
FORMALIZED MATHEMATICS

Vol. 16, No. 2, Pages 91–96, 2008
DOI: 10.2478/v10037-008-0013-3

Helly Property for Subtrees1

Jessica Enright
University of Alberta
Edmonton, Canada

Piotr Rudnicki
University of Alberta
Edmonton, Canada

Summary. We prove, following [5, p. 92], that any family of subtrees of a
finite tree satisfies the Helly property.

MML identifier: HELLY, version: 7.8.09 4.97.1001

The articles [12], [4], [10], [3], [2], [1], [11], [9], [8], [7], and [6] provide the notation
and terminology for this paper.

1. General Preliminaries

One can prove the following proposition

(1) For every non empty finite sequence p holds 〈p(1)〉 aa p = p.
Let p, q be finite sequences. The functor maxPrefix(p, q) yields a finite se-

quence and is defined by:

(Def. 1) maxPrefix(p, q) � p and maxPrefix(p, q) � q and for every finite sequen-
ce r such that r � p and r � q holds r � maxPrefix(p, q).

Let us observe that the functor maxPrefix(p, q) is commutative.
Next we state several propositions:

(2) For all finite sequences p, q holds p � q iff maxPrefix(p, q) = p.
(3) For all finite sequences p, q holds lenmaxPrefix(p, q) ≤ len p.
(4) For every non empty finite sequence p holds 〈p(1)〉 � p.
(5) For all non empty finite sequences p, q such that p(1) = q(1) holds
1 ≤ lenmaxPrefix(p, q).

1This work has been partially supported by the NSERC grant OGP 9207.

91
c© 2008 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://fm.mizar.org/miz/helly.miz
http://ftp.mizar.org/


92 jessica enright and piotr rudnicki

(6) For all finite sequences p, q and for every natural number j such that
j ≤ lenmaxPrefix(p, q) holds (maxPrefix(p, q))(j) = p(j).

(7) For all finite sequences p, q and for every natural number j such that
j ≤ lenmaxPrefix(p, q) holds p(j) = q(j).

(8) For all finite sequences p, q holds p � q iff lenmaxPrefix(p, q) < len p.
(9) For all finite sequences p, q such that p � q and q � p holds
p(lenmaxPrefix(p, q) + 1) 6= q(lenmaxPrefix(p, q) + 1).

2. Graph Preliminaries

Next we state three propositions:

(10) For every graph G and for every walkW of G and for all natural numbers
m, n holds len(W.cut(m,n)) ≤ lenW.

(11) Let G be a graph, W be a walk of G, and m, n be natural numbers. If
W.cut(m,n) is non trivial, then W is non trivial.

(12) Let G be a graph, W be a walk of G, and m, n, i be odd natural
numbers. Suppose m ≤ n ≤ lenW and i ≤ len(W.cut(m,n)). Then there
exists an odd natural number j such that (W.cut(m,n))(i) = W (j) and
j = (m+ i)− 1 and j ≤ lenW.
Let G be a graph. One can verify that every walk of G is non empty.
The following propositions are true:

(13) For every graph G and for all walks W1, W2 of G such that W1 � W2
holds W1.vertices() ⊆W2.vertices().

(14) For every graph G and for all walks W1, W2 of G such that W1 � W2
holds W1.edges() ⊆W2.edges().

(15) For every graph G and for all walks W1, W2 of G holds W1 �
W1.append(W2).

(16) For every graph G and for all trails W1, W2 of G such that W1.last() =
W2.first() andW1.edges() missesW2.edges() holdsW1.append(W2) is trail-
like.

(17) Let G be a graph and P1, P2 be paths of G. Suppose P1.last() = P2.first()
and P1 is open and P2 is open and P1.edges() misses P2.edges() and if
P1.first() ∈ P2.vertices(), then P1.first() = P2.last() and P1.vertices() ∩
P2.vertices() ⊆ {P1.first(), P1.last()}. Then P1.append(P2) is path-like.

(18) Let G be a graph and P1, P2 be paths of G. Suppose P1.last() =
P2.first() and P1 is open and P2 is open and P1.vertices()∩P2.vertices() =
{P1.last()}. Then P1.append(P2) is open and path-like.

