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Summary. The aim of this paper is to develop a formal theory of Mizar lin-
guistic concepts following the ideas from [14] and [13]. The theory here presented
is an abstract of the existing implementation of the Mizar system and is devoted
to the formalization of Mizar expressions. The base idea behind the formali-
zation is dependence on variables which is determined by variable-dependence
(variables may depend on other variables). The dependence constitutes a Galois
connection between opposite poset of dependence-closed set of variables and the
sup-semilattice of widening of Mizar types (smooth type widening).
In the paper the concepts strictly connected with Mizar expressions are for-

malized. Among them are quasi-loci, quasi-terms, quasi-adjectives, and quasi-
types. The structural induction and operation of substitution are also introdu-
ced. The prefix quasi is used to indicate that some rules of construction of Mizar
expressions may not be fulfilled. For example, variables, quasi-loci, and quasi-
terms have no assigned types and, in result, there is no possibility to conduct
type-checking of arguments. The other gaps concern inconsistent and out-of-
context clusters of adjectives in types. Those rules are required in the Mizar
identification process. However, the expression appearing in later processes of
Mizar checker may not satisfy the rules. So, introduced apparatus is enough and
adequate to describe data structures and algorithms from the Mizar checker (like
equational classes).
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1. Variables

We adopt the following convention: i is a natural number, j is an element of
N, and X, Y , x, y, z are sets.
One can prove the following propositions:

(1) For every function f holds f(x) ⊆
⋃
f.

(2) For every function f such that
⋃
f = ∅ holds f(x) = ∅.

(3) For every function f and for all sets x, y such that f = 〈〈x, y〉〉 holds
x = y.

(4) (idX)◦Y ⊆ Y.
(5) Let Σ be a non void signature and X be a non-empty many sorted set
indexed by the carrier of Σ. Then every term of Σ over X is non pair.

Let Σ be a non void signature and let X be a non empty yielding many
sorted set indexed by the carrier of Σ. Observe that every element of FreeΣ(X)
is non pair.
We now state the proposition

(6) For all sets x, y, z such that x, y ∈ {z}∗ and x = y holds x = y.
Let us note that ∅ is decorated tree yielding.
Let Σ be a non void signature and let A be an algebra over Σ. A subset of

A is a subset of
⋃
(the sorts of A). A finite sequence of elements of A is a finite

sequence of elements of
⋃
(the sorts of A).

Let Σ be a non void signature and let X be a non empty yielding many
sorted set indexed by Σ. Note that every finite sequence of elements of FreeΣ(X)
is decorated tree yielding.
Next we state the proposition

(7) Let Σ be a non void signature, X be a non empty yielding many sorted
set indexed by the carrier of Σ, and τ be an element of FreeΣ(X). Then
(i) there exists a sort symbol s of Σ and there exists a set v such that
τ = the root tree of 〈〈v, s〉〉 and v ∈ X(s), or

(ii) there exists an operation symbol o of Σ and there exists a finite sequence
p of elements of FreeΣ(X) such that τ = 〈〈o, the carrier of Σ〉〉-tree(p) and
len p = lenArity(o) and p is decorated tree yielding and an argument
sequence of Sym(o,X ∪ ((the carrier of Σ) 7−→ {0})).
Let A be a set. The functor varclA is defined by the conditions (Def. 1).

(Def. 1)(i) A ⊆ varclA,
(ii) for all x, y such that 〈〈x, y〉〉 ∈ varclA holds x ⊆ varclA, and
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(iii) for every set B such that A ⊆ B and for all x, y such that 〈〈x, y〉〉 ∈ B
holds x ⊆ B holds varclA ⊆ B.

Let us observe that the functor varclA is projective.
We now state three propositions:

(8) varcl ∅ = ∅.
(9) For all sets Y , Z such that Y ⊆ Z holds varclY ⊆ varclZ.
(10) For every set Z holds varcl

⋃
Z =

⋃
{varcl z : z ranges over elements of

Z}.
The scheme Sch14 deals with a set A, a unary functor F yielding a set, and

a unary predicate P, and states that:
varcl

⋃
{F(z); z ranges over elements ofA : P[z]} =

⋃
{varclF(z); z

ranges over elements of A : P[z]}
for all values of the parameters.
Next we state three propositions:

(11) varcl(X ∪ Y ) = varclX ∪ varclY.
(12) For every non empty set Z such that for every element z of Z holds
varcl z = z holds varcl

⋂
Z =

⋂
Z.

(13) varcl(varclX ∩ varclY ) = varclX ∩ varclY.
Let Z be an empty set. Observe that varclZ is empty.
The functor Vars is defined by the condition (Def. 2).

(Def. 2) There exists a many sorted set V indexed by N such that
(i) Vars =

⋃
V,

(ii) V (0) = {〈〈∅, i〉〉 : i ranges over elements of N}, and
(iii) for every natural number n holds V (n + 1) = {〈〈 varclZ, j〉〉;Z ranges
over subsets of V (n), j ranges over elements of N: Z is finite}.
Next we state a number of propositions:

(14) Let V be a many sorted set indexed by N. Suppose that
(i) V (0) = {〈〈∅, i〉〉 : i ranges over elements of N}, and
(ii) for every natural number n holds V (n + 1) = {〈〈 varclZ, j〉〉;Z ranges
over subsets of V (n), j ranges over elements of N: Z is finite}.
Let i, j be elements of N. If i ≤ j, then V (i) ⊆ V (j).

(15) Let V be a many sorted set indexed by N. Suppose that
(i) V (0) = {〈〈∅, i〉〉 : i ranges over elements of N}, and
(ii) for every natural number n holds V (n + 1) = {〈〈 varclZ, j〉〉;Z ranges
over subsets of V (n), j ranges over elements of N: Z is finite}.
Let Z be a finite subset of Vars. Then there exists an element i of N such
that Z ⊆ V (i).

(16) {〈〈∅, i〉〉 : i ranges over elements of N} ⊆ Vars .
(17) For every finite subset Z of Vars and for every natural number i holds
〈〈 varclZ, i〉〉 ∈ Vars .



210 grzegorz bancerek

(18) Vars = {〈〈 varclZ, j〉〉;Z ranges over subsets of Vars, j ranges over ele-
ments of N: Z is finite}.

(19) varclVars = Vars .

(20) For every X such that rk(X) is finite holds X is finite.

(21) rk(varclX) = rk(X).

(22) For every finite subset X of Rω holds X ∈ Rω.
(23) Vars ⊆ Rω.
(24) For every finite subset Z of Vars holds varclZ is a finite subset of Vars.

