$ the indices of $F(i)$. Then
(i) $\left\langle j+\sum \operatorname{Len} F \upharpoonright\left(i-^{\prime} 1\right), k+\sum \operatorname{Width} F \upharpoonright\left(i-^{\prime} 1\right)\right\rangle \in$ the indices of the d-block diagonal of F, and
(ii) $\quad F(i)_{j, k}=(\text { the } d \text {-block diagonal of } F)_{j+\sum \operatorname{Len} F \upharpoonright\left(i-^{\prime}\right), k+\sum \text { Width } F \upharpoonright\left(i-^{\prime} 1\right)}$.
(31) If $i \in \operatorname{dom} F$, then $F(i)=\operatorname{Segm}($ the d-block diagonal of $\quad F, \quad \operatorname{Seg}\left(\sum \operatorname{Len} F \upharpoonright i\right) \backslash \operatorname{Seg}\left(\sum \operatorname{Len} F \upharpoonright\left(i-^{\prime} 1\right)\right), \operatorname{Seg}\left(\sum \operatorname{Width} F \upharpoonright i\right) \backslash$ $\operatorname{Seg}\left(\sum \operatorname{Width} F \upharpoonright\left(i-^{\prime} 1\right)\right)$).
(32) $\quad M=\operatorname{Segm}\left(\right.$ the d-block diagonal of $\langle M\rangle{ }^{\wedge} F$, Seg len M, Seg width $\left.M\right)$.
(33) $\quad M=\operatorname{Segm}\left(\right.$ the d-block diagonal of $F \frown\langle M\rangle, \operatorname{Seg}\left(\operatorname{len} M+\sum \operatorname{Len} F\right) \backslash$ $\operatorname{Seg}\left(\sum \operatorname{Len} F\right), \operatorname{Seg}\left(\right.$ width $M+\sum$ Width $\left.F\right) \backslash \operatorname{Seg}\left(\sum\right.$ Width $\left.\left.F\right)\right)$.
(34) The d-block diagonal of $\langle M\rangle=M$.
(35) The d-block diagonal of $F_{1} \frown F_{2}=$ the d-block diagonal of \langle the d-block diagonal of $\left.F_{1}\right\rangle^{\wedge} F_{2}$.
(36) The d-block diagonal of $F_{1} \wedge F_{2}=$ the d-block diagonal of F_{1} 〈 the d-block diagonal of $\left.F_{2}\right\rangle$.
(37) If $i \in \operatorname{Seg}\left(\sum \operatorname{Len} F\right)$ and $m=\min (\operatorname{Len} F, i)$, then Line(the d-block diagonal of $F, i)=\left(\left(\sum \operatorname{Width}\left(F \uparrow\left(m-^{\prime} 1\right)\right)\right) \mapsto d\right){ }^{\wedge} \operatorname{Line}\left(F(m), i-^{\prime}\right.$ $\left.\sum \operatorname{Len}\left(F \upharpoonright\left(m-^{\prime} 1\right)\right)\right)^{\wedge}\left(\left(\left(\sum \operatorname{Width} F\right)-^{\prime} \sum \operatorname{Width}(F \upharpoonright m)\right) \mapsto d\right)$.
(38) If $i \in \operatorname{Seg}\left(\sum \operatorname{Width} F\right)$ and $m=\min ($ Width $F, i)$, then (the d-block diagonal of $F)_{\square, i}=\left(\left(\sum \operatorname{Len}\left(F \upharpoonright\left(m-^{\prime} 1\right)\right)\right) \quad \mapsto \quad d\right)^{\wedge}$ $\left(F(m)_{\square, i-^{\prime}} \sum \operatorname{Width}\left(F \upharpoonright\left(m-^{\prime} 1\right)\right)\right)^{\wedge}\left(\left(\left(\sum \operatorname{Len} F\right)-^{\prime} \sum \operatorname{Len}(F \upharpoonright m)\right) \mapsto d\right)$.
(39) Let $M_{1}, M_{2}, N_{1}, N_{2}$ be matrices over D. Suppose len $M_{1}=$ len N_{1} and width $M_{1}=$ width N_{1} and len $M_{2}=\operatorname{len} N_{2}$ and width $M_{2}=$ width N_{2} and the d_{1}-block diagonal of $\left\langle M_{1}, M_{2}\right\rangle=$ the d_{2}-block diagonal of $\left\langle N_{1}, N_{2}\right\rangle$. Then $M_{1}=N_{1}$ and $M_{2}=N_{2}$.
(40) Suppose $M=\emptyset$. Then
(i) the d-block diagonal of $F^{\wedge}\langle M\rangle=$ the d-block diagonal of F, and
(ii) the d-block diagonal of $\langle M\rangle^{\wedge} F=$ the d-block diagonal of F.
(41) Suppose $i \in \operatorname{dom} A$ and width $A=$ width (the deleting of i-row in A). Then the deleting of i-row in the a-block diagonal of $\langle A\rangle^{\wedge} G=$ the a-block diagonal of \langle the deleting of i-row in $A\rangle{ }^{\wedge} G$.
(42) Suppose $i \in \operatorname{dom} A$ and width $A=$ width (the deleting of i-row in A). Then the deleting of $\left(\sum \operatorname{Len} G\right)+i$-row in the a-block diagonal of $G^{\wedge}\langle A\rangle=$ the a-block diagonal of $G^{\wedge}\langle$ the deleting of i-row in $A\rangle$.
(43) Suppose $i \in \operatorname{Seg}$ width A. Then the deleting of i-column in the a-block diagonal of $\langle A\rangle \wedge G=$ the a-block diagonal of \langle the deleting of i-column in $A\rangle{ }^{\wedge} G$.
(44) Suppose $i \in \operatorname{Seg}$ width A. Then the deleting of $i+\sum$ Width G-column in the a-block diagonal of $G^{\wedge}\langle A\rangle=$ the a-block diagonal of $G^{\wedge}\langle$ the deleting of i-column in $A\rangle$.
Let us consider D and let F be a finite sequence of elements of $\left(D^{*}\right)^{*}$. We say that F is square-matrix-yielding if and only if:
(Def. 6) For every i such that $i \in \operatorname{dom} F$ there exists n such that $F(i)$ is a square matrix over D of dimension n.
Let us consider D. One can verify that there exists a finite sequence of elements of $\left(D^{*}\right)^{*}$ which is square-matrix-yielding.