(19) Let G be a graph and P1, P2 be paths of G. Suppose P1.last() = P2.first()
and P2.last() = P1.first() and P1 is open and P2 is open and P1.edges()



helly property for subtrees 93

misses P2.edges() and P1.vertices()∩P2.vertices() = {P1.last(), P1.first()}.
Then P1.append(P2) is cycle-like.

(20) Let G be a simple graph, W1, W2 be walks of G, and k be an odd
natural number. Suppose k ≤ lenW1 and k ≤ lenW2 and for every odd
natural number j such that j ≤ k holdsW1(j) =W2(j). Let j be a natural
number. If 1 ≤ j ≤ k, then W1(j) =W2(j).

(21) For every graph G and for all walks W1, W2 of G such that W1.first() =
W2.first() holds lenmaxPrefix(W1,W2) is odd.

(22) For every graph G and for all walks W1, W2 of G such that W1.first() =
W2.first() and W1 �W2 holds lenmaxPrefix(W1,W2) + 2 ≤ lenW1.

(23) For every non-multi graph G and for all walks W1, W2 of G such
that W1.first() = W2.first() and W1 � W2 and W2 � W1 holds
W1(lenmaxPrefix(W1,W2) + 2) 6=W2(lenmaxPrefix(W1,W2) + 2).

3. Trees

A tree is a tree-like graph. Let G be a graph. A subtree of G is a tree-like
subgraph of G.
Let T be a tree. Observe that every walk of T which is trail-like is also

path-like.
One can prove the following proposition

(24) For every tree T and for every path P of T such that P is non trivial
holds P is open.

Let T be a tree. Note that every path of T which is non trivial is also open.
The following propositions are true:

(25) Let T be a tree, P be a path of T , and i, j be odd natural numbers. If
i < j ≤ lenP, then P (i) 6= P (j).

(26) Let T be a tree, a, b be vertices of T , and P1, P2 be paths of T . If P1 is
walk from a to b and P2 is walk from a to b, then P1 = P2.

Let T be a tree and let a, b be vertices of T . The functor T .pathBetween(a, b)
yields a path of T and is defined as follows:

(Def. 2) T .pathBetween(a, b) is walk from a to b.

One can prove the following propositions:

(27) For every tree T and for all vertices a, b of T holds
(T .pathBetween(a, b)).first() = a and (T .pathBetween(a, b)).last() = b.

(28) For every tree T and for all vertices a, b of T holds a, b ∈
(T .pathBetween(a, b)).vertices().

Let T be a tree and let a be a vertex of T . Observe that T .pathBetween(a, a)
is closed.



94 jessica enright and piotr rudnicki

Let T be a tree and let a be a vertex of T .
One can check that T .pathBetween(a, a) is trivial.
We now state a number of propositions:

(29) For every tree T and for every vertex a of T holds
(T .pathBetween(a, a)).vertices() = {a}.

(30) For every tree T and for all vertices a, b of T holds
(T .pathBetween(a, b)).reverse() = T .pathBetween(b, a).

(31) For every tree T and for all vertices a, b of T holds
(T .pathBetween(a, b)).vertices() = (T .pathBetween(b, a)).vertices().

(32) Let T be a tree, a, b be vertices of T , t be a subtree of T , and a′,
b′ be vertices of t. If a = a′ and b = b′, then T .pathBetween(a, b) =
t.pathBetween(a′, b′).

(33) Let T be a tree, a, b be vertices of T , and t be a subtree of
T . Suppose a ∈ the vertices of t and b ∈ the vertices of t. Then
(T .pathBetween(a, b)).vertices() ⊆ the vertices of t.

(34) Let T be a tree, P be a path of T , a, b be vertices of T , and i, j be
odd natural numbers. If i ≤ j ≤ lenP and P (i) = a and P (j) = b, then
T .pathBetween(a, b) = P .cut(i, j).

(35) For every tree T and for all vertices a, b, c of T holds
c ∈ (T .pathBetween(a, b)).vertices() iff T .pathBetween(a, b) =
(T .pathBetween(a, c)).append((T .pathBetween(c, b))).

(36) For every tree T and for all vertices a, b, c of T holds
c ∈ (T .pathBetween(a, b)).vertices() iff T .pathBetween(a, c) �
T .pathBetween(a, b).

(37) For every tree T and for all paths P1, P2 of T such that
P1.last() = P2.first() and P1.vertices() ∩ P2.vertices() = {P1.last()} holds
P1.append(P2) is path-like.