One can verify that Vars is non empty.
A variable is an element of Vars.
Let x be a variable. Observe that x1 is finite.
Let x be a variable. We introduce vars(x) as a synonym of x1.
Let x be a variable. Then vars(x) is a subset of Vars.
The following propositions are true:

(25) 〈〈∅, i〉〉 ∈ Vars .
(26) For every subset Z of Vars holds varcl{〈〈 varclZ, j〉〉} = varclZ ∪
{〈〈 varclZ, j〉〉}.

(27) For every variable x holds varcl{x} = vars(x) ∪ {x}.
(28) For every variable x holds 〈〈 vars(x) ∪ {x}, i〉〉 ∈ Vars .

2. Quasi-loci

Let R be a binary relation and let X be a set. We introduce R domX as a
synonym of R�X.
The set QuasiLoci of finite sequences of Vars is defined by the condition

(Def. 3).

(Def. 3) Let p be a finite sequence of elements of Vars. Then p ∈ QuasiLoci if
and only if the following conditions are satisfied:
(i) p is one-to-one, and
(ii) for every i such that i ∈ dom p holds p(i)1 ⊆ rng(p dom i).
One can prove the following proposition

(29) εVars ∈ QuasiLoci .
Let us observe that QuasiLoci is non empty.
A quasi-locus sequence is an element of QuasiLoci.
One can verify that every quasi-locus sequence is one-to-one.
Next we state several propositions:

(30) Let l be an one-to-one finite sequence of elements of Vars. Then l is a
quasi-locus sequence if and only if for every natural number i and for every
variable x such that i ∈ dom l and x = l(i) and for every variable y such
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that y ∈ vars(x) there exists a natural number j such that j ∈ dom l and
j < i and y = l(j).

(31) Let l be a quasi-locus sequence and x be a variable. Then l a 〈x〉 is a
quasi-locus sequence if and only if x /∈ rng l and vars(x) ⊆ rng l.

(32) Let p1, p2 be finite sequences. Suppose p1 a p2 is a quasi-locus sequence.
Then p1 is a quasi-locus sequence and p2 is a finite sequence of elements
of Vars.

(33) For every quasi-locus sequence l holds varcl rng l = rng l.

(34) For every variable x holds 〈x〉 is a quasi-locus sequence iff vars(x) = ∅.
(35) For all variables x, y holds 〈x, y〉 is a quasi-locus sequence iff vars(x) = ∅
and x 6= y and vars(y) ⊆ {x}.

(36) Let x, y, z be variables. Then 〈x, y, z〉 is a quasi-locus sequence if and
only if vars(x) = ∅ and x 6= y and vars(y) ⊆ {x} and x 6= z and y 6= z and
vars(z) ⊆ {x, y}.
Let l be a quasi-locus sequence. Then l−1 is a partial function from Vars to

N.

3. Mizar Constructor Signature

The functor type is defined by:

(Def. 4) type = 0.

The functor adj is defined by:

(Def. 5) adj = 1.

The functor term is defined as follows:

(Def. 6) term = 2.

The functor ∗ is defined by:
(Def. 7) ∗ = 0.
The functor non is defined as follows:

(Def. 8) non = 1.

Let C be a signature. We say that C is constructor if and only if the conditions
(Def. 9) are satisfied.

(Def. 9) The carrier of C = {type,adj, term} and {∗,non} ⊆ the operation
symbols of C and (the arity of C)(∗) = 〈adj, type〉 and (the arity of
C)(non) = 〈adj〉 and (the result sort of C)(∗) = type and (the result sort
of C)(non) = adj and for every element o of the operation symbols of C
such that o 6= ∗ and o 6= non holds (the arity of C)(o) ∈ {term}∗.
Let us note that every signature which is constructor is also non empty and

non void.
The strict signature MinConstrSign is defined by:
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(Def. 10) MinConstrSign is constructor and the operation symbols of MinConstrSign =
{∗,non}.
Let us observe that MinConstrSign is constructor.
Let us observe that there exists a signature which is constructor and strict.
Let C be a constructor signature and let o be an operation symbol of C. We

say that o is constructor if and only if:

(Def. 11) o 6= ∗ and o 6= non .
We now state the proposition

(37) Let Σ be a constructor signature and o be an operation symbol of Σ. If
o is constructor, then Arity(o) = lenArity(o) 7→ term .
Let C be a non empty non void signature. We say that C is initialized if and

only if the condition (Def. 12) is satisfied.

(Def. 12) There exist operation symbols m, α of C such that the result sort of m =
type and Arity(m) = ∅ and the result sort of α = adj and Arity(α) = ∅.
Let C be a constructor signature. The functor typeC is a sort symbol of C

and is defined by:

(Def. 13) typeC = type .

The functor adjC is a sort symbol of C and is defined as follows:

(Def. 14) adjC = adj .

The functor termC is a sort symbol of C and is defined by:

(Def. 15) termC = term .

The functor nonC yielding an operation symbol of C is defined as follows:

(Def. 16) nonC = non .

The functor ∗C yielding an operation symbol of C is defined as follows:
(Def. 17) ∗C = ∗.

We now state the proposition

(38) Let C be a constructor signature. Then Arity(nonC) = 〈adjC〉 and the
result sort of nonC = adjC and Arity(∗C) = 〈adjC, typeC〉 and the result
sort of ∗C = typeC .
The functor Modes is defined as follows:

(Def. 18) Modes = {type} × (QuasiLoci×N).
The functor Attrs is defined as follows:

(Def. 19) Attrs = {adj} × (QuasiLoci×N).
The functor Funcs is defined by:

(Def. 20) Funcs = {term} × (QuasiLoci×N).
One can verify the following observations:

∗ Modes is non empty,
∗ Attrs is non empty, and
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∗ Funcs is non empty.
The non empty set Constructors is defined by:

(Def. 21) Constructors = Modes∪Attrs∪Funcs .
Next we state the proposition

(39) {∗,non} misses Constructors.
Let x be an element of QuasiLoci×N. Then x1 is a quasi-locus sequence.

Then x2 is an element of N.
Let c be an element of Constructors. We introduce the kind of c as a synonym

of c1.
Let c be an element of Constructors. Then the kind of c is an element of

{type,adj, term}. Then c2 is an element of QuasiLoci×N.
Let c be an element of Constructors. The loci of c yields a quasi-locus sequ-

ence and is defined as follows:

(Def. 22) The loci of c = (c2)1.