Let us consider D. Observe that every finite sequence of elements of $\left(D^{*}\right)^{*}$ which is square-matrix-yielding is also matrix-yielding.

Let us consider D. A finite sequence of square-matrices over D is a square-matrix-yielding finite sequence of elements of $\left(D^{*}\right)^{*}$.

Let us consider K. A finite sequence of square-matrices over K is a square-matrix-yielding finite sequence of elements of $\left((\text { the carrier of } K)^{*}\right)^{*}$.

We use the following convention: S, S_{1}, S_{2} denote finite sequences of squarematrices over D and R, R_{1}, R_{2} denote finite sequences of square-matrices over K.

One can prove the following proposition
(45) \emptyset is a finite sequence of square-matrices over D.

Let us consider D, S, x. Then $S(x)$ is a square matrix over D of dimension len $S(x)$.

Let us consider D, S_{1}, S_{2}. Then $S_{1} \cap S_{2}$ is a finite sequence of square-matrices over D.

Let us consider D, n and let M_{1} be a square matrix over D of dimension n. Then $\left\langle M_{1}\right\rangle$ is a finite sequence of square-matrices over D.

Let us consider D, n, m, let M_{1} be a square matrix over D of dimension n, and let M_{2} be a square matrix over D of dimension m. Then $\left\langle M_{1}, M_{2}\right\rangle$ is a finite sequence of square-matrices over D.

Let us consider D, S, n. Then $S \upharpoonright n$ is a finite sequence of square-matrices over D. Then $S_{l n}$ is a finite sequence of square-matrices over D.

The following proposition is true
(46) Len $S=$ Width S.

Let us consider D, let d be an element of D, and let S be a finite sequence of square-matrices over D. Then the d-block diagonal of S is a square matrix over D of dimension \sum Len S.

One can prove the following propositions:
(47) Let A be a square matrix over K of dimension n. Suppose $i \in \operatorname{dom} A$ and $j \in \operatorname{Seg} n$. Then the deleting of i-row and j-column in the a-block diagonal of $\langle A\rangle^{\wedge} R=$ the a-block diagonal of \langle the deleting of i-row and j-column in $A\rangle \wedge R$.
(48) Let A be a square matrix over K of dimension n. Suppose $i \in \operatorname{dom} A$ and $j \in \operatorname{Seg} n$. Then the deleting of $i+\sum$ Len R-row and $j+\sum$ Len R-column in the a-block diagonal of $R^{\frown}\langle A\rangle=$ the a-block diagonal of $R \frown\langle$ the deleting of i-row and j-column in $A\rangle$.
Let us consider K, R. The functor Det R yielding a finite sequence of elements of K is defined as follows:
(Def. 7) $\operatorname{dom} \operatorname{Det} R=\operatorname{dom} R$ and for every i such that $i \in \operatorname{dom} \operatorname{Det} R$ holds $(\operatorname{Det} R)(i)=\operatorname{Det} R(i)$.
Let us consider K, R. Then Det R is an element of (the carrier of $K)^{\text {len } R}$.
In the sequel N denotes a square matrix over K of dimension n and N_{1} denotes a square matrix over K of dimension m.

