Model Checking. Part II

Open access

Model Checking. Part II

This article provides the definition of linear temporal logic (LTL) and its properties relevant to model checking based on [9]. Mizar formalization of LTL language and satisfiability is based on [2, 3].

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1(1):131-145, 1990.

[3] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1(1):191-199, 1990.

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[9] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[10] Kazuhisa Ishida. Model checking. Part I. Formalized Mathematics, 14(4):171-186, 2006.

[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[12] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.

Formalized Mathematics

(a computer assisted approach)

Journal Information

SCImago Journal Rank (SJR) 2017: 0.119
Source Normalized Impact per Paper (SNIP) 2017: 0.237



Target Group

researchers in the fields of formal methods and computer-checked mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 86 7
PDF Downloads 14 14 0