The index of c yielding a natural number is defined as follows:

(Def. 23) The index of c = (c2)2.

We now state the proposition

(40) Let c be an element of Constructors. Then
(i) the kind of c = type iff c ∈ Modes,
(ii) the kind of c = adj iff c ∈ Attrs, and
(iii) the kind of c = term iff c ∈ Funcs .
The strict constructor signature MaxConstrSign is defined by the conditions

(Def. 24).

(Def. 24)(i) The operation symbols of MaxConstrSign = {∗,non}∪Constructors,
and

(ii) for every operation symbol o of MaxConstrSign such that o is
constructor holds (the result sort of MaxConstrSign)(o) = o1 and

(the arity of MaxConstrSign)(o) = (o2)1 .

Let us note that MinConstrSign is non initialized and MaxConstrSign is
initialized.
Let us observe that there exists a constructor signature which is initialized

and strict.
Let C be an initialized constructor signature. One can check that there exists

an operation symbol of C which is constructor.

4. Mizar Expressions

Let C be a constructor signature. The functor VarsC yielding a many sorted
set indexed by the carrier of C is defined as follows:
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(Def. 25) (VarsC)(type) = ∅ and (VarsC)(adj) = ∅ and (VarsC)(term) = Vars .
Let C be a constructor signature. Note that VarsC is non empty yielding.
Let C be an initialized constructor signature. Observe that FreeC(VarsC) is

non-empty.
Let Σ be a non void signature, let X be a non empty yielding many sorted

set indexed by the carrier of Σ, and let τ be an element of FreeΣ(X). We say
that τ is ground if and only if:

(Def. 26)
⋃
VarΣ τ = ∅.

We say that τ is compound if and only if:

(Def. 27) τ(∅) ∈ (the operation symbols of Σ)× {the carrier of Σ}.
In the sequel C denotes an initialized constructor signature, s denotes a sort

symbol of C, o denotes an operation symbol of C, and c denotes a constructor
operation symbol of C.
Let us consider C. An expression of C is an element of FreeC(VarsC).
Let us consider C, s. An expression of C is called an expression of C from s

if:

(Def. 28) It ∈ (the sorts of FreeC(VarsC))(s).
Next we state the proposition

(41) z is an expression of C from s iff z ∈ (the sorts of FreeC(VarsC))(s).
Let us consider C and let us consider c. Let us assume that lenArity(c) = 0.

The functor ct yielding an expression of C is defined by:

(Def. 29) ct = 〈〈c, the carrier of C〉〉-tree(∅).
The following proposition is true

(42) Let given o. Suppose lenArity(o) = 1. Let α be an expression of C. Given
s such that s = Arity(o)(1) and α is an expression of C from s. Then 〈〈o,
the carrier of C〉〉-tree(〈α〉) is an expression of C from the result sort of o.
Let us consider C, o. Let us assume that lenArity(o) = 1. Let η be an

expression of C. Let us assume that there exists a sort symbol s of C such that
s = Arity(o)(1) and η is an expression of C from s. The functor o(η) yielding an
expression of C is defined by:

(Def. 30) o(η) = 〈〈o, the carrier of C〉〉-tree(〈η〉).
In the sequel α, β are expressions of C from adjC.
One can prove the following two propositions:

(43) nonC(α) is an expression of C from adjC and nonC(α) = 〈〈non, the
carrier of C〉〉-tree(〈α〉).

(44) If nonC(α) = nonC(β), then α = β.

Let us consider C, α. Observe that nonC(α) is compound.
Let us consider C. Note that there exists an expression of C which is com-

pound.
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Next we state the proposition

(45) Let given o. Suppose lenArity(o) = 2. Let α, β be expressions of C. Given
sort symbols s1, s2 of C such that s1 = Arity(o)(1) and s2 = Arity(o)(2)
and α is an expression of C from s1 and β is an expression of C from s2.
Then 〈〈o, the carrier of C〉〉-tree(〈α, β〉) is an expression of C from the result
sort of o.

Let us consider C, o. Let us assume that lenArity(o) = 2. Let η1, η2 be
expressions of C. Let us assume that there exist sort symbols s1, s2 of C such
that s1 = Arity(o)(1) and s2 = Arity(o)(2) and η1 is an expression of C from s1
and η2 is an expression of C from s2. The functor o(η1, η2) yielding an expression
of C is defined as follows:

(Def. 31) o(η1, η2) = 〈〈o, the carrier of C〉〉-tree(〈η1, η2〉).
In the sequel τ , τ1, τ2 are expressions of C from typeC.
We now state two propositions:

(46) ∗C(α, τ) is an expression of C from typeC and ∗C(α, τ) = 〈〈∗, the carrier
of C〉〉-tree(〈α, τ〉).

(47) If ∗C(α, τ1) = ∗C(β, τ2), then α = β and τ1 = τ2.
Let us consider C, α, τ . One can check that ∗C(α, τ) is compound.
Let Σ be a non void signature and let s be a sort symbol of Σ. Let us assume

that there exists an operation symbol o of Σ such that the result sort of o = s.
An operation symbol of Σ is said to be an operation symbol of s if:

(Def. 32) The result sort of it = s.

Let C be a constructor signature. Then nonC is an operation symbol of adjC.
Then ∗C is an operation symbol of typeC.
The following proposition is true

(48) Let s1, s2 be sort symbols of C. Suppose s1 6= s2. Let τ1 be an expression
of C from s1 and τ2 be an expression of C from s2. Then τ1 6= τ2.

5. Quasi-terms

Let us consider C. The functor QuasiTermsC yields a subset of FreeC(VarsC)
and is defined as follows:

(Def. 33) QuasiTermsC = (the sorts of FreeC(VarsC))(termC).

Let us consider C. One can check that QuasiTermsC is non empty and con-
stituted of decorated trees.
Let us consider C. A quasi-term of C is an expression of C from termC.
We now state the proposition

(49) z is a quasi-term of C iff z ∈ QuasiTermsC.
Let x be a variable and let us consider C. The functor xC yields a quasi-term

of C and is defined by:
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(Def. 34) xC = the root tree of 〈〈x, term 〉〉.
One can prove the following proposition

(50) For all variables x1, x2 and for all initialized constructor signatures C1,
C2 such that (x1)C1 = (x2)C2 holds x1 = x2.

Let x be a variable and let us consider C. One can check that xC is non
compound.