The following propositions are true:
(49) $\operatorname{Det}\langle N\rangle=\langle\operatorname{Det} N\rangle$.
(50) $\operatorname{Det}\left(R_{1} \wedge R_{2}\right)=\left(\operatorname{Det} R_{1}\right)^{\wedge} \operatorname{Det} R_{2}$.
(51) $\operatorname{Det}(R \upharpoonright n)=\operatorname{Det} R \upharpoonright n$.
(52) $\operatorname{Det}\left(\right.$ the 0_{K}-block diagonal of $\left.\left\langle N, N_{1}\right\rangle\right)=\operatorname{Det} N \cdot \operatorname{Det} N_{1}$.
(53) $\operatorname{Det}\left(\right.$ the 0_{K}-block diagonal of $\left.R\right)=\Pi \operatorname{Det} R$.
(54) If len $A_{1} \neq$ width A_{1} and $N=$ the 0_{K}-block diagonal of $\left\langle A_{1}, A_{2}\right\rangle$, then Det $N=0_{K}$.
(55) Suppose Len $G \neq$ Width G. Let M be a square matrix over K of dimension n. If $M=$ the 0_{K}-block diagonal of G, then $\operatorname{Det} M=0_{K}$.

5. An Example of a Finite Sequence of Matrices

Let us consider K and let f be a finite sequence of elements of \mathbb{N}. The functor $I_{K}^{f \times f}$ yielding a finite sequence of square-matrices over K is defined by:
(Def. 8) $\operatorname{dom}\left(I_{K}^{f \times f}\right)=\operatorname{dom} f$ and for every i such that $i \in \operatorname{dom}\left(I_{K}^{f \times f}\right)$ holds $I_{K}^{f \times f}(i)=I_{K}^{f(i) \times f(i)}$.
The following propositions are true:
(56) $\operatorname{Len}\left(I_{K}^{f \times f}\right)=f$ and $\operatorname{Width}\left(I_{K}^{f \times f}\right)=f$.
(57) For every element i of \mathbb{N} holds $I_{K}^{\langle i\rangle \times\langle i\rangle}=\left\langle I_{K}^{i \times i}\right\rangle$.
$I_{K}^{(f \subset g) \times(f \subset g)}=\left(I_{K}^{f \times f}\right) \wedge I_{K}^{g \times g}$.
(59) $I_{K}^{(f\lceil n) \times(f\lceil n)}=I_{K}^{f \times f} \upharpoonright n$.
(60) The 0_{K}-block diagonal of $\left\langle I_{K}^{i \times i}, I_{K}^{j \times j}\right\rangle=I_{K}^{(i+j) \times(i+j)}$.
(61) The 0_{K}-block diagonal of $I_{K}^{f \times f}=I_{K}^{\left(\sum f\right) \times\left(\sum f\right)}$.

In the sequel p, p_{1} are finite sequences of elements of K.

6. Operations on a Finite Sequence of Matrices

Let us consider K, G, p. The functor $p \bullet G$ yielding a finite sequence of matrices over K is defined as follows:
(Def. 9) $\operatorname{dom}(p \bullet G)=\operatorname{dom} G$ and for every i such that $i \in \operatorname{dom}(p \bullet G)$ holds $(p \bullet G)(i)=p_{i} \cdot G(i)$.
Let us consider K and let us consider R, p. Then $p \bullet R$ is a finite sequence of square-matrices over K.

The following propositions are true:
(62) $\operatorname{Len}(p \bullet G)=\operatorname{Len} G$ and $\operatorname{Width}(p \bullet G)=\operatorname{Width} G$.
(63) $p \bullet\langle A\rangle=\left\langle p_{1} \cdot A\right\rangle$.
(64) If len $G=\operatorname{len} p$ and len $G_{1} \leq \operatorname{len} p_{1}$, then $p^{\wedge} p_{1} \bullet G^{\wedge} G_{1}=(p \bullet G)^{\wedge}\left(p_{1} \bullet G_{1}\right)$.
(65) $a \cdot$ the a_{1}-block diagonal of $G=$ the $\left(a \cdot a_{1}\right)$-block diagonal of len $G \mapsto a \bullet G$.

Let us consider K and let G_{1}, G_{2} be finite sequences of matrices over K. The functor $G_{1} \oplus G_{2}$ yields a finite sequence of matrices over K and is defined by:
(Def. 10) $\operatorname{dom}\left(G_{1} \oplus G_{2}\right)=\operatorname{dom} G_{1}$ and for every i such that $i \in \operatorname{dom}\left(G_{1} \oplus G_{2}\right)$ holds $\left(G_{1} \oplus G_{2}\right)(i)=G_{1}(i)+G_{2}(i)$.
Let us consider K and let us consider R, G. Then $R \oplus G$ is a finite sequence of square-matrices over K.