(38) For every tree T and for all vertices a, b, c of T holds
c ∈ (T .pathBetween(a, b)).vertices() iff (T .pathBetween(a, c)).vertices() ∩
(T .pathBetween(c, b)).vertices() = {c}.

(39) Let T be a tree, a, b, c, d be vertices of T , and P1, P2 be paths of
T . Suppose P1 = T .pathBetween(a, b) and P2 = T .pathBetween(a, c)
and P1 � P2 and P2 � P1 and d = P1(lenmaxPrefix(P1, P2)). Then
(T .pathBetween(d, b)).vertices()∩ (T .pathBetween(d, c)).vertices() = {d}.
Let T be a tree and let a, b, c be vertices of T . The functor middleVertex(a, b, c)

yielding a vertex of T is defined as follows:

(Def. 3) (T .pathBetween(a, b)).vertices() ∩ (T .pathBetween(b, c)).vertices()∩
(T .pathBetween(c, a)).vertices() = {middleVertex(a, b, c)}.
We now state a number of propositions:



helly property for subtrees 95

(40) For every tree T and for all vertices a, b, c of T holds
middleVertex(a, b, c) = middleVertex(a, c, b).

(41) For every tree T and for all vertices a, b, c of T holds
middleVertex(a, b, c) = middleVertex(b, a, c).

(42) For every tree T and for all vertices a, b, c of T holds
middleVertex(a, b, c) = middleVertex(b, c, a).

(43) For every tree T and for all vertices a, b, c of T holds
middleVertex(a, b, c) = middleVertex(c, a, b).

(44) For every tree T and for all vertices a, b, c of T holds
middleVertex(a, b, c) = middleVertex(c, b, a).

(45) For every tree T and for all vertices a, b, c of T such that c ∈
(T .pathBetween(a, b)).vertices() holds middleVertex(a, b, c) = c.

(46) For every tree T and for every vertex a of T holds middleVertex(a, a, a) =
a.

(47) For every tree T and for all vertices a, b of T holds middleVertex(a, a, b) =
a.

(48) For every tree T and for all vertices a, b of T holds middleVertex(a, b, a) =
a.

(49) For every tree T and for all vertices a, b of T holds middleVertex(a, b, b) =
b.

(50) Let T be a tree, P1, P2 be paths of T , and a, b, c be vertices of
T . If P1 = T .pathBetween(a, b) and P2 = T .pathBetween(a, c) and
b /∈ P2.vertices() and c /∈ P1.vertices(), then middleVertex(a, b, c) =
P1(lenmaxPrefix(P1, P2)).

(51) Let T be a tree, P1, P2, P3, P4 be paths of T , and a, b, c be vertices
of T . Suppose P1 = T .pathBetween(a, b) and P2 = T .pathBetween(a, c)
and P3 = T .pathBetween(b, a) and P4 = T .pathBetween(b, c) and
b /∈ P2.vertices() and c /∈ P1.vertices() and a /∈ P4.vertices(). Then
P1(lenmaxPrefix(P1, P2)) = P3(lenmaxPrefix(P3, P4)).

(52) Let T be a tree, a, b, c be vertices of T , and S be a non empty set.
Suppose that for every set s such that s ∈ S holds there exists a subtree
t of T such that s = the vertices of t but a, b ∈ s or a, c ∈ s or b, c ∈ s.
Then

⋂
S 6= ∅.

4. The Helly Property

Let F be a set. We say that F has Helly property if and only if:

(Def. 4) For every non empty set H such that H ⊆ F and for all sets x, y such
that x, y ∈ H holds x meets y holds

⋂
H 6= ∅.



96 jessica enright and piotr rudnicki

One can prove the following proposition

(53) Let T be a tree and X be a finite set such that for every set x such that
x ∈ X there exists a subtree t of T such that x = the vertices of t. Then
X has Helly property.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[4] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[5] M. Ch. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New
York, 1980.

[6] Gilbert Lee. Trees and graph components. Formalized Mathematics, 13(2):271–277, 2005.
[7] Gilbert Lee. Walks in graphs. Formalized Mathematics, 13(2):253–269, 2005.
[8] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics,
13(2):235–252, 2005.

[9] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized
Mathematics, 5(3):297–304, 1996.

[10] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[11] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-
matics, 6(3):335–338, 1997.

[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received January 10, 2008