We now state the proposition

(51) Let p be a decorated tree yielding finite sequence. Then 〈〈c, the carrier
of C〉〉-tree(p) is an expression of C if and only if len p = lenArity(c) and
p ∈ (QuasiTermsC)∗.

In the sequel p is a finite sequence of elements of QuasiTermsC.

Let us consider C, c and let us consider p. Let us assume that len p =
lenArity(c). The functor c~(p) yields a compound expression of C and is de-
fined as follows:

(Def. 35) c~(p) = 〈〈c, the carrier of C〉〉-tree(p).
Next we state several propositions:

(52) If len p = lenArity(c), then c~(p) is an expression of C from the result
sort of c.

(53) Let η be an expression of C. Then

(i) there exists a variable x such that η = xC, or

(ii) there exists a constructor operation symbol c of C and there exists a
finite sequence p of elements of QuasiTermsC such that len p = lenArity(c)
and η = c~(p), or

(iii) there exists an expression α of C from adjC such that η = nonC(α), or

(iv) there exists an expression α of C from adjC and there exists an expres-
sion τ of C from typeC such that η = ∗C(α, τ).

(54) If len p = lenArity(c), then c~(p) 6= nonC(α).

(55) If len p = lenArity(c), then c~(p) 6= ∗C(α, τ).
(56) nonC(α) 6= ∗C(β, τ).

In the sequel η is an expression of C.

Next we state two propositions:

(57) If η(∅) = 〈〈non, the carrier of C〉〉, then there exists α such that η =
nonC(α).

(58) If η(∅) = 〈〈∗, the carrier of C〉〉, then there exist α, τ such that η =
∗C(α, τ).



towards the construction of a model of . . . 217

6. Quasi-adjectives

In the sequel α, α′ denote expressions of C from adjC.
Let us consider C, α. The functor nonα yields an expression of C from adjC

and is defined by:

(Def. 36) nonα =

{
α�〈0〉, if there exists α′ such that α = nonC(α′),
nonC(α), otherwise.

Let us consider C, α. We say that α is positive if and only if:

(Def. 37) It is not true that there exists α′ such that α = nonC(α′).

Let us consider C. Note that there exists an expression of C from adjC which
is positive.
Next we state the proposition

(59) For every positive expression α of C from adjC holds nonα = nonC(α).

Let us consider C, α. We say that α is negative if and only if:

(Def. 38) There exists α′ such that α′ is positive and α = nonC(α′).

Let us consider C and let α be a positive expression of C from adjC. Note
that nonα is negative and non positive.
Let us consider C. One can check that there exists an expression of C from

adjC which is negative and non positive.
Next we state three propositions:

(60) For every non positive expression α of C from adjC there exists an expres-
sion α′ of C from adjC such that α = nonC(α′) and nonα = α′.

(61) Let α be a negative expression of C from adjC. Then there exists a
positive expression α′ of C from adjC such that α = nonC(α′) and nonα =
α′.

(62) For every non positive expression α of C from adjC holds nonC(nonα) =
α.

Let us consider C and let α be a negative expression of C from adjC. Note
that nonα is positive.
Let us consider C, α. We say that α is regular if and only if:

(Def. 39) α is positive or negative.

Let us consider C. Observe that every expression of C from adjC which is
positive is also regular and non negative and every expression of C from adjC
which is negative is also regular and non positive.
Let us consider C. Note that there exists an expression of C from adjC which

is regular.
Let us consider C. The functor QuasiAdjsC yields a subset of FreeC(VarsC)

and is defined as follows:

(Def. 40) QuasiAdjsC = {α : α is regular}.
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Let us consider C. Note that QuasiAdjsC is non empty and constituted of
decorated trees.
Let us consider C. A quasi-adjective of C is a regular expression of C from

adjC.
Next we state two propositions:

(63) z is a quasi-adjective of C iff z ∈ QuasiAdjsC.
(64) z is a quasi-adjective of C if and only if z is a positive expression of C
from adjC or a negative expression of C from adjC.

Let us consider C. Note that every quasi-adjective of C which is non positive
is also negative and every quasi-adjective of C which is non negative is also
positive.
Let us consider C. Note that there exists a quasi-adjective of C which is

positive and there exists a quasi-adjective of C which is negative.
The following propositions are true:

(65) Let α be a positive quasi-adjective of C. Then there exists a constructor
operation symbol v of C such that the result sort of v = adjC and there
exists p such that len p = lenArity(v) and α = v~(p).

(66) Let v be a constructor operation symbol of C. Suppose the result sort of
v = adjC and len p = lenArity(v). Then v~(p) is a positive quasi-adjective
of C.

Let us consider C and let α be a quasi-adjective of C. One can check that
nonα is regular.
We now state three propositions:

(67) For every quasi-adjective α of C holds non nonα = α.

(68) For all quasi-adjectives α1, α2 of C such that nonα1 = nonα2 holds
α1 = α2.

(69) For every quasi-adjective α of C holds nonα 6= α.

7. Quasi-types

Let us consider C and let ϑ be an expression of C from typeC. We say that
ϑ is pure if and only if:

(Def. 41) It is not true that there exist α, τ such that ϑ = ∗C(α, τ).
The following propositions are true:

(70) Let m be an operation symbol of C. Suppose the result sort of m = type
and Arity(m) = ∅. Then there exists τ such that τ = the root tree of 〈〈m,
the carrier of C〉〉 and τ is pure.

(71) Let v be an operation symbol of C. Suppose the result sort of v = adj
and Arity(v) = ∅. Then there exists α such that α = the root tree of 〈〈v,
the carrier of C〉〉 and α is positive.
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Let us consider C. Note that there exists an expression of C from typeC
which is pure.
In the sequel ϑ denotes a pure expression of C from typeC and A denotes a

finite subset of QuasiAdjsC.
Let us consider C. The functor QuasiTypesC is defined as follows:

(Def. 42) QuasiTypesC = {〈〈A, τ〉〉 : τ is pure}.
Let us consider C. Note that QuasiTypesC is non empty.
Let us consider C. Quasi-type of C is defined by:

(Def. 43) It ∈ QuasiTypesC.
The following two propositions are true:

(72) z is a quasi-type of C iff there exist A, ϑ such that z = 〈〈A, ϑ〉〉.
(73) 〈〈x, y〉〉 is a quasi-type of C if and only if x is a finite subset of QuasiAdjsC
and y is a pure expression of C from typeC.

In the sequel θ is a quasi-type of C.
Let us consider C. Observe that every quasi-type of C is pair.
Next we state four propositions:

(74) There exists a constructor operation symbol m of C such that the result
sort of m = typeC and there exists p such that len p = lenArity(m) and
ϑ = m~(p).