The following propositions are true:
(66) $\operatorname{Len}\left(G_{1} \oplus G_{2}\right)=\operatorname{Len} G_{1}$ and $\operatorname{Width}\left(G_{1} \oplus G_{2}\right)=\operatorname{Width} G_{1}$.
(67) If len $G=\operatorname{len} G^{\prime}$, then $G^{\wedge} G_{1} \oplus G^{\prime} \frown G_{2}=\left(G \oplus G^{\prime}\right)^{\wedge}\left(G_{1} \oplus G_{2}\right)$.
(68) $\langle A\rangle \oplus G=\langle A+G(1)\rangle$.
(69) $\left\langle A_{1}\right\rangle \oplus\left\langle A_{2}\right\rangle=\left\langle A_{1}+A_{2}\right\rangle$.
(70) $\left\langle A_{1}, B_{1}\right\rangle \oplus\left\langle A_{2}, B_{2}\right\rangle=\left\langle A_{1}+A_{2}, B_{1}+B_{2}\right\rangle$.
(71) Suppose len $A_{1}=\operatorname{len} B_{1}$ and len $A_{2}=\operatorname{len} B_{2}$ and width $A_{1}=$ width B_{1} and width $A_{2}=$ width B_{2}. Then (the a_{1}-block diagonal of $\left.\left\langle A_{1}, A_{2}\right\rangle\right)+$ (the a_{2}-block diagonal of $\left.\left\langle B_{1}, B_{2}\right\rangle\right)=$ the $\left(a_{1}+a_{2}\right)$-block diagonal of $\left\langle A_{1}, A_{2}\right\rangle \oplus$ $\left\langle B_{1}, B_{2}\right\rangle$.
(72) Suppose Len $R_{1}=\operatorname{Len} R_{2}$ and Width $R_{1}=\operatorname{Width} R_{2}$. Then (the $a_{1}-$ block diagonal of $\left.R_{1}\right)+\left(\right.$ the a_{2}-block diagonal of $\left.R_{2}\right)=$ the $\left(a_{1}+a_{2}\right)$-block diagonal of $R_{1} \oplus R_{2}$.
Let us consider K and let G_{1}, G_{2} be finite sequences of matrices over K. The functor $G_{1} G_{2}$ yielding a finite sequence of matrices over K is defined by:
(Def. 11) $\operatorname{dom}\left(G_{1} G_{2}\right)=\operatorname{dom} G_{1}$ and for every i such that $i \in \operatorname{dom}\left(G_{1} G_{2}\right)$ holds $\left(G_{1} G_{2}\right)(i)=G_{1}(i) \cdot G_{2}(i)$.
Next we state several propositions:
(73) If Width $G_{1}=\operatorname{Len} G_{2}$, then $\operatorname{Len}\left(G_{1} G_{2}\right)=\operatorname{Len} G_{1}$ and $\operatorname{Width}\left(G_{1} G_{2}\right)=$ Width G_{2}.
(74) If len $G=\operatorname{len} G^{\prime}$, then $\left(G^{\wedge} G_{1}\right)\left(G^{\prime} \wedge G_{2}\right)=\left(G G^{\prime}\right)^{\wedge}\left(G_{1} G_{2}\right)$.
(75) $\langle A\rangle G=\langle A \cdot G(1)\rangle$.
(76) $\left\langle A_{1}\right\rangle\left\langle A_{2}\right\rangle=\left\langle A_{1} \cdot A_{2}\right\rangle$.
(77) $\left\langle A_{1}, B_{1}\right\rangle\left\langle A_{2}, B_{2}\right\rangle=\left\langle A_{1} \cdot A_{2}, B_{1} \cdot B_{2}\right\rangle$.
(78) Suppose width $A_{1}=\operatorname{len} B_{1}$ and width $A_{2}=\operatorname{len} B_{2}$. Then (the 0_{K}-block diagonal of $\left.\left\langle A_{1}, A_{2}\right\rangle\right)$. (the 0_{K}-block diagonal of $\left.\left\langle B_{1}, B_{2}\right\rangle\right)=$ the 0_{K}-block diagonal of $\left\langle A_{1}, A_{2}\right\rangle\left\langle B_{1}, B_{2}\right\rangle$.
(79) If Width $R_{1}=$ Len R_{2}, then (the 0_{K}-block diagonal of $\left.R_{1}\right) \cdot\left(\right.$ the 0_{K}-block diagonal of R_{2}) $=$ the 0_{K}-block diagonal of $R_{1} R_{2}$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Bylinski. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[8] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[9] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[10] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573-577, 1997.
[11] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[12] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[14] Karol Pąk. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007.
[15] Karol Pa̧k and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3):143150, 2007.
[16] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[18] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
[21] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

