Block Diagonal Matrices

Open access

Block Diagonal Matrices

In this paper I present basic properties of block diagonal matrices over a set. In my approach the finite sequence of matrices in a block diagonal matrix is not restricted to square matrices. Moreover, the off-diagonal blocks need not be zero matrices, but also with another arbitrary fixed value.

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.

[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.

[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[8] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.

[9] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.

[10] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573-577, 1997.

[11] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.

[12] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

[13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.

[14] Karol Pαk. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007.

[15] Karol Pαk and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3):143-150, 2007.

[16] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

[18] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.

[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[20] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.

[21] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

Formalized Mathematics

(a computer assisted approach)

Journal Information

SCImago Journal Rank (SJR) 2017: 0.119
Source Normalized Impact per Paper (SNIP) 2017: 0.237



Target Group

researchers in the fields of formal methods and computer-checked mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 94 94 3
PDF Downloads 35 35 0