(75) Let m be a constructor operation symbol of C. Suppose the result sort
of m = typeC and len p = lenArity(m). Then m~(p) is a pure expression
of C from typeC.

(76) QuasiTermsCmisses QuasiAdjsC and QuasiTermsCmisses QuasiTypesC
and QuasiTypesC misses QuasiAdjsC.

(77) Let η be a set. Then
(i) if η is a quasi-term of C, then η is not a quasi-adjective of C,
(ii) if η is a quasi-term of C, then η is not a quasi-type of C, and
(iii) if η is a quasi-type of C, then η is not a quasi-adjective of C.

Let us consider C, A, ϑ. We introduce A ∗ ϑ as a synonym of 〈〈A, ϑ〉〉.
Let us consider C, A, ϑ. Then A ∗ ϑ is a quasi-type of C.
Let us consider C, θ. Note that θ1 is finite.
Let us consider C, θ. We introduce adjs θ as a synonym of θ1. We introduce

the base of θ as a synonym of θ2.
Let us consider C, θ. Then adjs θ is a subset of QuasiAdjsC. Then the base

of θ is a pure expression of C from typeC.
One can prove the following propositions:

(78) adjs(A ∗ ϑ) = A and the base of A ∗ ϑ = ϑ.
(79) LetA1,A2 be finite subsets of QuasiAdjsC and ϑ1, ϑ2 be pure expressions
of C from typeC. If A1 ∗ ϑ1 = A2 ∗ ϑ2, then A1 = A2 and ϑ1 = ϑ2.

(80) θ = adjs θ ∗ the base of θ.
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(81) For all quasi-types θ1, θ2 of C such that adjs θ1 = adjs θ2 and the base of
θ1 = the base of θ2 holds θ1 = θ2.

Let us consider C, θ and let α be a quasi-adjective of C. The functor α ∗ θ
yields a quasi-type of C and is defined by:

(Def. 44) α ∗ θ = 〈〈{α} ∪ adjs θ, the base of θ〉〉.
We now state three propositions:

(82) For every quasi-adjective α of C holds adjs(α ∗ θ) = {α}∪ adjs θ and the
base of α ∗ θ = the base of θ.

(83) For every quasi-adjective α of C holds α ∗ (α ∗ θ) = α ∗ θ.
(84) For all quasi-adjectives α, β of C holds α ∗ (β ∗ θ) = β ∗ (α ∗ θ).

8. Variables in Quasi-types

Let Σ be a non void signature, let s be a sort symbol of Σ, let X be a non-
empty many sorted set indexed by the carrier of Σ, and let τ be a term of Σ
over X. Note that (Var τ)(s) is finite.
Let Σ be a non void signature, let s be a sort symbol of Σ, let X be a non

empty yielding many sorted set indexed by the carrier of Σ, and let τ be an
element of FreeΣ(X). Observe that (VarΣ τ)(s) is finite.
Let Σ be a non void signature, let X be a non empty yielding many sorted

set indexed by the carrier of Σ, and let s be a sort symbol of Σ. The functor
varsXs yielding a function from

⋃
(the sorts of FreeΣ(X)) into 2X(s) is defined

by:

(Def. 45) For every element τ of FreeΣ(X) holds (varsXs )(τ) = (VarΣ τ)(s).

Let C be an initialized constructor signature and let η be an expression of
C. The functor Var η yielding a subset of Vars is defined by:

(Def. 46) Var η = (VarC η)(termC).

Let us consider C, η. Note that Var η is finite.
Let us consider C, η. The functor vars(η) yielding a finite subset of Vars is

defined as follows:

(Def. 47) vars(η) = varclVar η.

The following propositions are true:

(85) varcl vars(η) = vars(η).

(86) For every variable x holds Var(xC) = {x}.
(87) For every variable x holds vars(xC) = {x} ∪ vars(x).
(88) Let p be a decorated tree yielding finite sequence. Suppose η = 〈〈c, the
carrier of C〉〉-tree(p). Then Var η =

⋃
{Var τ ; τ ranges over quasi-terms of

C: τ ∈ rng p}.
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(89) Let p be a decorated tree yielding finite sequence. Suppose η = 〈〈c, the
carrier of C〉〉-tree(p). Then vars(η) =

⋃
{vars(τ); τ ranges over quasi-terms

of C: τ ∈ rng p}.
(90) If len p = lenArity(c), then Var(c~(p)) =

⋃
{Var τ ; τ ranges over quasi-

terms of C: τ ∈ rng p}.
(91) If len p = lenArity(c), then vars(c~(p)) =

⋃
{vars(τ); τ ranges over quasi-

terms of C: τ ∈ rng p}.
(92) For every many sorted signature Σ and for every set o holds VarΣ(〈〈o,
the carrier of Σ〉〉-tree(∅)) = 0the carrier of Σ.

(93) Let Σ be a many sorted signature, o be a set, and τ be a decorated tree.
Then VarΣ(〈〈o, the carrier of Σ〉〉-tree(〈τ〉)) = VarΣ τ.

(94) Var(nonC(α)) = Varα.

(95) vars(nonC(α)) = vars(α).

(96) Let Σ be a many sorted signature, o be a set, and τ1, τ2 be decorated
trees. Then VarΣ(〈〈o, the carrier of Σ〉〉-tree(〈τ1, τ2〉)) = VarΣ τ1 ∪VarΣ τ2.

(97) Var(∗C(α, τ)) = Varα ∪Var τ.
(98) vars(∗C(α, τ)) = vars(α) ∪ vars(τ).
(99) Var nonα = Varα.

(100) vars(nonα) = vars(α).

Let us consider C and let θ be a quasi-type of C. The functor Var θ yields a
subset of Vars and is defined as follows:

(Def. 48) Var θ =
⋃
((varsVarsCtermC

)◦ adjs θ) ∪Var (the base of θ).
Let us consider C and let θ be a quasi-type of C. Note that Var θ is finite.
Let us consider C and let θ be a quasi-type of C. The functor vars(θ) yields

a finite subset of Vars and is defined by:

(Def. 49) vars(θ) = varclVar θ.

We now state several propositions:

(101) For every quasi-type θ of C holds varcl vars(θ) = vars(θ).

(102) For every quasi-type θ of C and for every quasi-adjective α of C holds
Var(α ∗ θ) = Varα ∪Var θ.

(103) For every quasi-type θ of C and for every quasi-adjective α of C holds
vars(α ∗ θ) = vars(α) ∪ vars(θ).

(104) Var(A∗ϑ) =
⋃
{Varα;α ranges over quasi-adjectives of C: α ∈ A}∪Varϑ.

(105) vars(A ∗ ϑ) =
⋃
{vars(α);α ranges over quasi-adjectives of C: α ∈ A} ∪

vars(ϑ).

(106) Var(∅QuasiAdjsC ∗ ϑ) = Varϑ.
(107) η is ground iff Var η = ∅.
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Let us consider C and let θ be a quasi-type of C. We say that θ is ground if
and only if:

(Def. 50) Var θ = ∅.
Let us consider C. Observe that there exists an expression of C from typeC

which is ground and pure and there exists a quasi-adjective of C which is ground.
Next we state the proposition

(108) For every ground pure expression τ of C from typeC holds ∅QuasiAdjsC ∗τ
is ground.

Let us consider C and let τ be a ground pure expression of C from typeC.
Note that ∅QuasiAdjsC ∗ τ is ground.
Let us consider C. Note that there exists a quasi-type of C which is ground.
Let us consider C, let θ be a ground quasi-type of C, and let α be a ground

quasi-adjective of C. Observe that α ∗ θ is ground.

9. Smooth Type Widening

The strict non empty poset VarPoset is defined by:

(Def. 51) VarPoset = (〈{varclA : A ranges over finite subsets of Vars},⊆〉)op.
One can prove the following propositions:

(109) For all elements x, y of VarPoset holds x ≤ y iff y ⊆ x.
(110) For every x holds x is an element of VarPoset iff x is a finite subset of

Vars and varclx = x.

One can check that VarPoset has g.l.b.’s and l.u.b.’s.
The following proposition is true

(111) For all elements V1, V2 of VarPoset holds V1tV2 = V1∩V2 and V1uV2 =
V1 ∪ V2.
Let V1, V2 be elements of VarPoset. One can verify that functors V1tV2 and

V1 ∩ V2 and functors V1 u V2 and V1 ∪ V2 can be identified.
One can prove the following proposition

(112) For every non empty subsetX of VarPoset holds supX exists in VarPoset
and supX =

⋂
X.

One can verify that VarPoset is up-complete.
The following proposition is true

(113) >VarPoset = ∅.
Let us consider C. The functor vars-functionC yielding a function from

QuasiTypesC into the carrier of VarPoset is defined by:

(Def. 52) For every quasi-type T of C holds (vars-functionC)(T ) = vars(T ).

Let L be a non empty poset. We say that L is smooth if and only if the
condition (Def. 53) is satisfied.
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(Def. 53) There exists an initialized constructor signature C and there exists a
function f from L into VarPoset such that
(i) the carrier of L ⊆ QuasiTypesC,
(ii) f = vars-functionC�the carrier of L, and
(iii) for all elements x, y of L holds f preserves sup of {x, y}.
Let C be an initialized constructor signature and let T be a ground quasi-

type of C. One can check that 〈{T}, id{T}〉 is smooth.

10. Structural Induction

The scheme StructInd deals with an initialized constructor signature A, an
expression B of A, and a unary predicate P, and states that:

P[B]
provided the following conditions are satisfied:
• For every variable x holds P[xA],
• Let c be a constructor operation symbol of A and p be a finite se-
quence of elements of QuasiTermsA. Suppose len p = lenArity(c)
and for every quasi-term τ of A such that τ ∈ rng p holds P[τ ].
Then P[c~(p)],

• For every expression α of A from adjA such that P[α] holds
P[nonA(α)], and

• Let α be an expression of A from adjA. Suppose P[α]. Let τ be
an expression of A from typeA. If P[τ ], then P[∗A(α, τ)].

Let Σ be a many sorted signature. We say that Σ has an operation for each
sort if and only if:

(Def. 54) The carrier of Σ ⊆ rng (the result sort of Σ).
Let X be a many sorted set indexed by the carrier of Σ. We say that X has
missing variables if and only if:

(Def. 55) X−1({∅}) ⊆ rng (the result sort of Σ).
The following proposition is true

(114) Let Σ be a non void signature and X be a many sorted set indexed by
the carrier of Σ. Then X has missing variables if and only if for every sort
symbol s of Σ such that X(s) = ∅ there exists an operation symbol o of
Σ such that the result sort of o = s.

Observe that MaxConstrSign has an operation for each sort. Let C be a
constructor signature. Observe that VarsC has missing variables.
Let Σ be a many sorted signature. Observe that every many sorted set

indexed by the carrier of Σ which is non-empty has also missing variables.
Let Σ be a many sorted signature. Observe that there exists a many sorted

set indexed by the carrier of Σ which has missing variables.
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One can verify that there exists a constructor signature which is initialized
and strict and has an operation for each sort.
Let C be a many sorted signature with an operation for each sort. Observe

that every many sorted set indexed by the carrier of C has missing variables.
Let G be a non empty tree construction structure. Then the terminals of G

is a subset of G. Then the nonterminals of G is a subset of G.
Next we state a number of propositions:

(115) Let D1, D2 be non empty tree construction structures. Suppose the rules
of D1 ⊆ the rules of D2. Then
(i) the nonterminals of D1 ⊆ the nonterminals of D2,
(ii) (the carrier of D1) ∩ (the terminals of D2) ⊆ the terminals of D1, and
(iii) if the terminals of D1 ⊆ the terminals of D2, then the carrier of D1 ⊆
the carrier of D2.

(116) Let D1, D2 be non empty tree construction structures. Suppose the
terminals of D1 ⊆ the terminals of D2 and the rules of D1 ⊆ the rules of
D2. Then TS(D1) ⊆ TS(D2).

(117) Let Σ be a many sorted signature and X, Y be many sorted sets indexed
by the carrier of Σ. If X ⊆ Y, then if X has missing variables, then Y has
missing variables.

(118) For every set Σ and for all many sorted sets X, Y indexed by Σ such
that X ⊆ Y holds

⋃
coprod(X) ⊆

⋃
coprod(Y ).

(119) Let Σ be a non void signature and X, Y be many sorted sets indexed
by the carrier of Σ. If X ⊆ Y, then the carrier of DTConMSA(X) ⊆ the
carrier of DTConMSA(Y ).

(120) Let Σ be a non void signature and X be a many sorted set indexed by
the carrier of Σ. Suppose X has missing variables. Then the nonterminals
of DTConMSA(X) = (the operation symbols of Σ) × {the carrier of Σ}
and the terminals of DTConMSA(X) =

⋃
coprod(X).

(121) Let Σ be a non void signature and X, Y be many sorted sets inde-
xed by the carrier of Σ. Suppose X ⊆ Y and X has missing variables.
Then the terminals of DTConMSA(X) ⊆ the terminals of DTConMSA(Y )
and the rules of DTConMSA(X) ⊆ the rules of DTConMSA(Y ) and
TS(DTConMSA(X)) ⊆ TS(DTConMSA(Y )).

(122) For every set τ holds τ ∈ the terminals of DTConMSA(VarsC) iff there
exists a variable x such that τ = 〈〈x, termC 〉〉.

(123) Let τ be a set. Then τ ∈ the nonterminals of DTConMSA(VarsC) if and
only if one of the following conditions is satisfied:
(i) τ = 〈〈∗C, the carrier of C〉〉, or
(ii) τ = 〈〈nonC, the carrier of C〉〉, or
(iii) there exists a constructor operation symbol c of C such that τ = 〈〈c,
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the carrier of C〉〉.
(124) Let Σ be a non void signature, X be a many sorted set indexed by the

carrier of Σ with missing variables, and τ be a set. Suppose τ ∈
⋃
(the sorts

of FreeΣ(X)). Then τ is a term of Σ over X ∪ ((the carrier of Σ) 7−→ {0}).
(125) Let Σ be a non void signature, X be a many sorted set indexed by the

carrier of Σ with missing variables, and τ be a term of Σ over X ∪ ((the
carrier of Σ) 7−→ {0}). If τ ∈

⋃
(the sorts of FreeΣ(X)), then τ ∈ (the

sorts of FreeΣ(X))(the sort of τ).

(126) Let G be a non empty tree construction structure, s be an element of G,
and p be a finite sequence. Suppose s⇒ p. Then p is a finite sequence of
elements of the carrier of G.

(127) Let Σ be a non void signature, X, Y be many sorted sets indexed by
the carrier of Σ, g1 be a symbol of DTConMSA(X), g2 be a symbol of
DTConMSA(Y ), p1 be a finite sequence of elements of the carrier of
DTConMSA(X), and p2 be a finite sequence of elements of the carrier
of DTConMSA(Y ). If g1 = g2 and p1 = p2 and g1 ⇒ p1, then g2 ⇒ p2.

(128) Let Σ be a non void signature and X be a many sorted set indexed by
the carrier of Σ with missing variables. Then

⋃
(the sorts of FreeΣ(X)) =

TS(DTConMSA(X)).

Let Σ be a non void signature and let X be a many sorted set indexed by
the carrier of Σ. A unary operation on

⋃
(the sorts of FreeΣ(X)) is said to be a

transformation of Σ-terms over X if:

(Def. 56) For every sort symbol s of Σ holds it◦(the sorts of FreeΣ(X))(s) ⊆ (the
sorts of FreeΣ(X))(s).

The following two propositions are true:

(129) Let Σ be a non void signature, X be a non empty many sorted set
indexed by the carrier of Σ, and f be a unary operation on

⋃
(the sorts of

FreeΣ(X)). Then f is a transformation of Σ-terms over X if and only if
for every sort symbol s of Σ and for every set α such that α ∈ (the sorts
of FreeΣ(X))(s) holds f(α) ∈ (the sorts of FreeΣ(X))(s).

(130) Let Σ be a non void signature, X be a non empty many sorted set
indexed by the carrier of Σ, f be a transformation of Σ-terms over X, s
be a sort symbol of Σ, and p be a finite sequence of elements of (the sorts
of FreeΣ(X))(s). Then f · p is a finite sequence of elements of (the sorts of
FreeΣ(X))(s) and (f · p qua set) = len p.
Let Σ be a non void signature, let X be a many sorted set indexed by the

carrier of Σ, and let τ be a transformation of Σ-terms over X. We say that τ is
substitution if and only if the condition (Def. 57) is satisfied.

(Def. 57) Let o be an operation symbol of Σ and p, p′ be finite sequences of ele-
ments of FreeΣ(X). Suppose 〈〈o, the carrier of Σ〉〉-tree(p) ∈

⋃
(the sorts of
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FreeΣ(X)) and p′ = τ · p. Then τ(〈〈o, the carrier of Σ〉〉-tree(p)) = 〈〈o, the
carrier of Σ〉〉-tree(p′).
The scheme StructDef deals with an initialized constructor signature A, two

unary functors F and G yielding expressions of A, and two binary functors H
and I yielding expressions of A, and states that:

There exists a transformation f of A-terms over VarsA such that
(i) for every variable x holds f(xA) = F(x),
(ii) for every constructor operation symbol c of A and for
all finite sequences p, p′ of elements of QuasiTermsA such that
len p = lenArity(c) and p′ = f · p holds f(c~(p)) = H(c, p′),
(iii) for every expression α of A from adjA holds f(nonA(α)) =
G(f(α)), and
(iv) for every expression α of A from adjA and for every expres-
sion τ of A from typeA holds f(∗A(α, τ)) = I(f(α), f(τ))

provided the parameters meet the following requirements:
• For every variable x holds F(x) is a quasi-term of A,
• Let c be a constructor operation symbol of A and p be a finite se-
quence of elements of QuasiTermsA. Suppose len p = lenArity(c).
Then H(c, p) is an expression of A from the result sort of c,

• For every expression α of A from adjA holds G(α) is an expression
of A from adjA, and

• Let α be an expression of A from adjA and τ be an expression of
A from typeA. Then I(α, τ) is an expression of A from typeA.

11. Substitution

Let A be a set, let x, y be sets, and let α, β be elements of A. Then
IFIN(x, y, α, β) is an element of A.
Let C be an initialized constructor signature. A valuation of C is a partial

function from Vars to QuasiTermsC.
Let C be an initialized constructor signature and let f be a valuation of C.

We say that f is irrelevant if and only if:

(Def. 58) For every variable x such that x ∈ dom f there exists a variable y such
that f(x) = yC.

Let C be an initialized constructor signature and let f be a valuation of C.
We introduce f is relevant as an antonym of f is irrelevant.
Let X, Y be sets. Observe that there exists a partial function from X to Y

which is empty.
Let C be an initialized constructor signature. Observe that every valuation

of C which is empty is also irrelevant.
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Let C be an initialized constructor signature. Note that there exists a valu-
ation of C which is empty, irrelevant, and one-to-one.
Let C be an initialized constructor signature and let X be a subset of Vars.

The functor idvalCX yielding a valuation of C is defined by:

(Def. 59) idvalCX = {〈〈x, xC〉〉;x ranges over variables: x ∈ X}.
Next we state the proposition

(131) For every subset X of Vars holds dom idvalCX = X and for every varia-
ble x such that x ∈ X holds (idvalCX)(x) = xC.
Let C be an initialized constructor signature and let X be a subset of Vars.

One can check that idvalCX is irrelevant and one-to-one.
Let C be an initialized constructor signature and let X be an empty subset

of Vars. One can check that idvalCX is empty.
Let us consider C and let f be a valuation of C. The functor f# yielding a

transformation of C-terms over VarsC is defined by the conditions (Def. 60).

(Def. 60)(i) For every variable x holds if x ∈ dom f, then f#(xC) = f(x) and if
x /∈ dom f, then f#(xC) = xC,

(ii) for every constructor operation symbol c of C and for all finite sequences
p, p′ of elements of QuasiTermsC such that len p = lenArity(c) and p′ =
f# · p holds f#(c~(p)) = c~(p′),

(iii) for every expression α of C from adjC holds f
#(nonC(α)) =

nonC(f#(α)), and
(iv) for every expression α of C from adjC and for every expression τ of C
from typeC holds f

#(∗C(α, τ)) = ∗C(f#(α), f#(τ)).
Let us consider C and let f be a valuation of C. Observe that f# is substi-

tution.
In the sequel f denotes a valuation of C.
Let us consider C, f , η. The functor η[f ] yielding an expression of C is defined

as follows:

(Def. 61) η[f ] = f#(η).

Let us consider C, f and let p be a finite sequence. Let us assume that
rng p ⊆

⋃
(the sorts of FreeC(VarsC)). The functor p[f ] yields a finite sequence

and is defined as follows:

(Def. 62) p[f ] = f# · p.
Let us consider C, f and let p be a finite sequence of elements of QuasiTermsC.

Then p[f ] is a finite sequence of elements of QuasiTermsC and it can be cha-
racterized by the condition:

(Def. 63) p[f ] = f# · p.
In the sequel x is a variable.
The following propositions are true:

(132) If x /∈ dom f, then xC[f ] = xC.



228 grzegorz bancerek

(133) If x ∈ dom f, then xC[f ] = f(x).
(134) If len p = lenArity(c), then c~(p)[f ] = c~(p[f ]).

(135) nonC(α)[f ] = nonC(α[f ]).

(136) ∗C(α, τ)[f ] = ∗C(α[f ], τ [f ]).
(137) For every subset X of Vars holds η[idvalCX] = η.

(138) For every subsetX of Vars holds (idvalCX)# = id⋃ (the sorts of FreeC(VarsC)).
(139) For every empty valuation f of C holds η[f ] = η.

(140) For every empty valuation f of C holds f# = id⋃ (the sorts of FreeC(VarsC)).
Let us consider C, f and let τ be a quasi-term of C. Then τ [f ] is a quasi-term

of C.
Let us consider C, f and let α be an expression of C from adjC. Then α[f ]

is an expression of C from adjC.
Let us consider C, f and let α be a positive expression of C from adjC. Note

that α[f ] is positive.
Let us consider C, f and let α be a negative expression of C from adjC.

Observe that α[f ] is negative.
Let us consider C, f and let α be a quasi-adjective of C. Then α[f ] is a

quasi-adjective of C.
We now state the proposition

(141) (nonα)[f ] = non(α[f ]).

Let us consider C, f and let τ be an expression of C from typeC. Then τ [f ]
is an expression of C from typeC.
Let us consider C, f and let τ be a pure expression of C from typeC. Observe

that τ [f ] is pure.
One can prove the following two propositions:

(142) Let f be an irrelevant one-to-one valuation of C. Then there exists an
irrelevant one-to-one valuation g of C such that for all variables x, y holds
x ∈ dom f and f(x) = yC if and only if y ∈ dom g and g(y) = xC.

(143) Let f , g be irrelevant one-to-one valuations of C. Suppose that for all
variables x, y such that x ∈ dom f and f(x) = yC holds y ∈ dom g and
g(y) = xC. Let given η. If Var η ⊆ dom f, then η[f ][g] = η.
Let us consider C, f and let A be a subset of QuasiAdjsC. The functor A[f ]

yielding a subset of QuasiAdjsC is defined as follows:

(Def. 64) A[f ] = {α[f ];α ranges over quasi-adjectives of C: α ∈ A}.
The following three propositions are true:

(144) For every subset A of QuasiAdjsC and for every quasi-adjective α of C
such that A = {α} holds A[f ] = {α[f ]}.

(145) For all subsets A, B of QuasiAdjsC holds (A ∪B)[f ] = A[f ] ∪B[f ].
(146) For all subsets A, B of QuasiAdjsC such that A ⊆ B holds A[f ] ⊆ B[f ].
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Let C be an initialized constructor signature, let f be a valuation of C, and
let A be a finite subset of QuasiAdjsC. One can check that A[f ] is finite.
Let C be an initialized constructor signature, let f be a valuation of C, and

let θ be a quasi-type of C. The functor θ[f ] yields a quasi-type of C and is defined
by:

(Def. 65) θ[f ] = (adjs θ)[f ] ∗ (the base of θ)[f ].
Next we state two propositions:

(147) For every quasi-type θ of C holds adjs(θ[f ]) = (adjs θ)[f ] and the base
of θ[f ] = (the base of θ)[f ].

(148) For every quasi-type θ of C and for every quasi-adjective α of C holds
(α ∗ θ)[f ] = α[f ] ∗ θ[f ].
Let C be an initialized constructor signature and let f , g be valuations of C.

The functor f [g] yields a valuation of C and is defined by:

(Def. 66) dom(f [g]) = dom f ∪ dom g and for every variable x such that x ∈
dom(f [g]) holds f [g](x) = xC[f ][g].

Let C be an initialized constructor signature and let f , g be irrelevant valu-
ations of C. One can check that f [g] is irrelevant.
The following three propositions are true:

(149) For all valuations f1, f2 of C holds η[f1][f2] = η[f1[f2]].

(150) For every subset A of QuasiAdjsC and for all valuations f1, f2 of C holds
A[f1][f2] = A[f1[f2]].

(151) For every quasi-type θ of C and for all valuations f1, f2 of C holds
θ[f1][f2] = θ[f1[f2]].
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